Discussion: Tests of the Kerr nature of BHs and new physics

Observables

- 1. Location-specific observables
 - BH shadows
 - QNMs
 - Isolated QPO detections
- 2. Integrated effects (~depend on ISCO)
 - Continuum spectrum
 - $\circ \quad \text{Iron line profile} \\$
 - Jet power
- 3. Spacetime tomography
 - Iron line reverberation
 - Ryan style tomography/EMRIs
 - wide range of QPO detections from different regions of the disc

Questions

- How generic are the different spacetime parameterisations?
- Can we get around the degeneracies?
- Are the tests that we have independent/complementary?
- How important is the structure/properties of the central object and do the above approaches capture that?
 - Or, are these tests sensible if they disregard internal structure and properties?
- Can we distinguish theories using bumpy spacetimes?
- Astrophysics is messy. Will we be able to go around it?
- Is there anything in the literature to fit something very exotic?
 - A very hairy BH, or a rotating boson star?
- Is it possible/likely that waveform degeneracy exists, between a binary of two exotic compact objects in GR (say two rotating boson stars) and two non-GR black holes?
- Can we probe quantum corrections to Kerr?
 - What are appropriate observables?

Open issues

Black holes as particles detectors:

- 1) End-state of the superradiant instability?
- 2) Can we distinguish bosonic fields with different spins?
- 3) Can non-linearities change the picture (e.g. mixing between modes, bosenova, ...)?

Exotic compact objects (ECOs):

1) Ultra-compact objects likely to be unstable and formation channels are hard to conceive. How seriously should we take them?

- 2) Does the echo picture remains the same for collisions of ~equal-mass ECOs?
- 3) Sistematic study of waveforms from collisions of bosonic stars is needed.

FIG. 1. $\Delta \chi^2$ contours with $N_{\text{line}} = 10^4$ (left panel) and 10^5 (right panel) from the comparison of the iron line profile of a Kerr black hole simulated using an input spin parameter $a'_* = 0.65$ and an inclination angle $i' = 45^\circ$ vs a set of non-Kerr black holes with spin parameter a_* and deformation parameter $\delta r/r_{\text{Kerr}}$. The red dot indicates the reference black hole. See the text for more details.

FIG. 1. Constraints on the spin parameter a_* and the deformation $\delta r/r_{\text{Kerr}}$ for the black hole candidate in GRO J1655-40 from current observations of QPOs within the relativistic precession model. The red-solid line, blue-dashed line, and green-dotted line represent, respectively, the contour levels $\Delta \chi^2 = 2$, 4, and 9. See the text for more details.

FIG. 1. Parametric region (gray) of possible deformations $\delta r/r_{\rm Kerr}$ leading to the ringdown frequency $\omega M = 0.635 - 0.0901i$ (which corresponds, according to the WKB formula for the Kerr metric with $a/M \approx 0.65$) within 3% accuracy.

Roman Konoplya, Alexander Zhidenko Phys.Lett.B756:350–353,2016

Probing Kerr with tidal Love number

[Cardoso et al. (2017)]

Can we probe exotic compact objects whose surface is just Planck length outside the Schwarzschild radius?

		Love number
		k_2^E
NSs		210
ECOs	Boson star	41.4
	Wormhole	$\frac{4}{5(8+3\log\xi)}$
	Perfect mirror	$\frac{8}{5(7+3\log\xi)}$
	Gravastar	$\frac{16}{5(23-6\log 2+9\log \xi)}$
m BHs	Einstein-Maxwell	0
	Scalar-tensor	0
	Chern-Simons	0

 $=\frac{R}{2M}-1$

 $k_2 \sim 10^{-3}$ for $R = 2M + l_P$

Quantum effect is not Planck suppressed!!

Kent Yagi