
Discussion: Tests of the Kerr nature of BHs and new physics 
 

Observables 
1. Location-specific observables 

○ BH shadows 
○ QNMs 
○ Isolated QPO detections 

2. Integrated effects (~depend on ISCO) 
○ Continuum spectrum 
○ Iron line profile 
○ Jet power 

3. Spacetime tomography 
○ Iron line reverberation 
○ Ryan style tomography/EMRIs 
○ wide range of QPO detections from 

different regions of the disc 

Questions 
● How generic are the different spacetime parameterisations?  
● Can we get around the degeneracies? 
● Are the tests that we have independent/complementary? 
● How important is the structure/properties of the central object and do the above 

approaches capture that? 
○ Or, are these tests sensible if they disregard internal structure and 

properties? 
● Can we distinguish theories using bumpy spacetimes? 
● Astrophysics is messy. Will we be able to go around it? 
● Is there anything in the literature to fit something very exotic? 

○ A very hairy BH, or a rotating boson star? 
● Is it possible/likely that waveform degeneracy exists, between a binary of two 

exotic compact objects in GR (say two rotating boson stars) and two non-GR 
black holes? 

● Can we probe quantum corrections to Kerr? 
○ What are appropriate observables? 

 
 



Open issues

Exotic compact objects (ECOs): 

1) Ultra-compact objects likely to be unstable and formation channels are hard 
to conceive. How seriously should we take them? 

2) Does the echo picture remains the same for collisions of ~equal-mass ECOs? 

3) Sistematic study of waveforms from collisions of bosonic stars is needed.

 Black holes as particles detectors: 

1) End-state of the superradiant instability? 

2) Can we distinguish bosonic fields with different spins? 

3) Can non-linearities change the picture (e.g. mixing between modes, 
bosenova, …)?
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FIG. 1. ��2 contours with Nline = 104 (left panel) and 105 (right panel) from the comparison of the iron line profile of a Kerr
black hole simulated using an input spin parameter a0

⇤ = 0.65 and an inclination angle i0 = 45� vs a set of non-Kerr black holes
with spin parameter a⇤ and deformation parameter �r/rKerr. The red dot indicates the reference black hole. See the text for
more details.
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FIG. 2. ��2 contours from the simulation of a 42 ks observa-
tion of XTE J1752-223 with eXTP assuming that the source
is a Kerr black hole with the parameters found in Ref. [25].
See the text for more details.

rameter a⇤, the deformation parameter �r, the viewing
angle i, the ratio between the continuum and the iron
line photon flux K, and the index of the continuum �.

These plots can be compared with the plot presented
in Ref. [10]. Both our analysis and that in Ref. [10] are
based on a simple model, so the constraints should be
taken as a general guide. Nevertheless, it is remarkable
that the constraining capability seems to be comparable.
In our case, EW ⇡ 400 eV is quite an optimistic observa-
tion. For a bright AGN, current observations may have
Nline ⇡ 103, but in the case of a bright black hole binary
we may already have Nline ⇡ 105 or more.

B. Simulation of an observation with eXTP

To do a step further, we constrain the deformation
parameter �r/rKerr by simulating an observation with
eXTP, which is a China-Europe proposal for a next gen-
eration X-ray mission [24]. For this purpose, we have cho-
sen the stellar-mass black hole XTE J1752-223. The spin
parameter of this object was measured via the iron line
method in Ref. [25] and was found to be a⇤ = 0.52±111.
The 2009 outburst of XTE J1752-223 was observed

by XMM-Newton and Suzaku. Its flux in the energy
range 2-10 keV was ⇠ 1.1 · 10�8 erg s�1 cm�2 [25]. Our
simulations are based on the parameters reported in [25].
In particular, we use their equivalent width of EW ⇡
221 eV. While eXTP spectra are simulated with same
source brightness and same exposure time (42 ks), they
are able to reach a much higher total photon count, about
8 · 109 during the whole exposure. The photon count in
the iron line is Nline ⇠ 107, and this explains why we
obtain much better constraints than those in Fig. 1 (see
below).
The results of these simulations are shown in Figs. 2

and 3. We have used Xspec with the model [26, 27]

TBabs*(powerlaw+relconv*xillver+NKL)

where NKL is the iron line in the non-Kerr metric in (2)
from our code [15, 22]. xillver already includes the
iron line, but we have kept its normalisation low to have
a reasonable equivalent width in the iron line produced

1
Among the spin measurements reported in the literature of

stellar-mass black holes, there is no source with a spin estimate

very close to a⇤ = 0.65, see e.g. Tab. 1 in Ref. [3]. The spin

measurement of XTE J1752-223 is not too far.
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FIG. 1. Constraints on the spin parameter a⇤ and the deformation �r/rKerr for the black hole candidate in GRO J1655-40 from
current observations of QPOs within the relativistic precession model. The red-solid line, blue-dashed line, and green-dotted
line represent, respectively, the contour levels ��2 = 2, 4, and 9. See the text for more details.
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FIG. 2. As in Fig. 1, but assuming some hypothetical more precise future measurements. In the left panel, we consider the set
of measurements in Eq. (20). The right panel shows the constraints from the set of measurements in Eq. (21). See the text for
more details.

We also note that (assuming the Kerr metric) the two
sets of QPOs have a radial coordinate, respectively, of
r1 = 5.67 M , r2 = 5.59 M . The constraints from this
case are shown in the left panel in Fig. 2. It is remark-
able that the allowed region is now very thin. However,
if we consider the allowed range of �r/rKerr, it is almost
the same as in Fig. 1: thus the frequency measurements
in (20), despite being much better than in (19), do not
help to break the degeneracy between the spin and pos-
sible deviations from the Kerr metric.

C. More optimistic case

The constraints found in the left panel in Fig. 2 from
the set of measurements in (20) can be explained with the

fact that in (20) we have essentially a precise measure-
ment of the three fundamental frequencies at a specific
radius, but not much more. Even if there are two sets
of QPOs, they are generated almost at the same radius
and therefore they provide almost the same information.
It would be helpful to have instead the whole profile of
the three frequencies. At the same time, the mass from
dynamical measurement has quite a large uncertainty. A
very precise measurement of Mdyn would be also helpful
to break the parameter degeneracy, but it is unlike to get
it at the necessary precision to do the job.
To show that this is indeed the right explanation, we

consider a new set of measurements with the same pre-
cision as in (20), but now the di↵erence between the two
radii of the QPOs is larger. Our third set of measure-
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As our aim is only to evaluate the order of an allowed
range of the deformation parameter δr at a given rela-
tively small allowance for the quasinormal frequency (a
few percents), we do not need to be tied to a particular
theory, type of perturbation or even fixed value of the
quasinormal frequency. Therefore, we shall consider a
test scalar field in the deformed background (2) and use
simple semi-classical WKB estimates. Such a test-field
approach will not distinguish the Kerr space-time as a so-
lution of the Einstein field equations from the same Kerr
space-time as solution of some non-Einsteinian gravity
mentioned above [7, 8]. However, our aim here is not to
include all the possible alternative theories into consid-
eration, but to show that at least some deviations from
the Einstein gravity are still allowed by the observations.
Analysis of gravitational perturbations would obviously
constrain the possible alternatives better.
A massless minimally-coupled scalar field obeys the

equation

Φ;µ
;µ =

1√
−g

∂µ
(√

−ggµν∂νΦ
)

= 0. (6)

Substituting the ansatz

Φ(t, r, θ,φ) = exp(−iωt+ imφ)R(r)S(θ)(r2 + a2)−1/2 ,

into (6) we find that S(θ) satisfies the equation for the
spheroidal functions
(

d2

dθ2
+ cot θ

d

dθ
−

m2

sin2 θ
− a2ω2 sin2 θ + λℓm(ω)

)

S(θ)

= 0 ,(7)

where the values of the separation constant λℓm(ω) can
be enumerated, for each given integer azimuthal number
m, by the multipole number

ℓ = |m|, |m|+ 1, |m|+ 2, . . . .

For the radial function R(r) we obtain the wave-like
equation

d2R

dr2⋆
+
(

ω2 − V (r,ω)
)

R(r) = 0,

where

dr⋆ =

(

r2 − 2Mr + a2

r2 + a2
−

η

r3 + ra2

)−1

dr,

is the tortoise coordinate, and the effective potential is
given by the following relation

V (r,ω) =
2am(2Mr2 + η)

r(r2 + a2)2
ω −

m2a2

(r2 + a2)2
(8)

+

(

r2 − 2Mr + a2

r2 + a2
−

η

r3 + ra2

)

×
(

λℓm(ω)

r2 + a2
+

a4 + a2r2 − 4Ma2r + 2Mr3 + 3rη

(r2 + a2)3

)

.
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FIG. 1. Parametric region (gray) of possible deformations
δr/rKerr leading to the ringdown frequency ωM = 0.635 −
0.0901i (which corresponds, according to the WKB formula
for the Kerr metric with a/M ≈ 0.65) within 3% accuracy.

Application of the WKB formula [10] at fixed values
of ω

ω2 = Q(ℓ,m,ω,M, a, δr), (9)

where the explicit form of the operator Q depends on
the order of the WKB series, allows one to find those
values of the deformation parameter δr, which, in the al-
lowed indeterminacy range for a and M , reproduce the
quasinormal frequency ω within the desired few percents
accuracy. We have chosen ℓ = m = 2 mode for Kerr and
the rate of rotation about a/M ≈ 0.65 and tested pos-
sible values of δr (see fig. 1) against the allowed range
of a/M determined in fig. 3 of [2]. From fig. 1 we can
see that the deformation δr/rKerr can achieve several
tens of percents. Although the particular shape of the
region depicted in fig. 1 depends on the spin of pertur-
bation, type of the chosen deformation and a number of
computational details of quasinormal modes, the above
statement on the order of allowed deformation from Kerr
geometry evidently must not depend on any of these de-
tails. Indeed, a reader could repeat our computations
for vector and spinor fields, as well as choose a different
value of ω for comparison. The analysis of dependence of
quasinormal modes for a great variety of black holes [5]
shows that the order of “sensitivity” of ω as to the change
of the black hole parameters is the same for gravitational
perturbations as for perturbation of test fields.
In the next section we shall give another illustration

of the same idea and go over from the “ad-hoc deforma-
tion” to consideration of the particular alternative the-
ory, Einstein-dilaton gravity, where the nonzero dilaton
parameter b plays the role of deformation.

III. KERR-SEN VS KERR BLACK HOLES

It is natural to expect that determination of not only
a single mode (that could “by accident” be close to the



   Kent Yagi 

Probing Kerr with tidal Love number 
[Cardoso et al. (2017)] 

Love number 

⇠ =
R

2M
� 1

Quantum effect is not Planck suppressed!! 

for  k2 ⇠ 10�3 R = 2M + lP

Can we probe exotic compact objects whose surface is just 
Planck length outside the Schwarzschild radius? 


