Bumpy black hole parameterizations

Leo C. Stein (TAPIR, Caltech)
Based on everybody else's work

$$
\text { StronG BaD — Mar. 2, } 2017
$$

- Motivations
- Clean tests in strong-field \Longrightarrow black holes
- Kerr hypothesis
- Utility to parameterizations
- Observations of interest
- Motion of test bodies and photons
- Accretion disks
- EMRI and ringdown tests
- Caveats
- A pile of parameterizations
- Review
- Shortcomings
- Systematic study?

Motivations

Why test GR?

$$
G_{a b}=8 \pi \hat{T}_{a b}
$$

General relativity successful but incomplete

- Can't have mix of quantum/classical
- GR not renormalizable
- $G R+Q M=$ new physics (e.g. BH information paradox)

Why test GR?

$$
G_{a b}=8 \pi \hat{T}_{a b}
$$

General relativity successful but incomplete

- Can't have mix of quantum/classical
- GR not renormalizable
- $G R+Q M=$ new physics (e.g. BH information paradox)

Empiricism
Ultimate test of theory: ask nature

[Baker, Psaltis, Skordis (2015)]

What is a black hole?

Observationally:

Very compact object

What is a black hole?

Observationally:

Mathematically:
Crack open Wald,

$$
B \equiv\left[M-J^{-}\left(\mathscr{I}^{+}\right)\right]
$$

Region that's causally disconnected from "exterior"

Very compact object

What is a black hole?

Observationally:

Very compact object

Mathematically:
Crack open Wald,

$$
B \equiv\left[M-J^{-}\left(\mathscr{I}^{+}\right)\right]
$$

Region that's causally disconnected from "exterior"

GR theorems say:
Subject to stationary, axisymmetric, asymptotically flat, Ricci-flatness:

Kerr is unique endpoint

$$
M_{\ell}+i S_{\ell}=M(i a)^{\ell}
$$

The Kerr hypothesis

Question: Are astronomical candidates actually Kerr black holes?

The Kerr hypothesis

Question: Are astronomical candidates actually Kerr black holes?
Answer: No.
Our universe is not stationary, axisymmetric, Ricci-flat, asymptotically flat ...

Question: Are astronomical candidates approximately Kerr black holes? How do we test the Kerr hypothesis?

Classification of tests

[Baker, Psaltis, Skordis (2015)]

Kinematics vs. Dynamics

Kinematics: study solutions (geometry), ignore equations

Dynamics: which equations are being satisfied?

Kinematics vs. Dynamics

Kinematics: study solutions (geometry), ignore equations

Dynamics: which equations are being satisfied?
Caveat: Kerr a solution to many theories

Theory-specific vs. theory-independent

Theory-specific

- Pro: Easy to interpret. Bayesian model comparison (Monday) For models $\left\{G R, B G R_{i}\right\}$, can compute

$$
\frac{p(\vec{d} \mid G R)}{p\left(\vec{d} \mid B G R_{i}\right)}
$$

- Con: Lots of work for each theory

Theory-independent [e.g. PPN, PPK, PPF, PPE]

- Pro: Mapping \Longrightarrow reuse calculations
- Con: Interpretation unclear. Is parameterization complete?

Observations of interest

Observations of interest

Ideal system to observe:

- quasi-stationary
- axisymmetric
- isolated
- vacuum
\Longrightarrow no observational signature.
Need weakly-coupled probe of geometry

Observations of interest

Stellar-mass black holes

Binary mergers in LIGO?

Highly dynamical, not test of Kerr
(ask me later about BBH mergers beyond GR)

Observations of interest

Stellar-mass black holes

Binary mergers in LIGO?

Highly dynamical, not test of Kerr (ask me later about BBH mergers beyond GR)

EM signatures from accretion disks

Observations of interest

Accretion disks

Observables: Continuum, line spectrum, radio interferometry, QPOs. . . [Broderick, Johannsen, Narayan, Reynolds, McClintock, Steiner ...]

Caveats: unknown accretion physics

Observations of interest

Supermassive black holes
Observable: precession of orbits of stars

Caveats: strong equivalence principle, external perturbations?

Observations of interest

Supermassive black holes
Observable: pulsar timing [e.g. Psaltis, Wex, Kramer (2016)]

Caveats: strong equivalence principle

Observations of interest

Supermassive black holes

Observable: Extreme mass-ratio inspiral waveforms with LISA [Berti, Cardoso, Gair, Kesden, Pani, Yunes, ...]

Caveats:

- strong equivalence principle
- how gravitational waves are sourced
- how gravitational waves propagate

Observations of interest

Stellar/supermassive black holes
Observable: Ringdown gravitational waveform [Berti and friends]

Caveats: what is graviton propagator? (discussion yesterday, Sathya's talk)

A pile of parameterizations

Weyl-Lewis-Papapetrou

Stationary, axisymmetric metric:

$$
\begin{equation*}
d s^{2}=-V(d t-w d \phi)^{2}+V^{-1} \rho^{2} d \phi^{2}+\Omega^{2}\left(d \rho^{2}+\Lambda d z^{2}\right) . \tag{1}
\end{equation*}
$$

Specialize to Ricci-flat:

$$
\begin{equation*}
d s^{2}=-V(d t-w d \phi)^{2}+V^{-1}\left[\rho^{2} d \phi^{2}+e^{2 \gamma}\left(d \rho^{2}+d z^{2}\right)\right] \tag{2}
\end{equation*}
$$

where $\gamma=\frac{1}{2} \ln \left(V \Omega^{2}\right)$.
Caveats: (1) requires $t-\phi$ reflection isometry, or integrability of $\rho-z$ planes

Con: Uncountably infinite \# of degrees of freedom?

Geroch-Hansen, Manko-Novikov, Ryan, Backdahl

 What an awful slideManko-Novikov is Kerr but with different Geroch-Hansen M_{ℓ}
Reminder: What are M_{ℓ}, S_{ℓ} ? Ricci-flat, asymptotically flat spacetime in terms of Hertz potential; analytic function given in terms of Taylor series at $r \rightarrow \infty$

Backdahl later determined conditions for convergence, how to reconstruct given arbitrary moments.

Pro: countably infinite \# of DoF
Cons:

- Backdahl very complicated
- Ricci flatness
- motivated by large-r expansion - strong field?
- analyticity [counter-example: Yukawa $\exp (-m r) / r$]

Collins and Hughes, Vigeland and Hughes

Linearize metric about Schwarzschild,

$$
(V, w, \gamma)=\left(V_{\text {Schw }}, w_{\text {Schw }}, \gamma_{\text {schw }}\right)+\epsilon\left(V^{(1)}, w^{(1)}, \gamma^{(1)}\right)+\mathcal{O}\left(\epsilon^{2}\right)
$$

Satisfy Einstein's equations through $\mathcal{O}(\epsilon)$.

Collins and Hughes, Vigeland and Hughes

Linearize metric about Schwarzschild,

$$
(V, w, \gamma)=\left(V_{\text {schw }}, w_{\text {Schw }}, \gamma_{\text {schw }}\right)+\epsilon\left(V^{(1)}, w^{(1)}, \gamma^{(1)}\right)+\mathcal{O}\left(\epsilon^{2}\right)
$$

Satisfy Einstein's equations through $\mathcal{O}(\epsilon)$.
Linearized version of free Geroch-Hansen moments (Backdahl).

Vigeland and Hughes

Apply Newman-Janis trick to "rotate" near-Schwarzschild geometries into spinning geometries.

Pro: Simpler than Backdahl, spinning geometries
Con: N-J trick is ad-hoc

Glampedakis and Babak

(1) Take Hartle-Thorne metric for (M, J, Q) (ignore higher order)
(2) Let $Q=-J^{2} / M-\varepsilon M^{3}$
(3) Cut out the $\mathcal{O}(\varepsilon)$ part of metric
(4) Paste it onto the Kerr metric

Pro: Simple analytic form, only 1 extra DoF
Con: Ad-hoc, only 1 extra DoF, clearly can't capture all geometries

Johannsen and Psaltis

$$
d s^{2}=-f(r)[1+h(r)] d t^{2}+f(r)^{-1}[1+h(r)] d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right),
$$

where $f(r)=1-2 M / r$, and

$$
h(r)=\sum_{k=0}^{\infty} \epsilon_{k}\left(\frac{M}{r}\right)^{k}
$$

Then apply Newman-Janis trick
Pro: Simple analytic form, countably infinite \# DoF

Cons:

- Ad-hoc, N-J trick
- h motivated by large- r expansion - strong field?
- Cardoso, Pani, Rico showed shortcomings

Cardoso, Pani, Rico

- Allow two power series h^{t}, h^{r} with parameters $\epsilon_{i}^{t}, \epsilon_{i}^{r}$
- Showed that all ϵ equally important in strong-field
- Argument against $1 / r^{n}$ power series tied to weak-field
- Also showed that known beyond-GR solutions (e.g. dCS) do not fit into JP or CPR metrics

Pro: Simple analytic form, $2 \times$ countably infinite \# DoF
Cons:

- Ad-hoc, N-J trick
- large- r expansion unreliable

Rezzolla, Zhidenko, Konoplya

- Too long/messy to include here
- Use infinite continued fractions in metric functions to try to control convergence near strong-field and far-field

Pro: countably infinite \# DoF
Con: complicated, hard to tell what is space of metrics

Vigeland, Yunes, Stein; Johannsen

- Linear perturbation $\mathcal{O}(\varepsilon)$ about Kerr
- restrict metrics to those having an $\mathcal{O}(\varepsilon)$ Killing tensor
- Later simplified by Johannsen (but still too long to show)

Pro: geodesic motion remains integrable, four functional DoF
Con: why should geodesic motion be integrable?

Systematic study?

Simplifying principles

- Weyl-Lewis-Papapetrou is nonlinear function space
- Evidence suggests BH candidates are close to Kerr
- Linearize to tangent function space about Kerr

$$
g_{a b}=g_{a b}^{K}+\epsilon h_{a b}+\mathcal{O}\left(\epsilon^{2}\right)
$$

Simplifying principles

- Evidence suggests gravity is close to general relativity
- Focus on theories that are perturbative deformations of GR

$$
I=I_{E-H}+\epsilon I_{B G R}+\mathcal{O}\left(\epsilon^{2}\right)
$$

- Start by studying stationary, axisymmetric form of equation

$$
G_{a b}^{(1)}\left[h_{c d}\right]=S_{a b}
$$

- $S_{a b}$ can be DM cloud, axion hair, exotic matter... Or beyond-GR correction to gravity

Study

Operator splits the function space into $\operatorname{Ker}\left[G^{(1)}\right]$ and $\operatorname{Spec}\left[G^{(1)}\right]$

$$
G^{(1)}[k]=0
$$

Kernel contains:

- Only Ricci-flat bits
- Pure gauge - fix
- Shifts of mass, angular momentum
- Shifts in orientation, center of mass
- Linearized Geroch-Hanson bumps (countably infinite)
- Anything else?

Study

Operator splits the function space into $\operatorname{Ker}\left[G^{(1)}\right]$ and $\operatorname{Spec}\left[G^{(1)}\right]$

$$
G^{(1)}\left[E_{I}\right]=\lambda_{I} E_{I}
$$

Spectrum contains:

- All non-Ricci-flat bits

Unknowns:

- Is the spectrum discrete, continuous, or both? [Ex: Hydrogen atom]
- Is there a complete basis of eigenfunctions?
- Is there an inner product and are eigenfuncs orthogonal?
N.B. Do not confuse spectrum with QNMs!

Eigenfunction approach?

$$
G^{(1)}[h]=S
$$

- Suppose we know eigenfunctions $\left\{E_{I}\right\}$ and they are complete
- Given a source S, resolve into sum*

$$
S=\sum_{I} S_{I} E_{I}
$$

where S_{I} 's are just numbers

- Solution is now

$$
h=\sum_{I} \lambda_{I}^{-1} S_{I} E_{I}+\text { hom } .
$$

where homogeneous solutions determined by boundary conditions

Best possible mathematical setting

Most you could ask for:

- Positive-definite symmetric inner product (,) on Hilbert space
- $G^{(1)}$ is self-adjoint with respect to (,)
- Source must be divergence-free
- Source must be orthogonal to every element of $\operatorname{Ker}\left[G^{(1)}\right]$

Might also be possible with anti-symmetric product

- Motivations
- Clean tests in strong-field \Longrightarrow black holes
- Kerr hypothesis
- Utility to parameterizations
- Observations of interest
- Motion of test bodies and photons
- Accretion disks
- EMRI and ringdown tests
- Caveats
- A pile of parameterizations
- Review
- Shortcomings
- Systematic study?

Backup slides

Only 10 numbers in parametrized post-Newtonian

PPN formalism for metric theories of gravity

Metric:

$$
\begin{aligned}
& g_{00}=-1+2 U-2 \beta U^{2}-2 \xi \Phi_{W}+\left(2 \gamma+2+\alpha_{3}+\zeta_{1}-2 \xi\right) \Phi_{1}+2\left(3 \gamma-2 \beta+1+\zeta_{2}+\xi\right) \Phi_{2} \\
&+2\left(1+\zeta_{3}\right) \Phi_{3}+2\left(3 \gamma+3 \zeta_{4}-2 \xi\right) \Phi_{4}-\left(\zeta_{1}-2 \xi\right) \mathcal{A}-\left(\alpha_{1}-\alpha_{2}-\alpha_{3}\right) w^{2} U-\alpha_{2} w^{i} w^{j} U_{i j} \\
&+\left(2 \alpha_{3}-\alpha_{1}\right) w^{i} V_{i}+\mathcal{O}\left(\epsilon^{3}\right) \\
& g_{0 i}=-\frac{1}{2}\left(4 \gamma+3+\alpha_{1}-\alpha_{2}+\zeta_{1}-2 \xi\right) V_{i}-\frac{1}{2}\left(1+\alpha_{2}-\zeta_{1}+2 \xi\right) W_{i}-\frac{1}{2}\left(\alpha_{1}-2 \alpha_{2}\right) w^{i} U \\
&-\alpha_{2} w^{j} U_{i j}+\mathcal{O}\left(\epsilon^{5 / 2}\right), \\
& \boldsymbol{w}: \text { motion w.r.t. preferred reference frame }
\end{aligned}
$$

$$
g_{i j}=(1+2 \gamma U) \delta_{i j}+\mathcal{O}\left(\epsilon^{2}\right)
$$

Metric potentials:

$U=\int \frac{\rho^{\prime}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}, \quad$ (Newtonian potential)
$\Phi_{1}=\int \frac{\rho^{\prime} v^{\prime 2}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}$,
$V_{i}=\int \frac{\rho^{\prime} v_{i}^{\prime}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}$,
$U_{i j}=\int \frac{\rho^{\prime}\left(x-x^{\prime}\right)_{i}\left(x-x^{\prime}\right)_{j}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}} d^{3} x^{\prime}$,
$\Phi_{2}=\int \frac{\rho^{\prime} U^{\prime}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}$,
$W_{i}=\int \frac{\rho^{\prime}\left[\mathbf{v}^{\prime} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right]\left(x-x^{\prime}\right)_{i}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}} d^{3} x^{\prime}$.
$\Phi_{W}=\int \frac{\rho^{\prime} \rho^{\prime \prime}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}} \cdot\left(\frac{\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}}{\left|\mathbf{x}-\mathbf{x}^{\prime \prime}\right|}-\frac{\mathbf{x}-\mathbf{x}^{\prime \prime}}{\left|\mathbf{x}^{\prime}-\mathbf{x}^{\prime \prime}\right|}\right) d^{3} x^{\prime} d^{3} x^{\prime \prime}$,
$\Phi_{3}=\int \frac{\rho^{\prime} \Pi^{\prime}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}$,
$\mathcal{A}=\int \frac{\rho^{\prime}\left[\mathbf{v}^{\prime} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right]^{2}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}} d^{3} x^{\prime}$,
$\Phi_{4}=\int \frac{p^{\prime}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}$,
[Will 1993, Will 2014, Living Reviews in Relativity]

Binary pulsar tests

Keplerian orbits: parameters - observables $=2$

