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• Motivations
• Clean tests in strong-field =⇒ black holes
• Kerr hypothesis
• Utility to parameterizations

• Observations of interest
• Motion of test bodies and photons
• Accretion disks
• EMRI and ringdown tests
• Caveats

• A pile of parameterizations
• Review
• Shortcomings

• Systematic study?
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Motivations
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Why test GR?

Gab = 8πT̂ab

General relativity successful but incomplete
• Can’t have mix of quantum/classical
• GR not renormalizable
• GR+QM=new physics (e.g. BH information paradox)

Empiricism
Ultimate test of theory: ask nature
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[Baker, Psaltis, Skordis (2015)]
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What is a black hole?

Observationally:
6

FIG. 2 Sketches of 22 binaries with a stellar-mass BH candidate confirmed by dynamical measurements. For every system, the
BH accretion disk is on the left and the companion star is on the right. The orientation of the disks indicates the inclination
angles i of the binaries. The distorted shapes of the stellar companions is due to the gravitational fields of the BH candidates.
The size of the latter should be about 50 km, to be compared with the distance Sun-Mercury of about 50 millions km and the
radius of the Sun of 0.7 millions km (top left corner). Figure courtesy of Jerome Orosz.

companion star, i is the inclination angle of the orbital
plane with respect to the line of sight of the observer,
T is the orbital period, and M and Mc are the mass of
the compact object and of the stellar companion, respec-
tively. Here, I have reintroduced GN because this formula
is usually presented in this form. If we can get an inde-
pendent estimate of i and Mc and we can measure Kc

and T , it is possible to determine the mass of the com-
pact object M . It is worth noting that T and Kc, and
therefore the measurement of the mass function, can be
obtained from light curves and spectroscopy. Moreover,
from the right side in Eq. (8), we can see that f(M) < M ;
that is, from the estimate of the mass function we can di-

rectly infer a lower bound on the mass of the dark object.
When the mass M of a compact object exceeds 3 M�,
the object is classified as a BH candidate6.

Today we have 24 “confirmed” BH candidates in X-ray
binaries, where the term confirmed is used to indicate
that there are dynamical measurements of their masses
and they exceed the 3 M� bound. Actually these masses
are typically higher than 5 M�, and in some cases the
same mass function f(M) exceeds 5 M�, which means

6 Massive stars exceeding the bound 3 M� are not compact objects
and they can be identified by optical observations.

Very compact object

Mathematically:

Crack open Wald,

B ≡ [M − J−(I +)]

Region that’s causally disconnected
from “exterior”

GR theorems say:

Subject to stationary, axisymmetric,
asymptotically flat, Ricci-flatness:

Kerr is unique endpoint

M` + iS` = M(ia)`
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The Kerr hypothesis

Question: Are astronomical candidates actually Kerr black holes?

Answer: No.

Our universe is not stationary, axisymmetric, Ricci-flat,
asymptotically flat . . .

Question: Are astronomical candidates approximately Kerr black holes?
How do we test the Kerr hypothesis?
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Classification of tests
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[Baker, Psaltis, Skordis (2015)]
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Kinematics vs. Dynamics

Kinematics: study solutions (geometry), ignore equations

Dynamics: which equations are being satisfied?

Caveat: Kerr a solution to many theories
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Theory-specific vs. theory-independent

Theory-specific
• Pro: Easy to interpret. Bayesian model comparison (Monday)
For models {GR,BGRi}, can compute

p(~d|GR)

p(~d|BGRi)

• Con: Lots of work for each theory
Theory-independent [e.g. PPN, PPK, PPF, PPE]
• Pro: Mapping =⇒ reuse calculations
• Con: Interpretation unclear. Is parameterization complete?
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Observations of interest
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Observations of interest

Ideal system to observe:
• quasi-stationary
• axisymmetric
• isolated
• vacuum

=⇒ no observational signature.

Need weakly-coupled probe of geometry
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Observations of interest
Stellar-mass black holes

Binary mergers in LIGO?

Highly dynamical, not test of Kerr

(ask me later about BBH mergers
beyond GR)

EM signatures from accretion disks
6

FIG. 2 Sketches of 22 binaries with a stellar-mass BH candidate confirmed by dynamical measurements. For every system, the
BH accretion disk is on the left and the companion star is on the right. The orientation of the disks indicates the inclination
angles i of the binaries. The distorted shapes of the stellar companions is due to the gravitational fields of the BH candidates.
The size of the latter should be about 50 km, to be compared with the distance Sun-Mercury of about 50 millions km and the
radius of the Sun of 0.7 millions km (top left corner). Figure courtesy of Jerome Orosz.

companion star, i is the inclination angle of the orbital
plane with respect to the line of sight of the observer,
T is the orbital period, and M and Mc are the mass of
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is usually presented in this form. If we can get an inde-
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rectly infer a lower bound on the mass of the dark object.
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Today we have 24 “confirmed” BH candidates in X-ray
binaries, where the term confirmed is used to indicate
that there are dynamical measurements of their masses
and they exceed the 3 M� bound. Actually these masses
are typically higher than 5 M�, and in some cases the
same mass function f(M) exceeds 5 M�, which means

6 Massive stars exceeding the bound 3 M� are not compact objects
and they can be identified by optical observations.
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Observations of interest
Accretion disks

Observables: Continuum, line spectrum, radio interferometry, QPOs. . .
[Broderick, Johannsen, Narayan, Reynolds, McClintock, Steiner . . . ]

Caveats: unknown accretion physics
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Observations of interest
Supermassive black holes

Observable: precession of orbits of stars

Caveats: strong equivalence principle, external perturbations?
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Observations of interest
Supermassive black holes

Observable: pulsar timing [e.g. Psaltis, Wex, Kramer (2016)]

Caveats: strong equivalence principle
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Observations of interest
Supermassive black holes

Observable: Extreme mass-ratio inspiral waveforms with LISA
[Berti, Cardoso, Gair, Kesden, Pani, Yunes, . . . ]

Caveats:
• strong equivalence principle
• how gravitational waves are
sourced

• how gravitational waves
propagate
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Observations of interest
Stellar/supermassive black holes

Observable: Ringdown gravitational waveform [Berti and friends]

Caveats: what is graviton propagator? (discussion yesterday, Sathya’s talk)
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A pile of parameterizations
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Weyl-Lewis-Papapetrou

Stationary, axisymmetric metric:

ds2 = −V (dt− wdφ)2 + V −1ρ2dφ2 + Ω2(dρ2 + Λdz2) . (1)

Specialize to Ricci-flat:

ds2 = −V (dt− wdφ)2 + V −1[ρ2dφ2 + e2γ(dρ2 + dz2)] , (2)

where γ = 1
2 ln(V Ω2).

Caveats: (1) requires t− φ reflection isometry, or integrability of ρ− z
planes

Con: Uncountably infinite # of degrees of freedom?
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Geroch-Hansen, Manko-Novikov, Ryan, Backdahl
What an awful slide

Manko-Novikov is Kerr but with different Geroch-Hansen M`

Reminder: What are M`, S`? Ricci-flat, asymptotically flat spacetime in
terms of Hertz potential; analytic function given in terms of Taylor series at
r →∞

Backdahl later determined conditions for convergence, how to reconstruct
given arbitrary moments.

Pro: countably infinite # of DoF
Cons:
• Backdahl very complicated
• Ricci flatness
• motivated by large-r expansion – strong field?
• analyticity [counter-example: Yukawa exp(−mr)/r]
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Collins and Hughes, Vigeland and Hughes

Linearize metric about Schwarzschild,

(V,w, γ) = (VSchw, wSchw, γSchw) + ε(V (1), w(1), γ(1)) +O(ε2) .

Satisfy Einstein’s equations through O(ε).

Linearized version of free Geroch-Hansen moments (Backdahl).
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Vigeland and Hughes

Apply Newman-Janis trick to “rotate” near-Schwarzschild geometries into
spinning geometries.

Pro: Simpler than Backdahl, spinning geometries

Con: N-J trick is ad-hoc
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Glampedakis and Babak

1 Take Hartle-Thorne metric for (M,J,Q) (ignore higher order)
2 Let Q = −J2/M − εM3

3 Cut out the O(ε) part of metric
4 Paste it onto the Kerr metric

Pro: Simple analytic form, only 1 extra DoF

Con: Ad-hoc, only 1 extra DoF, clearly can’t capture all geometries
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Johannsen and Psaltis

ds2 = −f(r)[1 + h(r)]dt2 + f(r)−1[1 + h(r)]dr2 + r2(dθ2 + sin2 θdφ2) ,

where f(r) = 1− 2M/r, and

h(r) =

∞∑
k=0

εk

(
M

r

)k
.

Then apply Newman-Janis trick

Pro: Simple analytic form, countably infinite # DoF

Cons:
• Ad-hoc, N-J trick
• h motivated by large-r expansion – strong field?
• Cardoso, Pani, Rico showed shortcomings
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Cardoso, Pani, Rico

• Allow two power series ht, hr with parameters εti, ε
r
i

• Showed that all ε equally important in strong-field
• Argument against 1/rn power series tied to weak-field
• Also showed that known beyond-GR solutions (e.g. dCS) do not fit
into JP or CPR metrics

Pro: Simple analytic form, 2× countably infinite # DoF

Cons:
• Ad-hoc, N-J trick
• large-r expansion unreliable
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Rezzolla, Zhidenko, Konoplya

• Too long/messy to include here
• Use infinite continued fractions in metric functions to try to control
convergence near strong-field and far-field

Pro: countably infinite # DoF

Con: complicated, hard to tell what is space of metrics
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Vigeland, Yunes, Stein; Johannsen

• Linear perturbation O(ε) about Kerr
• restrict metrics to those having an O(ε) Killing tensor
• Later simplified by Johannsen (but still too long to show)

Pro: geodesic motion remains integrable, four functional DoF

Con: why should geodesic motion be integrable?
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Systematic study?

Leo C. Stein (Caltech) Bumpy black hole parameterizations 30



Simplifying principles

• Weyl-Lewis-Papapetrou is nonlinear function space
• Evidence suggests BH candidates are close to Kerr
• Linearize to tangent function space about Kerr

gab = gKab + εhab +O(ε2)
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Simplifying principles

• Evidence suggests gravity is close to general relativity
• Focus on theories that are perturbative deformations of GR

I = IE−H + εIBGR +O(ε2)

• Start by studying stationary, axisymmetric form of equation

G
(1)
ab [hcd] = Sab

• Sab can be DM cloud, axion hair, exotic matter . . .
Or beyond-GR correction to gravity
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Study

Operator splits the function space into Ker[G(1)] and Spec[G(1)]

G(1)[k] = 0

Kernel contains:
• Only Ricci-flat bits
• Pure gauge — fix
• Shifts of mass, angular momentum
• Shifts in orientation, center of mass
• Linearized Geroch-Hanson bumps (countably infinite)
• Anything else?
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Study

Operator splits the function space into Ker[G(1)] and Spec[G(1)]

G(1)[EI ] = λIEI

Spectrum contains:
• All non-Ricci-flat bits

Unknowns:
• Is the spectrum discrete, continuous, or both? [Ex: Hydrogen atom]
• Is there a complete basis of eigenfunctions?
• Is there an inner product and are eigenfuncs orthogonal?

N.B. Do not confuse spectrum with QNMs!
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Eigenfunction approach?

G(1)[h] = S

• Suppose we know eigenfunctions {EI} and they are complete
• Given a source S, resolve into sum*

S =
∑
I

SIEI

where SI ’s are just numbers
• Solution is now

h =
∑
I

λ−1I SIEI + hom.

where homogeneous solutions determined by boundary conditions
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Best possible mathematical setting

Most you could ask for:
• Positive-definite symmetric inner product (, ) on Hilbert space
• G(1) is self-adjoint with respect to (, )

• Source must be divergence-free
• Source must be orthogonal to every element of Ker[G(1)]

Might also be possible with anti-symmetric product
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Backup slides
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Only 10 numbers in parametrized post-Newtonian

  Norbert Wex / 2016-Jul-19 / Caltech

PPN formalism for metric theories of gravity

8

The Confrontation between General Relativity and Experiment 33
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Living Reviews in Relativity
http://www.livingreviews.org/lrr-2014-4
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Binary pulsar tests

Keplerian orbits: parameters - observables = 2

  Norbert Wex / GR21 / 2016-Jul-11

   The GR mass-mass diagram of the Double Pulsar

45

  Norbert Wex / The Many Faces of Neutron Stars / MIAPP / Sep 9th, 2015

The Double Pulsar

GR mass-mass diagram

Mass ratio mA/mB and 

6 post-Keplerian parameters 
➡ periastron precession
➡ time dilation
➡ range (r) and shape (s) of  

Shapiro delay
➡ geodetic precession
➡ gravitational wave damping

➜ 5 tests

PpK = f(PK; mA, mB)

Kramer et al. 2006, Breton et al. 2008

sion rate of WB = 4.77°−0°.65
+0°.66 year−1, we derive

c2sB
G

! "

¼ 3:38þ0:49
−0:46 . Every successful theory of

gravity in the given generic framework must
predict this value: These observations provide a
strong-field test of gravity that complements and
goes beyond the weak-field tests of relativistic
spin precession (26). In GR, we expect to mea-

sure c2sB
G

! "

GR
¼ 2þ 3

2
mA
mB

¼ 3:60677 T 0:00035,

where we have used the masses determined from
the precisely observed orbital precession and the
Shapiro delay shape parameter under the as-
sumption that GR is correct (14). Comparing the
observed value with GR's predictions, we find
c2sB
G

! "

obs
= c2sB

G

! "

GR
¼ 0:94 T 0:13. Hence, GR

passes this test of relativistic spin precession in a
strong-field regime, confirming, within uncertain-
ties, GR's effacement property of gravity even for
spinning bodies, that is, the notion that strong in-
ternal gravitational fields do not prevent a compact
rotating body from behaving just like a spinning
test particle in an external weak field (27).

The spin precession rate, as well as the tim-
ing parameters entering in the calculation of
c2sB
G

! "

, are all independent of the assumed theory

of gravity. If the main contribution limiting the
precision of this new strong-field test comes
from the inferred spin precession rate, we expect
that the statistical uncertainty should decrease
significantly with time, roughly as the square of
the monitoring baseline for similar quantity and
quality of eclipse data. The contribution of sys-
tematics to the error budget should also decrease,
but its functional time dependence is difficult to

estimate. Although the orbital and spin phases of
pulsar B are input variables to the eclipse model,
our ability to determine the orientation of pulsar
B in space does not require the degree of high-
precision timing needed for measurement of post-
Keplerian parameters; evaluating spin phases to
the percent level, for instance, is sufficient. There-
fore, the intrinsic correctness of the model and its
ability to reproduce future changes in the eclipse
profile because of evolution of the geometry
are the most likely limitations to improving the
quality of this test of gravity, at least until the
measured precession rate reaches a precision
comparable with the timing parameters involved

in the calculation of c2sB
G

! "

. Better eclipse mod-

eling could be achieved from more sensitive
observations, and thus new-generation radio
telescopes such as the proposed Square Kilome-
ter Array could help make important progress.
Pulsar A does not show evidence of precession
(28, 29) likely because its spin axis is aligned
with the orbital angular momentum; it should
therefore always remain visible, thus allowing
long-term monitoring of its eclipses. Pulsar B,
however, could disappear if spin precession
causes its radio beam to miss our line of sight
(21). In this event, we would need to find a way
to circumvent the lack of observable spin phases
for pulsar B, which are necessary to the eclipse
fitting.
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Fig. 4. Mass-mass diagram
illustrating the present tests
constraining general rela-
tivity in the double pulsar
system. (Inset) An expanded
view of the region where
the lines intersect. If gen-
eral relativity is the cor-
rect theory of gravity, all
lines should intersect at
common values of masses.
The mass ratio (R = xB/xA)
and five post-Keplerian pa-
rameters (s and r, Shapiro
delay shape and range; ẇ,
periastron advance; Ṗb, or-
bital period decay due to
the emission of gravitation-
al waves; and g, gravita-
tional redshift and time
dilation) were reported in
(14). Shaded orange re-
gions are unphysical solu-
tions because sini ≤ 1,
where i is the orbital in-
clination. In addition to al-
lowing a test of the strong-field parameter ðc2sB

G Þ, the spin precession rate of pulsar B, WB, yields a new
constraint on the mass-mass diagram. M☉ is the mass of the Sun.
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7"W"2"="5"tests"of"GR

➡New"version"by"Kramer"et"al."with"greatly"improved"precision"should"become"available"soon."
➡GW"damping"in"the"Double"Pulsar"by"now"tested"with"a"precision"of"significantly"bener"than"0.1%.
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