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Motivations

o Clean tests in strong-field = black holes
e Kerr hypothesis
o Utility to parameterizations

Observations of interest

Motion of test bodies and photons
Accretion disks

EMRI and ringdown tests

Caveats

A pile of parameterizations

e Review
e Shortcomings

Systematic study?

Leo C. Stein (Caltech) Bumpy black hole parameterizations



Motivations
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Why test GR?

Gab = 87‘(‘Tab

General relativity successful but incomplete
e Can't have mix of quantum/classical
¢ GR not renormalizable

¢ GR+QM=new physics (e.g. BH information paradox)
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Why test GR?

Gab = 87‘(‘Tab

General relativity successful but incomplete
e Can't have mix of quantum/classical
¢ GR not renormalizable

¢ GR+QM=new physics (e.g. BH information paradox)

Empiricism
Ultimate test of theory: ask nature
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What is a black hole?

Observationally:
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Mathematically:
Crack open Wald,
B=[M-—J (7))

Region that's causally disconnected
from “exterior”
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What is a black hole?

Observationally: Mathematically:
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The Kerr hypothesis

Question: Are astronomical candidates actually Kerr black holes?
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The Kerr hypothesis

Question: Are astronomical candidates actually Kerr black holes?
Answer: No.

Our universe is not stationary, axisymmetric, Ricci-flat,
asymptotically flat ...

Question: Are astronomical candidates approximately Kerr black holes?
How do we test the Kerr hypothesis?
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Classification of tests
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[Baker, Psaltis, Skordis (2015)]
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Kinematics vs. Dynamics

Kinematics: study solutions (geometry), ignore equations

Dynamics: which equations are being satisfied?
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Kinematics vs. Dynamics

Kinematics: study solutions (geometry), ignore equations

Dynamics: which equations are being satisfied?

Caveat: Kerr a solution to many theories
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Theory-specific vs. theory-independent

Theory-specific

e Pro: Easy to interpret. Bayesian model comparison (Monday)
For models {GR, BGR;}, can compute

p(d|GR)
p(d|BGR;)
e Con: Lots of work for each theory
Theory-independent [e.g. PPN, PPK, PPF, PPE]

e Pro: Mapping = reuse calculations

e Con: Interpretation unclear. |s parameterization complete?
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Observations of interest
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Observations of interest

Ideal system to observe:
e quasi-stationary
e axisymmetric

isolated

® vacuum

= no observational signature.

Need weakly-coupled probe of geometry
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Observations of interest

Stellar-mass black holes

Binary mergers in LIGO?

— L1 observed -
H1 observed (shifted, inverted)
T T

Highly dynamical, not test of Kerr

(ask me later about BBH mergers
beyond GR)
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Observations of interest

Stellar-mass black holes

Binary mergers in LIGO? EM signatures from accretion disks
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Observations of interest

Accretion disks

Observables: Continuum, line spectrum, radio interferometry, QPOs. . .
[Broderick, Johannsen, Narayan, Reynolds, McClintock, Steiner .. .]
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Caveats: unknown accretion physics
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Observations of interest

Supermassive black holes

Observable: precession of orbits of stars

Keck/UCLA Galactic
Center Group

Caveats: strong equivalence principle, external perturbations?
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Observations of interest

Supermassive black holes

Observable: pulsar timing [e.g. Psaltis, Wex, Kramer (2016)]
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Caveats: strong equivalence principle
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Observations of interest

Supermassive black holes

Observable: Extreme mass-ratio inspiral waveforms with LISA
[Berti, Cardoso, Gair, Kesden, Pani, Yunes, ...]

Caveats:
e strong equivalence principle

e how gravitational waves are
sourced

e how gravitational waves
propagate
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Observations of interest

Stellar/supermassive black holes

Observable: Ringdown gravitational waveform [Berti and friends]
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Caveats: what is graviton propagator? (discussion yesterday, Sathya's talk)
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A pile of parameterizations

Leo C. Stein (Caltech)
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Weyl-Lewis-Papapetrou

Stationary, axisymmetric metric:

ds? = =V (dt — wdp)? + V1 p2d¢? + Q(dp® + Ad2?). (1)
Specialize to Ricci-flat:

ds® = =V (dt —wdg)* + V1 [p?de? + ¥ (dp* + dz?)], (2)
where v = 1 In(VQ?).

Caveats: (1) requires t — ¢ reflection isometry, or integrability of p — z
planes

Con: Uncountably infinite # of degrees of freedom?
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Geroch-Hansen, Manko-Novikov, Ryan, Backdahl

What an awful slide
Manko-Novikov is Kerr but with different Geroch-Hansen M,

Reminder: What are My, S;? Ricci-flat, asymptotically flat spacetime in
terms of Hertz potential; analytic function given in terms of Taylor series at
r— 00

Backdahl later determined conditions for convergence, how to reconstruct
given arbitrary moments.

Pro: countably infinite # of DoF
Cons:

Backdahl very complicated

Ricci flatness

motivated by large-r expansion — strong field?

analyticity [counter-example: Yukawa exp(—mr) /7]
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Collins and Hughes, Vigeland and Hughes

Linearize metric about Schwarzschild,

(V7 w, 7) = (‘/Schw; Wschw ’YSchw) + G(V(1)7 w(l), '7(1)) + 0(62) .

Satisfy Einstein's equations through O(e).

Leo C. Stein (Caltech)
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Collins and Hughes, Vigeland and Hughes

Linearize metric about Schwarzschild,

(‘/’ w, ,7) = (‘/Schwa Wschw ’}/Schw) + G(V(l), w(l), '7(1)) + 0(62) .

Satisfy Einstein's equations through O(e).

Linearized version of free Geroch-Hansen moments (Backdahl).

Leo C. Stein (Caltech)

Bumpy black hole parameterizations

23



Vigeland and Hughes

Apply Newman-Janis trick to “rotate” near-Schwarzschild geometries into
spinning geometries.

Pro: Simpler than Backdahl, spinning geometries

Con: N-J trick is ad-hoc

Leo C. Stein (Caltech)
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Glampedakis and Babak

@ Take Hartle-Thorne metric for (M, J, Q) (ignore higher order)
@ Llet Q=—J2/M —eM?

© Cut out the O(e) part of metric

O Paste it onto the Kerr metric

Pro: Simple analytic form, only 1 extra DoF

Con: Ad-hoc, only 1 extra DoF, clearly can't capture all geometries
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Johannsen and Psaltis

ds® = —f(r)[1 + h(r)]dt® + f(r) 71 4+ h(r)]dr? + 72 (d6? + sin® 8d¢?)
where f(r) =1—2M/r, and

Then apply Newman-Janis trick

Pro: Simple analytic form, countably infinite # DoF

Cons:
e Ad-hoc, N-J trick
e h motivated by large-r expansion — strong field?
e Cardoso, Pani, Rico showed shortcomings
Bumpy black hole parameterizations 26



Cardoso, Pani, Rico

Pro:

Allow two power series ht, h™ with parameters €!, e’

1)
Showed that all € equally important in strong-field
Argument against 1/r"™ power series tied to weak-field

Also showed that known beyond-GR solutions (e.g. dCS) do not fit
into JP or CPR metrics

Simple analytic form, 2x countably infinite # DoF

Cons:

Ad-hoc, N-J trick

large-r expansion unreliable
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Rezzolla, Zhidenko, Konoplya

e Too long/messy to include here

e Use infinite continued fractions in metric functions to try to control
convergence near strong-field and far-field

Pro: countably infinite # DoF

Con: complicated, hard to tell what is space of metrics
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Vigeland, Yunes, Stein; Johannsen

e Linear perturbation O(e) about Kerr
e restrict metrics to those having an O(¢) Killing tensor

e Later simplified by Johannsen (but still too long to show)

Pro: geodesic motion remains integrable, four functional DoF

Con: why should geodesic motion be integrable?
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Systematic study?

Leo C. Stein (Caltech)
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Simplifying principles

e Weyl-Lewis-Papapetrou is nonlinear function space

e Evidence suggests BH candidates are close to Kerr

e Linearize to tangent function space about Kerr

Jab = 955 + €hgy + O(€?)

Leo C. Stein (Caltech)
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Simplifying principles

Evidence suggests gravity is close to general relativity

Focus on theories that are perturbative deformations of GR

I=1Ig g+ elpgr + O(?)

Start by studying stationary, axisymmetric form of equation

Gg;) [hcd] = Sab

Sap can be DM cloud, axion hair, exotic matter . ..
Or beyond-GR correction to gravity
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Study

Operator splits the function space into Ker[G(1)] and Spec[G(V)]

GYk =0

Kernel contains:
Only Ricci-flat bits
Pure gauge — fix

Shifts of mass, angular momentum

Shifts in orientation, center of mass

Linearized Geroch-Hanson bumps (countably infinite)

Anything else?
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Study

Operator splits the function space into Ker[G(1)] and Spec[G(V)]

GWIE]] = A\1E;

Spectrum contains:
e All non-Ricci-flat bits

Unknowns:

e |Is the spectrum discrete, continuous, or both? [Ex: Hydrogen atom]

e |s there a complete basis of eigenfunctions?

e |s there an inner product and are eigenfuncs orthogonal?
N.B. Do not confuse spectrum with QNMs!
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Eigenfunction approach?

GWh =S

e Suppose we know eigenfunctions {E;} and they are complete

e Given a source S, resolve into sum*
S = 5 S1E;
I

where S7's are just numbers

e Solution is now

h =Y _A/'SiEr + hom.
1

where homogeneous solutions determined by boundary conditions
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Best possible mathematical setting

Most you could ask for:

o G is self-adjoint with respect to (,)

e Source must be divergence-free

Positive-definite symmetric inner product (,) on Hilbert space

e Source must be orthogonal to every element of Ker[G(!)]

Might also be possible with anti-symmetric product
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Motivations

o Clean tests in strong-field = black holes

e Kerr hypothesis
o Utility to parameterizations

Observations of interest

Motion of test bodies and photons
Accretion disks

EMRI and ringdown tests

Caveats

A pile of parameterizations

e Review
e Shortcomings

Systematic study?
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Backup slides
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Only 10 numbers in parametrized post-Newtonian

PPN formalism for metric theories of gravity

Metric:

goo = —1 42U — 28U% — 2®w + (27 + 2+ a3 + (1 — 21 +2(37 — 28+ 1+ G + ) D»

+2(1 4 (3)®s +2(37 + 3Cs — 28) P4 — (G — 26)A

+(2a3 — a)w'V; + O(%),

> 2
— (1 — a2 — az)w'U — asw'w’Us;

1 1 1 i
goi = —5(4’Y+3+Oé1 —aa+ G —2)Vi— 5(1 +az— (G +2)W; — 5(061 — 20)w'U

—aqw'Us; + O(&?),
gij = (1+29U)d;; + O(e?).

Metric potentials:
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w: motion w.r.t. preferred reference frame

WMAP/NASA
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[ Will 1993, Will 2014, Living Reviews in Relativity ]
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Binary pulsar tests

Keplerian orbits: parameters - observables = 2
2.0

7 - 2 =5 tests of GR

Mass of Pulsar B (Mp)
Iy =
(==} ot

o
o

00 0.0 0.5 1.0 1.5 2.0

Mass of Pulsar A (M)
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