DATA TABLE for LENS EQUATION ONLY

Note that focal length from part one (i.e., the distance object method) is denoted by $f_{\text {dist }}$ obj

Trial	Lens location on optics bench [This column is simply to tell you where to place lens in next column] (cm)	object distance o [Lens distance from light source] (cm)	Screen (image) location on optical bench [fuzzy ${ }_{\text {lett }} /$ clear/fuzzy ${ }_{\text {right }}$ measurements] (cm)	Image distance \mathbf{i} [distance of image from lens] (cm)	focal length (from lens eq) (cm)	$\begin{gathered} \quad \begin{array}{c} \boldsymbol{\delta} \boldsymbol{i} \\ {\left[\begin{array}{l} \Delta i x z \end{array} / 2\right]} \\ (\mathrm{cm}) \end{array} \end{gathered}$	δf (cm)
1	$7 \times f_{\text {dist_obj }}=$						
2	$6 \times f_{\text {dist_obj }}=$						
3	$4 \times f_{\text {dist_obj }}=$						
4	$2 \times f_{\text {dist_obj }}=$						
5	$1.75 \times f_{\text {dist_obj }}=$						
Example $f_{\text {dis- obi }}=$ $19.6 \mathrm{~cm})$	$8 \times f_{\text {dist_obj }}=$ $\begin{gathered} 8 \times 19.6 \mathrm{~cm}= \\ 156.7 \mathrm{~cm} \end{gathered}$ Use 160 cm	160 cm	$\begin{gathered} 182.6 \mathrm{~cm} / 183.4 / 183.9 \\ 183.9 \mathrm{~cm}-182.6 \mathrm{~cm}=1.3 \mathrm{~cm} \end{gathered}$	$\begin{gathered} 183.4 \mathrm{~cm}- \\ 160 \mathrm{~cm}= \\ \mathbf{2 3 . 4} \\ \mathrm{cm} \end{gathered}$	(using lens eq) 20.4 cm	$1.3 \mathrm{~cm} / 2=$ 0.65 cm use 0.7	Using Equation 1 from above $\delta f= \pm 0.5$

