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Probing cosmology with
LISA

Based on:
• Tamanini, Caprini, Barausse, Sesana, Klein, Petiteau,
arXiv:1601.07112
• Caprini & Tamanini, arXiv:1607.08755
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Standard sirens for LISA

I How many standard
sirens will be detected by
LISA?

I What type of sources can
be used?

I For how many it will be
possible to observe a
counterpart?
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Standard sirens for LISA

Possible standard sirens sources for LISA:

I MBHBs (104 − 107 M�)

I LIGO-like BHBs (10− 100M�)

I EMRIs

Advantages of MBHB mergers:

I High SNR

I High redshifts (up to ∼10-15)

I Merger within LISA band �
I Gas rich environment → EM counterparts!
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LISA cosmological forecasts: data simulation approach

To obtain cosmological forecasts, we have adopted the following
realistic strategy:
[NT, Caprini, Barausse, Sesana, Klein, Petiteau, arXiv:1601.07112]

I Start from simulating MBHBs merger events using
3 different astrophysical models [arXiv:1511.05581]

I Light seeds formation (popIII)
I Heavy seeds formation (with delay)
I Heavy seeds formation (without delay)

I Compute for how many of these a GW signal will be detected
by LISA (SNR>8)

I Among these select the ones with a good sky location
accuracy (∆Ω < 10deg2)

I Focus on 5 years LISA mission
(the longer the better for cosmology)
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LISA cosmological forecasts: data simulation approach

I To model the counterpart we generally consider two
mechanisms of EM emission at merger:
(based on [arXiv:1005.1067])

I A quasar-like luminosity flare (optical)
I Magnetic field induced flare and jet (radio)

I Magnitude of EM emission computed using data from
simulations of MBHBs and galactic evolution
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LISA cosmological forecasts: data simulation approach

Finally to detect the EM counterpart of an LISA event
sufficiently localized in the sky we use the following two methods:

I LSST: direct detection of optical counterpart
I SKA + E-ELT: first use SKA to detect a radio emission from

the BHs and pinpoint the hosting galaxy in the sky, then aim
E-ELT in that direction to measure the redshift from a
possible optical counterpart either

I Spectroscopically or Photometrically
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LISA cosmological forecasts: MBHB standard sirens rate

Example of simulated catalogue of MBHB standard sirens:

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

z

d
L

@G
p
cD

45.9 Light seeds HpopIIIL
31.2 Heavy seeds HdelayL
50. Heavy seeds Hno delayL

2 4 6 8 10
z

2

4

6

8

10

12

Events

H5 yearsL

L6A5M5N2

Note 1: LISA will be able to map the expansion at very high
redshifts (data up to z ∼ 8), while SNIa can only reach z ∼ 1.5
Note 2: Few MBHBs at low redshift ⇒ bad for DE (but on can
use SNIa and other GW sources)
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LISA cosmological forecasts: parameter constraints

RESULTS: [NT et al, arXiv:1601.07112]

1σ constraints with 5 million km armlength:

ΛCDM:

{
∆ΩM ' 0.025 (8%)

∆h ' 0.013 (2%)

ΛCDM + curvature:


∆ΩM ' 0.054 (18%)

∆ΩΛ ' 0.15 (21%)

∆h ' 0.033 (5%)

Dynamical DE:

{
∆w0 ' 0.16

∆wa ' 0.83

I Similar results with 1 or 2 million km armlength
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LISA cosmological forecasts: future prospects

Future work:

I Exploit other LISA GW sources for cosmology (lower z)

(this will improve the results from MBHBs only)
I Stellar mass BH binaries (z < 0.1) �

I EMRIs (0.1 < z < 1) → no counterparts expected!
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Example of possible eLISA cosmological data

MBHBs
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BHBs

High redshift data useful
to test alternative
cosmological models
[Caprini & NT, arXiv:1607.08755]

I Cosmology at all redshift ranges with LISA!
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Measuring the peculiar
acceleration of BBHs with

LISA

Based on:
• Bonvin, Caprini, Sturani, Tamanini, arXiv:1609.08093
• Inayoshi, Tamanini, Caprini, Haiman, arXiv:1702.06529
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Outline

I The expansion of the universe and the cosmic matter
inhomogeneities affect the propagation of GWs

I We identify 3 redshift-dependent effects on the chirp signal:
I time variation of the background expansion of the universe
I time variation of the gravitational potential at the GW source
I time variation of the peculiar velocity of the GW source

I These effects cause a phase drift during the in-spiral:
I Not relevant for Earth-based detectors
I Relevant for non-monochromatic LISA sources with many

in-spiral cycles in band: low chirp mass and τc ∼ ∆tobs
I The phase drift due to the peculiar acceleration dominates:

I Can be used to discriminate between different BBH formation
channels
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Waveform for an unperturbed universe with constant z

Assuming a FRW metric, the waveform at the observer is

Where the redshift z is assumed to be constant during the time of
observation of the signal:

1 + z =
aO
aS

fS = (1+z)fO

τO = (1+z)τS

fO(τO) =
1

π

(
5

256τO

)3/8

(GMc)−5/8

ΦO(τO) = −2

(
τO

5GMc

)5/8

+ Φi
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Considering a varying redshift

Relax the assumption that the redshift is constant during the
observational time of the GW signal

Two main effects:

I the background expansion of the universe varies during the
time of observation of the binary
[Seto et al (2001), Takahashi & Nakamura (2005), Nishizawa et al (2012)]

I the redshift perturbations due to the distribution of matter
between the GW source and the observer vary in time during
the time of observation of the binary
[Bonvin, Caprini, Sturani, NT, arXiv:1609.08093]
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Considering a varying redshift: perturbed universe

Computing the redshift perturbations:

Consider scalar perturbations on FRW:

ds2 = −
(
1 + 2ψ

)
dt2 + a2

(
1− 2φ

)
δijdx

idx j
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Considering a varying redshift: perturbed equations

These effects introduce additional contributions in the frequency
and the phase of the chirp signal with new time dependences
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Considering a varying redshift: perturbed equations

A(f ) =

√
5

24π4/3

(GMc)5/6

dL(z)

1

f 7/6

[
1−5 (GMc)−5/3

384π8/3

Y (z)

f 8/3

]

Φ(f ) = 2πftc −
π

4
− Φc +

3

128
(πGMc)−5/3 1

f 5/3

− 25

32768π
(πGMc)−10/3 Y (z)

f 13/3

Effective –4PN frequency dependence:
(but comparable to max ∼2PN once its prefactor is taken into account)

I Frequency dependent shift during the in-spiral phase

I Need observation of many cycles to be relevant

I No application to Earth-based detectors (only few cycles)

I Relevant for slowly evolving LISA sources (∼ 106 cycles)
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Estimate of the amplitude of Y (z)
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Estimate of the amplitude of Y (z)

ε ≡ 10
( vs

100 kms

)2
(

r

1 kpc

)−1

(ê · n̂)

I vs is the CoM velocity of the binary

I r is the distance from the galactic center
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Estimate of the amplitude of Y (z)
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If ε is not negligible, then the contribution of peculiar accelerations
dominates over the ones due to expansion of the universe,
especially at low redshifts
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Implications for GW detection

Question: What kind of peculiar accelerations of BBHs can
we detect? What values of ε?

To address this question we performed a Fisher matrix analysis

Fij =

〈
∂h

∂θi

∣∣∣∣ ∂h∂θj
〉

= 2

∫ fmax

fmin

df

Sn(f )

(
∂h

∂θi

∂h∗

∂θi
+ c.c.

)
where h(f ) is the (sky-averaged and spin-less) 3.5PN waveform in
Fourier space including the peculiar acceleration effect, which
depends on the 6 parameters (for high accelerations Y ∝ ε)

θi = (Mc ,Φc , tc , η, dL,Y )
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Implications for GW detection

We made two parallel error estimations:

I With LISA alone: ∆Y is the
1σ error marginalized over
all other waveform
parameters

I With LISA + LIGO where
the time of coalescence tc is
fixed by an Earth-based
detection and ∆Y is
marginalized only over the
remaining parameters

[Sesana, arXiv:1602.06951]
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Implications for GW detection

Finally in order to check the validity of the Fisher matrix analysis
for high values of ε, we also computed the SNR of the perturbed
waveform:

ρ(δh) = (〈δh |δh 〉)1/2 =

[∫ fmax

fmin

df
|δh(f )|2

Sn(f )

]1/2

where
δh = h(f , 0)− h(f ,Y ) = h(f )

[
1− e iδΨacc

]
Note that as long as δΨacc � 1 we have ρ(δh)/ρ(h) ∝ ε, while

when the phase drift approaches a full cycle (i.e. when δΨacc ∼ 1),
ρ(δh)/ρ(h) saturates at a constant value
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Implications for GW detection

acceleration parameter ε/(1+z)
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The Fisher matrix analysis is valid only in the regime δΨacc � 1
since it relies on linear derivatives of h(f ) around the parameters’
fiducial values

In this regime ρ(δh)−1 = ∆Y /Y with all other parameters fixed
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Implications for GW detection
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Implications for GW detection
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[Inayoshi, NT, Caprini, Haiman, arXiv:1702.06529]

Nicola Tamanini Cosmology and peculiar acceleration of BBHs with LISA



Implications for GW detection

acceleration parameter ε
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Implications for BBH formation models

Result: the phase drift can be measured for BBHs with high
enough peculiar acceleration (ε & 104)

Question: what values of the peculiar acceleration (i.e. of ε) are
expected for stellar mass BBHs? Are there any BBH formation
channels leading to high peculiar accelerations?

Answer: Yes! The following BBH formation models predict that
BBHs orbit very close to the galactic center ⇒ high acceleration!

I Dynamical formation in dense stellar systems: mass
segregation through dynamical friction pushes BBHs towards
nuclear star clusters or galactic nuclei

I BBH formation in AGN disks: BBH could form either from
massive stellar binaries in the AGN disk itself or at migration
traps located closer in; moreover pre-existing binaries in the
3D bulge can also be captured in the inner regions of the disk
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Implications for BBH formation models

scenario v (kms) r (pc) ε dL,obs (Mpc) nhost (Mpc−3) nhostVeff nmVeff

Field binaries (A)
formed at z ' 0 ∼ 200 > 5× 103 < 10 ∼ 0.2 ∼ 2× 10−2 � 1 � 1
formed at z ' 3 ∼ 300 103 − 104 10− 100 0.2− 2 ∼ 5× 10−4 . 0.02 � 1

Dense stellar systems (B)
globular clusters ∼ 200 ∼ 5× 104 ∼ 1 ∼ 0.02 ∼ 1 � 1 � 1

nuclear star clusters 30− 100 ∼ 1 103 − 104 20− 200 ∼ 0.01 . 3× 105 . 30

AGN disks (C)
formed in disk ∼ 200 ∼ 1 ∼ 104 ∼ 200 ∼ 10−5 ∼ 300 ∼ 30

captured or migrated in ∼ 600 ∼ 0.1 ∼ 105 ∼ 950 ∼ 10−5 ∼ 104 ∼ 103

Very high-redshift (D)
Population III ∼ 200 . 103 10− 100 0.2− 2 ∼ 2× 10−2 . 0.7 � 1

Table from [Inayoshi, NT, Caprini, Haiman, arXiv:1702.06529]
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Implications for BBH formation models

Conclusion: the phase drift in the GW waveform produced by the
peculiar acceleration of BBHs can be used as a robust discriminator
between different BBH formation channels by LISA (+LIGO)

Interestingly the hosting galaxy of BBHs associated with AGN
disks can uniquely identified within the sky localization error box of
LISA, exactly because AGNs are rare objects in the universe

⇒ the redshift of BBHs for which the connection with AGNs is
verified by the peculiar acceleration effect, can be determined
uniquely
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Conclusions

Probing cosmology with LISA

I MBHBs will be excellent standard sirens for LISA

I Direct probe of the cosmic expansion at very high redshift

I Constraint on H0 down to 1%

I Useful to constrain alternative models at high redshift

Measuring BBH peculiar accelerations with LISA

I The GW signal is affected by the evolution of the
redshift perturbations during the observational time

I This produces a phase drift which is dominated by the
peculiar acceleration contribution

I The effect is relevant for low mass LISA sources
(30M� .Mc . 100M�) with τc ∼ ∆tobs

I It can be used to discriminate between different BBH
formation channels
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