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Kramers-Kronig (KK) analyses of experimental data are complicated by the extrapolation problem, that is,
how the unexamined spectral bands impact KK calculations. This work demonstrates the causal linkages in
resonant-type data provided by acoustic KK relations for the group velocity (cg) and the derivative of the
attenuation coefficient (a’) (components of the derivative of the acoustic complex wave number) without
extrapolation or unmeasured parameters. These relations provide stricter tests of causal consistency relative to
previously established KK relations for the phase velocity (c,) and attenuation coefficient () (components of
the undifferentiated acoustic wave number) due to their shape invariance with respect to subtraction constants.
For both the group velocity and attenuation derivative, three forms of the relations are derived. These relations
are equivalent for bandwidths covering the entire infinite spectrum, but differ when restricted to bandlimited
spectra. Using experimental data from suspensions of elastic spheres in saline, the accuracy of finite-bandwidth
KK predictions for ¢, and @' is demonstrated. Of the multiple methods, the most accurate were found to be
those whose integrals were expressed only in terms of the phase velocity and attenuation coefficient them-

selves, requiring no differentiated quantities.
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I. INTRODUCTION

Fundamentally rooted in causality, Kramers-Kronig (KK)
relations provide linkages between the physical properties
that govern the response of matter and materials to external
stimuli. Due to their general foundations [1], KK relations
have applications across a broad range of physical frame-
works, from continuum mechanics to elementary particle
phenomenology. As tools for the analysis of physical sys-
tems, these relations are employed to perform a wide array of
tasks that include measuring fundamental material param-
eters, establishing the consistency of laboratory data, and
building causally consistent physical models. When applying
KK relations to data, a knowledge gap exists between the
infinite bandwidth required by the KK integrals and the in-
herently bandlimited measurements. The impact of this gap
on KK calculations, also referred to as the extrapolation
problem, depends on many factors, both general and system
dependent. In some cases the gaps are filled in via extrapo-
lation [2] while in others the potential influences of the un-
known bands are reduced through subtractions [2,3]. One
can also estimate analytically admissible approximants to a
conjugate KK parameter given finite data [4].

Previously, we established the consistency of finite-
bandwidth acoustic KK relations of the twice-subtracted
form between the ultrasonic attenuation coefficient a(w) and
phase velocity ¢,(w) using data from suspensions of encap-
sulated microbubbles that exhibit an isolated resonance [5].
Using only information from within the measurement spec-
trum, finite-bandwidth KK relations provided for accurate
transformations between the two quantities a(w) and c,(w)
with the proper selection of the subtraction frequency. The
choice of subtraction frequency w, determines the slope and
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intercept of a linear contribution to the calculation that is
critical to the accuracy of the prediction. In the ideal case, in
which the entire spectrum is available for the calculation, the
results are independent of the subtraction frequency. How-
ever, for the finite-bandwidth case the result is highly sensi-
tive to this choice of w,. Furthermore, it is not clear that
objective criteria can be established to favor the best-fitting
choices for w, over other values. As a result, the subtraction
frequency is effectively a tuning parameter which makes this
approach somewhat unsatisfactory.

In this work we derive KK relations for the inverse group
velocity 1/c,(w) and frequency derivative of attenuation
a' (w)=da(w)/dw, which are the real and imaginary compo-
nents of the first derivative (with respect to frequency) of the
acoustic complex wave number. We find three specific ex-
pressions for each relation that are equivalent when inte-
grated over the entire spectrum but distinct over a limited
bandwidth. These include relations for determining 1/c,(w)
directly from the attenuation coefficient, and for determining
a'(w) directly from the phase velocity. Furthermore, these
two specific formulations, which involve no differentiated
quantities in the integrals, are found to provide the most
accurate predictions for the data examined in this paper.

For finite-bandwidth analysis, an important general prop-
erty of these KK relations is that the shapes of the predicted
curves are independent of the subtraction frequency. As a
result these relations for ¢, and @’ permit a more stringent
test of causal consistency for dispersive acoustic data than
the twice-subtracted KK relations for the primary quantities
c, and a. It should also be noted that the group velocity can
be directly (i.e., without differentiation) determined in the
properly designed experiment and so, in principle, can be
known to the same precision as the phase velocity. Conse-
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quently, the use of c,(w) in these relations does not neces-
sarily decrease the precision of a calculation relative to c,()
and a(w) even though it is technically defined as a differen-
tiated quantity.

Following the derivations of these KK relations, we use
their direct forms [a(w) — c,(w) and c,(w) — a'(w)] to dem-
onstrate the close agreement between experimental determi-
nations and finite-bandwidth KK predictions for data exhib-
iting multiple resonant structures. The consistency between
the data and predictions for group velocity and derivative of
attenuation under our relations clearly establishes the causal
link between attenuation and dispersion for these data over a
finite bandwidth without extrapolation.

II. THEORY
A. Subtracted relations in the expanded form

The transfer function for a passive, linear isotropic me-
dium can be written

H(w,D) = expliK(w)D], (1)
where
K(w) = w/c)(o) +ia(w) (2)

is the complex wave number, a(w) is the attenuation coeffi-
cient, cp(a)) is the phase velocity, and D is the thickness. The
transfer function H(w,D) is the Fourier transform of a
causal, square-integrable function [i.e., the impulse response
hp(2)], which implies via Titchmarsh’s theorem [6] that its
real and imaginary parts form a Hilbert transform pair. Since
hp(?) is real, the components of H(w, D) exhibit definite par-
ity, which in turn permits the mapping of the negative fre-
quency components of the Hilbert integrals to positive fre-
quencies. The resulting transforms are labeled as Kramers-
Kronig relations. Using the method of subtractions, one can
also derive KK relations for the components of K(w). Based
on both empirical and analytic evidence [5,7,8] two subtrac-
tions appear to be sufficient for establishing a Hilbert trans-
form pair from the acoustic complex wave number. The
twice-subtracted relations in the expanded form are

1) w d o

dwc,(w)

w= (,(IO

+ lim lla(a),a’,ﬂ) — I (wy,0,8))

o—0
Qo
d
—(w-wy) —I(0,0,0) } i 3)
dw oy
where
1 Q — 1 Q _
I(w,0,Q)= _f de_ _J de,
TJ & X—w P X+ w
4)
and
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a(w) = a(wy) + (0 — wp)a’ (wp) + lim l[c(w, ,Q)

o—0
Q—o
d
—I.(wg,0,Q) — (0 — w) Elc(w,a,ﬂ) i ] ,
(5)
where
(0.0.0) = J x/c (x) wlc (w)

J xlc,( x) + wlc (w) ©)

X+ w

and wy is the subtraction frequency. By evaluating the inte-
grals in Egs. (3) and (5) before taking the limit of {) — <o, the
divergences of the individual integrals will cancel. Although
it is conventional to combine the remapped negative fre-
quency contribution [the second integrals in Egs. (4) and (6),
respectively] with the positive frequency part, keeping them
separate has some advantages for computational and analyti-
cal work. Note that the local variations in the quantities
w/c,(w) and a(w) on the left-hand sides of Egs. (3) and (5)
are largely generated by the first terms [i.e., I (w,o,{)) and
I(w,0,Q)] on the respective right-hand sides. The remain-
ing terms in both relations define linear contributions whose
slopes and intercepts are functions of wy.

The group velocity and derivative of attenuation are com-
ponents of the differentiated complex wave number,

d d o . d
al((w) = %cp o) + ldwa(w) (7a)
=1/c,(w) +ia'(w). (7b)

The KK relations for 1/c,(w) and o'(w) are of the once-
subtracted type and can each be written in one of three ways
depending on the method used for their derivation. The gen-
eral form for all three expressions of the group velocity re-
lation is

V(@)= leg(wy) + lim [1(w,0,0) - 1V(wg, 0,Q)].

o—0

(8)

where the explicitly defined integral sets IEYV)(w,o',Q) are
distinguished by the label V=“sub”, “diff”, or “pv” (“sub” is
derived directly from the method of subtractions; “diff” is
derived by differentiation of an earlier relation; “pv”’ contains
a principal value integral). I(;L‘b)(w,a,ﬂ) is derived by ap-
plying the method of subtractions directly to Eq. (7b):
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1 Q o
15,00 = f A -dw)
™ g

X—w
. lJQ o' (x) + a’(w)dx ©)
m), X+w

Alternatively, one can differentiate Eq. (3) with respect to
frequency to obtain Iifm)(w, 0,Q),

190, . 2) = lJQ a(x) - a(w) — (x— w)a’(w)dx
™ g

(x—w)?
1 fﬂ a(x) —
Lo

Finally, using the fact that the Hilbert transform of a constant
is zero, the third set of integrals can be taken from Eq. (10)

Q Q
lpf a(x) - a(w) de s lf a(x) - a(w)

a(w) + (x+ w)ad (w)

(x+ w)?

(10)

IEfV)(w, o,Q0)= dx

T (x— w)? T (x+ w)?

(11)

where P denotes integration in the principal value sense.
This form has the advantage of containing no explicit differ-
entiated quantities in its integrands.

As implied by Eq. (8), in the limits o—0, ) — oo these
three formulations are equivalent. This work is concerned
with finite limits of integration, however, and when o and Q)
are confined to the finite limits of the measured spectra, the
three forms will produce different results. More details re-
garding the differences among Eqs. (9)-(11) will be dis-
cussed in Sec. IV.

As with the group velocity, the relation for the frequency
derivative of attenuation can be expressed in three ways,
with the general form

o (w) = o' (wp) + lim |1 (@,0,Q) = I (0,0, Q).
Q—o

o—0
(12)

and the three specific integral forms

Q
IE.Sub)(w,O',Q) - f /e ()C) /e ( )d

lf 1/e,(x) = Uey( )d (13)
T X+ w

x/c,(x) = wlc,(w) = (x - w)lc, (w)

" 1
Ig.dltf)(w, 0,Q)=- —f
m a

(x - w)?
. lfn x/c,(x) + wlc,(w) — (x + w)/c (o) i
), (x+ w)? ’
(14)

and
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I(pv)(w 0,Q) =

PJ x[1/e,(x) - 1/c (w)] "

(x - )?

. lfg x[1/e,(x) - l/ch(w)]dx. (15)
), (x+ w)

Note that Eq. (15) is derived by rewriting the numerators in
Eq. (14) as follows:

x o Xtw —x( 1 ~ 1 )
¢,(x) T cp(@)  clw) T\e,(x)  cplw)
+(x = w)a)g((Tw))z. (16)

In summary, each of the parameters c,(w) and a'(w) has
three possible KK formulations that are distinguished by
their integrands. The first type (“sub”) contains only the dif-
ferentiated quantities themselves, the second form (“diff”)
contains a mixture of primary (i.e., undifferentiated) and dif-
ferentiated quantities, and the third type (“pv”) contains only
the primary quantities. In this work, we have found that the
third types, the “pv” forms (11) and (15), produce the most
accurate results. This is a significant finding since the most
accurate 1/c,(w) and o' (w) predictions result from integrals
containing only the primary quantities c,(w) and a(w). Also,
in contrast to the determinations of ¢,(w) and a(w) given in
Egs. (3) and (5), the choice of subtraction frequency wy in
Eqgs. (8) and (12) defines only an offset and so the shapes of
the 1/c,(w) and @' (w) curves are completely independent of
the choice for w.

III. RESULTS

The data examined in this work are from transmission
measurements of agitated suspensions of polymer micro-
spheres in saline [9,10]. The two suspensions used in this
work contain spheres distributed narrowly in size about
mean radii of 50.8 and 34.8 um, respectively. The measure-
ments exhibit several attenuation peaks and rapid dispersive
sweeps, covering the spectrum from 3 to 30 MHz and the
circumference-to-wavelength (ka) spectrum from 0.64 to 6.4
and 0.44 to 4.4, respectively. The four panels of Fig. 1 show
the finite-bandwidth KK predictions of c,(f) and a’(f) in
comparison with the experimental data for these two suspen-
sions. The calculations of c,(f) and a'(f) (where f=w/2m)
were performed with the general relations (8) and (12) using
the specific integral forms (11) and (15), respectively. The
limits of integration were fixed to o=3 MHz and ()
=30 MHz, the spectral extent of the data. In all four panels,
excellent agreement is apparent, especially in the first two-
thirds of the spectrum. At the higher frequencies, the attenu-
ation and dispersion of the suspensions exhibit small-scale
rapid oscillations that are not well resolved by the frequency
step size of the data. The rapid variations in the KK results at
high frequency do represent the underlying behavior of data,
although the detailed correspondence is not as precise at this
end of the spectrum.
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FIG. 1. (Color online) Comparisons between the experimentally determined and Kramers-Kronig (KK) predicted quantities for (a) group
velocity and (b) frequency derivative of the attenuation coefficient for the 50.8 wm suspension. (c) and (d) show these same comparisons for
the 34.8 wm suspension. In all four panels, the circles are the experimental data and the dotted curves are the finite-bandwidth KK
predictions. The KK calculations were performed using the integral formulations in Egs. (11) and (15), respectively.

IV. DISCUSSION

A. Role of subtraction frequency

In previous work, the phase velocity and attenuation co-
efficient data from Albunex' microbubble suspensions have
been shown to be consistent with finite-bandwidth KK rela-
tions (3) and (5) with the limits of integration fixed to o
=1 MHz and Q=15 MHz [5]. These twice-subtracted rela-
tions can also accurately transform between c,(f) and a(f)
for the microsphere data used in this work. However, for
both the Albunex and microsphere suspensions the accura-
cies of the c,(f) and a(f) predictions depend critically on the
choice of subtraction frequency fy=wy/2 used in the cal-
culations, where in the ideal case of =0 and {)—c the
outcomes should be independent of this choice. About 20%
of the frequencies contained in the discrete data sets can
produce reasonably good agreement when used as f;’s, while
a similar fraction produces strongly divergent results. [Find-

'Certain commercial equipment, instruments, or materials are
identified in this paper only in order to specify the experimental
procedure adequately. Such identification does not imply recom-
mendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that the materials or equipment
identified are necessarily the best available for the purpose.

ing an objective physical justification for choosing f;, in the
c,(f) and a(f) predictions is the subject of an ongoing inves-
tigation.] In contrast, the agreement for each of c,(f) and
a'(f) clearly demonstrates the causal link in the microsphere
data in a more satisfying manner, since the KK calculations
produce shape-invariant predictions of the two quantities.
One can also go to the next order of derivative and eliminate
the subtraction frequency f, completely. However, the
higher-order differentiation of discrete data can be problem-
atic because it amplifies noise and becomes increasingly de-
localized.

B. Use of differentiated quantities

A significant aspect of the methods developed here is that
accurate transforms are obtained for the two derivative com-
ponents of the complex wave number without requiring any
differentiated quantities in the integrals. Of these derivative
quantities of the complex wave number, the group velocity is
a highly relevant physical parameter that can be clearly dem-
onstrated to be the velocity of the peak in the modulation
envelope of the properly constructed wave packet (e.g., a
narrowband, Gaussian-gated continuous wave [11]). The
group velocity itself can be determined by the direct mea-
surement of group delay, and so, in principle, it can be
known to the same precision as the phase velocity. This im-
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plies that the group velocity is not necessarily saddled with
the increase in noise that is associated with the differentia-
tion of experimental data. Consequently, it is possible to use
cq(w) in these KK calculations without causing any loss of
precision relative to the primary quantities c,(w) and a(w).

The relations for the derivative of the attenuation coeffi-
cient are of interest mainly to provide a conjugate relation as
a further demonstration of causal consistency. As an indepen-
dent physical quantity, a'(w) is not widely used outside of
biomedical ultrasonics where it is known as the “slope of
attenuation” and used as a parameter in tissue characteriza-
tion. It is not clear if there is a way to determine a'(w)
directly through an amplitude measurement to a similar pre-
cision as one can determine a(w). Consequently, it may not
be possible to circumvent the introduction of noise due to
differentiation with respect to this parameter.

C. Issues in determining the optimum method

As mentioned earlier, the three individual integral formu-
lations (9)—(11) of the group velocity relation are equivalent
when evaluated from O to %. The same holds true for the
three forms (13)—(15) of the relation for the attenuation de-
rivative. When o is nonzero and/or () is finite each of the
integrals produces artifacts of the bandwidth restriction that
are unique to the integrand and integration limits, as well as
the type of behavior exhibited by the system (e.g., resonant,
monotonic power law) [5,7]. These artifacts can manifest
themselves as scaling factors of the desired result and/or as
terms additive to the desired result. In some cases multiple
artifacts may partially cancel one another, or alternatively
they could overwhelm the target quantity. Without analyti-
cally modeling the system beforehand, it is not clear that one
can a priori choose the optimal form of the integrals for a
given data set. Still, one can obtain analytical, model-
independent expressions for the differences among the three
forms of each relation. These derived expressions were
found to be in close agreement with the numerically calcu-
lated differences. For this work, the differences between the
methods were small, and each method produced a reasonably
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accurate result on its own. For the c,(f) prediction the worst
discrepancies between Egs. (9)—(11) (occurring near the larg-
est peak in each suspension) were less than 3% of the value
of the quantity itself. For «’(f), the three methods produced
quite similar predictions with the only significant differences
occurring near the largest peak in each data set.

V. CONCLUSION

In this work, KK relations for determining the group ve-
locity and frequency derivative of attenuation have been de-
rived. For finite-bandwidth predictions with data exhibiting
multiple resonant structures, these relations for cg(a)) and
a'(w) were shown to produce accurate results. A significant
finding is that the best c,(w) and a'(w) predictions were
determined from integrals over the primary quantities a(w)
and c,(w), respectively, without any differentiated param-
eters in the integrands. As tools for finite-bandwidth analysis,
the predictions of these relations for c,(w) and @'(w) are
morphologically independent of the subtraction frequency
and thus provide more satisfactory methods for confirming
the causal consistency of dispersion data in comparison with
KK relations for c,(w) and a(w). Furthermore, accurate pre-
dictions are achieved without using any unmeasured or ex-
trapolated parameters.

The underlying framework used to derive these relations
is not specific to acoustics and can be applied to other types
of wave propagation. For example, a similar relation for
group velocity (or group index of refraction) can be derived
for the propagation of electromagnetic waves. Such a rela-
tion could be especially useful in the optical range, where
phase measurements can be much more challenging than ab-
sorption measurements and pulses are typically narrowband.
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