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Detector GW150914 SNR QNM SNR

O1 25 7

Advanced LIGO 80 20

LIGO-India 
ALIGO+ (2024) 250 80

ET (2030) 800 200

Cosmic Explorer 
(2034) 2400 800

LISA (2034) 10,000 2,400



C U R R E N T  P R O P O S A L  F O R  T E S T I N G  
“ B L A C K  H O L E ”  N O - H A I R  T H E O R E M

measure more than one quasi-normal 
complex frequency 

are mass and spin inferred from 
different quasi-normal modes 
consistent with one another? 

a more powerful way of doing the 
same test 

measure the Bayes factor between 
two alternative models: one in 
which all modes depend on just 
two parameters vs another that has 
extra hair 

caveat: agreement b/w QNM from 
perturbation theory and NR sims

3
on going: George+ 2017



S H O R T C O M I N G S  O F  T H I S  P R O P O S A L

Quasi-normal mode waveforms are derived in the perturbative 
approximation 

need to wait for the signal to reach linear QNM regime 

this could be 10 M to 20  M after the peak strain amplitude is 
reached 

most visible part of the signal will be trashed in this test 

4



E X A M P L E :  G W 1 5 0 9 1 4  A N A LY S I S

5

-1.0

-0.5

0.0

0.5

1.0

Observed strain

L1 Observed strain

H1 (time shifted, inverted)

Hanford, Washington (H1) Livingston, Louisiana (L1)

-1.0

-0.5

0.0

0.5

1.0

S
tr

ai
n

(1
0�

2
1
)

Numerical relativity

Reconstructed (wavelet)

Reconstructed (template)

Numerical relativity

Reconstructed (wavelet)

Reconstructed (template)

-0.5

0.0

0.5

Residual Residual

0.30 0.35 0.40 0.45

Time (seconds)

32

64

128

256

512

F
re

qu
en

cy
(H

z)

0.30 0.35 0.40 0.45

Time (seconds)

0

10

20

30

40

N
or

m
al

iz
ed

en
er

gy

-1.0

-0.5

0.0

0.5

1.0

Observed strain

L1 Observed strain

H1 (time shifted, inverted)

Hanford, Washington (H1) Livingston, Louisiana (L1)

-1.0

-0.5

0.0

0.5

1.0

S
tr

ai
n

(1
0�

2
1
)

Numerical relativity

Reconstructed (wavelet)

Reconstructed (template)

Numerical relativity

Reconstructed (wavelet)

Reconstructed (template)

-0.5

0.0

0.5

Residual Residual

0.30 0.35 0.40 0.45

Time (seconds)

32

64

128

256

512

F
re

qu
en

cy
(H

z)

0.30 0.35 0.40 0.45

Time (seconds)

0

10

20

30

40

N
or

m
al

iz
ed

en
er

gy

-1.0

-0.5

0.0

0.5

1.0

Observed strain

L1 Observed strain

H1 (time shifted, inverted)

Hanford, Washington (H1) Livingston, Louisiana (L1)

-9.0

-6.0

-3.0

0.0

3.0

6.0

9.0

si
gm

a

Reconstructed (wavelet)

Reconstructed (template)

Reconstructed (wavelet)

Reconstructed (template)

-3.0

0.0

3.0

Residual Residual

0.30 0.35 0.40 0.45

Time (seconds)

32

64

128

256

512

F
re

qu
en

cy
(H

z)

0.30 0.35 0.40 0.45

Time (seconds)

0

10

20

30

40

N
or

m
al

iz
ed

en
er

gy

-1.0

-0.5

0.0

0.5

1.0

Observed strain

L1 Observed strain

H1 (time shifted, inverted)

Hanford, Washington (H1) Livingston, Louisiana (L1)

-1.0

-0.5

0.0

0.5

1.0

S
tr

ai
n

(1
0�

2
1
)

Numerical relativity

Reconstructed (wavelet)

Reconstructed (template)

Numerical relativity

Reconstructed (wavelet)

Reconstructed (template)

-0.5

0.0

0.5

Residual Residual

0.30 0.35 0.40 0.45

Time (seconds)

32

64

128

256

512

F
re

qu
en

cy
(H

z)

0.30 0.35 0.40 0.45

Time (seconds)

0

10

20

30

40

N
or

m
al

iz
ed

en
er

gy

-1.0

-0.5

0.0

0.5

1.0

Observed strain

Numerical relativity

L1 Observed strain

H1 (time shifted, inverted)

Hanford, Washington (H1) Livingston, Louisiana (L1)

-1.0

-0.5

0.0

0.5

1.0

S
tr

ai
n

(1
0�

2
1
)

Reconstructed (wavelet)

Reconstructed (template)

Numerical relativity

Reconstructed (wavelet)

Reconstructed (template)

-0.5

0.0

0.5

Residual Residual

0.30 0.35 0.40 0.45

Time (seconds)

32

64

128

256

512

F
re

qu
en

cy
(H

z)

0.30 0.35 0.40 0.45

Time (seconds)

0

10

20

30

40

N
or

m
al

iz
ed

en
er

gy

Abbott+ PRL, 2016



�3

�2

�1

0

1

2

3
h G

W
(t)
/1

0�
21

�0.15 �0.10 �0.05 0.00
Time (seconds)

0

100

200

250

f G
W

(t)
(H

z)
W H E N  D O  Q N M  B E G I N ?

6

start of 
QNM

peak 
amplitude

Abbott+ PRL, 2016



-1.0

-0.5

0.0

0.5

1.0

Observed strain

L1 Observed strain

H1 (time shifted, inverted)

Hanford, Washington (H1) Livingston, Louisiana (L1)

-1.0

-0.5

0.0

0.5

1.0

S
tr

ai
n

(1
0�

2
1
)

Numerical relativity

Reconstructed (wavelet)

Reconstructed (template)

Numerical relativity

Reconstructed (wavelet)

Reconstructed (template)

-0.5

0.0

0.5

Residual Residual

0.30 0.35 0.40 0.45

Time (seconds)

32

64

128

256

512

F
re

qu
en

cy
(H

z)

0.30 0.35 0.40 0.45

Time (seconds)

0

10

20

30

40

N
or

m
al

iz
ed

en
er

gy

-1.0

-0.5

0.0

0.5

1.0

Observed strain

L1 Observed strain

H1 (time shifted, inverted)

Hanford, Washington (H1) Livingston, Louisiana (L1)

-1.0

-0.5

0.0

0.5

1.0

S
tr

ai
n

(1
0�

2
1
)

Numerical relativity

Reconstructed (wavelet)

Reconstructed (template)

Numerical relativity

Reconstructed (wavelet)

Reconstructed (template)

-0.5

0.0

0.5

Residual Residual

0.30 0.35 0.40 0.45

Time (seconds)

32

64

128

256

512

F
re

qu
en

cy
(H

z)

0.30 0.35 0.40 0.45

Time (seconds)

0

10

20

30

40

N
or

m
al

iz
ed

en
er

gy

-1.0

-0.5

0.0

0.5

1.0

Observed strain

L1 Observed strain

H1 (time shifted, inverted)

Hanford, Washington (H1) Livingston, Louisiana (L1)

-9.0

-6.0

-3.0

0.0

3.0

6.0

9.0

si
gm

a

Reconstructed (wavelet)

Reconstructed (template)

Reconstructed (wavelet)

Reconstructed (template)

-3.0

0.0

3.0

Residual Residual

0.30 0.35 0.40 0.45

Time (seconds)

32

64

128

256

512

F
re

qu
en

cy
(H

z)

0.30 0.35 0.40 0.45

Time (seconds)

0

10

20

30

40

N
or

m
al

iz
ed

en
er

gy

-1.0

-0.5

0.0

0.5

1.0

Observed strain

L1 Observed strain

H1 (time shifted, inverted)

Hanford, Washington (H1) Livingston, Louisiana (L1)

-1.0

-0.5

0.0

0.5

1.0

S
tr

ai
n

(1
0�

2
1
)

Numerical relativity

Reconstructed (wavelet)

Reconstructed (template)

Numerical relativity

Reconstructed (wavelet)

Reconstructed (template)

-0.5

0.0

0.5

Residual Residual

0.30 0.35 0.40 0.45

Time (seconds)

32

64

128

256

512

F
re

qu
en

cy
(H

z)

0.30 0.35 0.40 0.45

Time (seconds)

0

10

20

30

40

N
or

m
al

iz
ed

en
er

gy

-1.0

-0.5

0.0

0.5

1.0

Observed strain

Numerical relativity

L1 Observed strain

H1 (time shifted, inverted)

Hanford, Washington (H1) Livingston, Louisiana (L1)

-1.0

-0.5

0.0

0.5

1.0

S
tr

ai
n

(1
0�

2
1
)

Reconstructed (wavelet)

Reconstructed (template)

Numerical relativity

Reconstructed (wavelet)

Reconstructed (template)

-0.5

0.0

0.5

Residual Residual

0.30 0.35 0.40 0.45

Time (seconds)

32

64

128

256

512

F
re

qu
en

cy
(H

z)

0.30 0.35 0.40 0.45

Time (seconds)

0

10

20

30

40

N
or

m
al

iz
ed

en
er

gy

S O ,  D O  W E  S E E  Q N M ?  
Y E S  B U T  C A N ’ T  T E S T  T H E  N O - H A I R  T H E O R E M

7

start of 
QNM 
SNR ~ 7.5

peak 
amplitude

Abbott+ PRL, 2016



S O  W H AT ’ S  T H E  S O L U T I O N ?  
F O U R  P R O P O S A L S

get a better model for post-merger 

compare the parameters of the remnant derived from inspiral 
waveform with those derived from QNM 

from inspiral to ringdown 

compare the parameters of the binary derived from QNM to 
those derived from the inspiral 

from ringdown back to inspiral 

search for a “binary black hole” no-hair theorem and test it

8



B E T T E R  M O D E L S  O F  Q N M  
E O B  M A D E  A  F I R S T  AT T E M P T  I N  T H I S  D I R E C T I O N
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represent QNM as 
“multiplicative 
decomposition” of h(t) in 
contrast to linear 
decomposition 

residual time-dependent 
complex factor is fitted 
separately 

10

2

TABLE I. Dimensionless (MBH-rescaled) complex frequencies of the first three QNMs for three representative values of χ.

χ âBH σ1 = α1 + iω1 σ2 = α2 + iω2 σ3 = α3 + iω3

−0.94905 0.37567 0.0871184 + i 0.434580 0.265632 + i 0.415053 0.455361 + i 0.381143

0 0.68703 0.0812684 + i 0.526944 0.24575 + i 0.515117 0.415019 + i 0.493248

+0.9695 0.94496 0.054769 + i 0.736715 0.16459 + i 0.734763 0.275309 + i 0.730986

NR simulations and in particular on the free availabil-
ity of hundreds of NR simulations in the Caltech-Cornell
Simulating eXtreme Spacetimes (SXS) catalogue [30–32].
The approach pursued here aims at having an effec-

tive and accurate representation of the ringdown. Our
approach does not aim (contrary to Refs. [27, 33–37])
at extracting the actual QNM content of NR ringdown
waveforms, nor the excitation coefficients of each mode.
Our work is similar in spirit to, though technically quite
different from, the phenomenological ringdown model in-
troduced in Baker et al. [38].
This paper is organized as follows. In Sec. II we briefly

review the SXS data that we use. Section III introduces
the new tool on which our analysis is based: the QNM-
rescaled complex ringdown waveform h̄(τ). Section IV
describes in detail the fitting procedure we applied to
each QNM-rescaled ringdown waveform and discusses
general fitting formulas that can be used outside the set
of NR simulations at our disposal. Concluding remarks
and outlook are collected in Sec. V. We set G = c = 1.

II. NUMERICAL WAVEFORM DATA

We use sixteen waveforms produced by the Caltech-
Cornell collaboration with the SPEC code. These wave-
forms are publicly available through the SXS catalog [30]
(these data were originally published in Refs. [26, 31,
32, 39–42]). All waveforms are equal-mass (m1 = m2),
equal-spin, with the individual spins either both aligned
or antialigned with the orbital angular momentum. The
dimensionless individual spins are (after relaxation)

χ ≡ χ1 = χ2 =(0.9794, 0.9695, 0.9496, 0.8997,

0.8498, 0.7999, 0.6000, 0.43655,

0.2000, 0,−0.2000,−0.43756,

−0.5999,−0.7998,−0.8996,−0.9495).

We will simply refer to them as χ =
(0.98, 0.97,±0.95,±0.9, 0.85,±0.8,±0.6,±0.44,±0.2, 0).
We use the highest-resolution waveforms present in the

catalogue, extrapolated at future null infinity using a 3rd-
order polynomial (N = 3 label in the data). We deal here
only with the asymptotic1 ℓ = m = 2 metric waveform

1 i.e., rescaled by a factor R/M .

h22 = A22e−iφ22 (with ω22 = φ̇22 > 0), and denote its
ν-rescaled version (with ν = m1m2/(m1 +m2)2) as h ≡

h22/ν.
Figure 1 (for the high spin case χ = 0.9695 ≈ 0.97)

plots the complex number h versus time, as a curve in
a 3-dimensional space, focusing on the part of the wave-
form around its peak. In this paper, we define merger,
occurring at t = t0, as the peak of the modulus of h.
Correspondingly, ringdown is defined as the signal after
merger, t > t0: it is depicted as the thicker (red online)
part of the plot.

III. COMPLEX-NUMBER-BASED APPROACH
TO QNM GENERATION

Figure 1 highlights the complex-number nature of
the ringdown signal. Here we shall show how to get
a reliable effective representation of the ringdown sig-
nal h(t) (t > t0) by means of a multiplicative decom-
position of the complex number h(t) = h1(t)h̄(t), in-
stead of the usual linear, additive, QNM decomposition
h(t) = h1(t)+h2(t)+h3(t)+· · · . In the following we work
with the dimensionless time parameter τ ≡ (t− t0)/MBH

which counts time in units of the final black hole mass
MBH. The basic new idea of our approach is to factor
out of h(τ) the contribution of the fundamental QNM,
h1(τ) ∝ exp[−σ1τ ] , where σ1 = α1 + iω1 is the (dimen-
sionless, MBH-rescaled) complex frequency of the funda-
mental (positive frequency, ω1 > 0) QNM, by defining
the following QNM-rescaled ringdown waveform

h̄(τ) ≡ eσ1τ+iφmrg
22 h(τ), (1)

where φmrg
22 is the value of φ22 at merger (so that h̄(τ =

0) = A0 is the real amplitude of the waveform h at
merger). In a loose sense we can think of h̄ as being
the ringdown signal viewed in a frame rotating with the
complex frequency ω1−ıα1. Fig. 2 plots the parametrized
curves drawn by h̄(τ) in the complex plane for three val-
ues of χ = (−0.94905, 0,+0.9695) ≈ (−0.95, 0,+0.97).
The filled circle corresponds to the beginning of the ring-
down, τ = 0. Note that the modulus of the waveform at
merger is nearly independent of χ [16], so that the three
curves start nearly at the same point (h̄(0) ≈ 1.59)2 The

2 The small variations with χ of the merger amplitude A0 ≡

Amrg
22 /ν will be quantified below.

2

long term goal to improve the post-merger analysis of
GW150914 of Ref. [2] and similar signals that will likely
be detected in the future by the LIGO and Virgo Col-
laborations. This template is based upon the analytical
representation of the post-merger waveform for coalesc-
ing, non-precessing, BBH of Ref. [3]. This representation
is obtained by interpolation of the primary fits of the
post-merger numerical relativity (NR) waveform part af-
ter that the first, least-damped, QNM is factored out.
The primary fit e↵ectively models the presence of all the
higher QNMs, that are characterized by lower frequencies
and shorter damping times than the fundamental one.
Ref. [3] focused on the equal-mass, equal-spin case only
and thus used only the corresponding subset of the Simu-
lating eXtreme Spacetimes (SXS) [4] catalog of numerical
waveform data. All SXS waveforms were obtained with
the Spectral Einstein Code [5–12]. We generalize here
the interpolating expressions of Ref. [3], by including sev-
eral of the unequal-mass, unequal-spin dataset present in
the SXS catalog, i.e. the waveform previously used for
EOB/NR information and comparison in Ref. [13] plus a
few more that were publicly available in June 2016, when
the first draft of this study was conceived, but we do not
include the dataset added to the catalog on October 31st,
2016 (see below). We thus build a general analytical ex-
pression of the post-merger waveform that is a function
of the symmetric mass ratio ⌫ ⌘ m1m2/(m1 +m2)2 and
of the dimensionless spins �1,2 ⌘ S1,2/(m1,2)2 of the two
black holes as well as of the final mass MBH and (com-
plex) frequency �1 of the fundamental QNM of the final
remnant. Although we restrict, for simplicity, to consid-
ering only the ` = m = 2 mode, the method discussed
here may be extended to model the post-merger part of
subdominant multipolar modes 1. The interpolating, im-
proved, fit presented here is also now part of the NR-
informed EOB ihes EOB code [13, 15].

The paper is organized as follows: In Sec. II we con-
struct the analytic template waveform, while Sec. III is
devoted to testing is accuracy and reliability. The perfor-
mance of the template in a simulated data-analysis setup
is evaluated in Sec. IV and we summarize our findings in
Sec. V.

II. TEMPLATE CONSTRUCTION

We begin by introducing a convenient notation. The
multipolar decomposition of the waveform is given by
h+ � ih⇥ =

P
`,m h`m�2Y`m(✓,�), and we focus on the

1 This might be more complicated for modes like the (3, 2) that
present mode-mixings due to the fact that the waveform is usu-
ally written as a multipolar decomposition over spin-weighted
spherical harmonics. Future work may explore how the pro-
cedure discussed here could be applicable, for example on the
waveform written using the basis of spheroidal harmonics [14]

` = m = 2 “post-merger”, ⌫-scaled, waveform,

h(⌧) ⌘ 1

⌫

Rc2

GM
hpostmerger
22 (⌧), (1)

where M ⌘ m1 + m2 is the total mass and R is the
distance of the source. The time ⌧ = (t � tM)/MBH

counts time in units of the mass of the final black hole,
MBH, and tM is the merger time. The QNM-rescaled

ringdown waveform h̄(⌧) of [3] h(⌧) is defined as h(⌧) ⌘
e��1⌧�i�0 h̄(⌧), where �1 ⌘ ↵1 + i!1 is the (dimension-
less, MBH-rescaled) complex frequency of the fundamen-
tal (positive frequency, !1 > 0) QNM of the final black
hole and �0 is the value of the phase at merger. The
(complex) function h̄(⌧) is then decomposed in ampli-
tude and phase as

h̄(⌧) ⌘ Ah̄e
i�h̄(⌧). (2)

Reference [3] found that Ah̄ and �h̄ can be accurately
represented by the following general functional forms

Ah̄(⌧) = cA1 tanh(c
A
2 ⌧ + cA3 ) + cA4 , (3)

�h̄(⌧) = �c�1 ln

 
1 + c�3e

�c�2 ⌧ + c�4e
�2c�2 ⌧

1 + c�3 + c�4

!
. (4)

As in Ref. [3], only three of the eight fitting coe�cients,
(cA3 , c

�
3 , c

�
4 ), are independent and need to be fit directly.

The others can be expressed in terms of four other phys-
ical quantities: (↵1,↵21,�!, Âmrg

22 )

cA2 =
1

2
↵21, (5)

cA4 = Âmrg
22 � cA1 tanh(cA3 ), (6)

cA1 = Âmrg
22 ↵1

cosh2(cA3 )

cA2
, (7)

c�1 = �!
1 + c�3 + c�4

c�2 (c
�
3 + 2c�4 )

, (8)

c�2 = ↵21, (9)

because of physical constraints imposed on the tem-
plate (3)-(4) (see also Ref [3]). Here ↵21 ⌘ ↵2 � ↵1,
where ↵2 is the inverse damping time of the first over-
tone of the fundamental quasi-normal-mode of the final
black hole; Âmrg

22 ⌘ |h(0)| is the ⌫-rescaled waveform am-
plitude at merger, and finally �! ⌘ !1 � MBH!

mrg
22 ,

where !mrg
22 is the GW frequency at merger. The quanti-

ties (↵1,↵21,�!, Âmrg,!
mrg
22 ) are extracted directly from

each SXS waveform data set (extrapolated with N = 3
at infinite extraction radius [4]), notably using the infor-
mation available in the metadata.txt file coming with
each data set (e.g., M , MBH and JBH) to obtain the cor-
responding QNMs frequencies by interpolating the pub-
licly available data from E. Berti website [18]. The other
parameters, (cA3 , c

�
3 , c

�
4 ), are obtained by fitting the post-

merger part (⌧ � 0) of h̄(⌧) with the fitting templates (3)-
(4) constrained by Eqs. (5)-(9). The time interval over

FA C T O R I Z E  Q N M  F R O M  
P O S T- M E R G E R  WAV E F O R M
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A new analytic representation of the ringdown waveform
of coalescing spinning black hole binaries

Thibault Damour and Alessandro Nagar
Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France

(Dated: July 11, 2014)

We propose a new way of analyzing, and analytically representing, the ringdown part of the grav-
itational wave signal emitted by coalescing black hole binaries. By contrast with the usual linear
decomposition of the multipolar complex waveform h(t) in a sum of quasi-normal modes, our proce-
dure relies on a multiplicative decomposition of h(t) as the product of the fundamental quasi-normal
mode with a remaining time-dependent complex factor whose amplitude and phase are separately
fitted. As an illustrative example, we apply our analysis and fitting procedure to the ringdown
part of a sample of sixteen ℓ = m = 2 equal-mass, spinning, nonprecessing, numerical waveforms
computed with the SPEC code, now publicly available in the SXS catalogue. Our approach yields
an efficient and accurate way to represent the ringdown waveform, thereby offering a new way to
complete the analytical effective-one-body inspiral-plus-plunge waveform.

I. INTRODUCTION

The numerical-relativity (NR) completion of the
effective-one-body (EOB) approach [1–7] (usually called
EOBNR) is a NR-informed analytical method that aims
at giving an accurate modelization of the gravitational
dynamics and waveforms of coalescing relativistic bina-
ries (i.e., black holes and neutron stars) [8–22]. The
EOB waveform for coalescing black-hole binaries is essen-
tially made of the juxtaposition of two distinct parts: the
inspiral-plus-plunge (or “insplunge”) part (up to merger),
and the subsequent ringdown part (after merger). The
insplunge waveform is analytically defined by applying a
sophisticated resummation procedure [6, 23, 24] to the
post-Newtonian-expanded waveform and dynamics [25].
At merger, the insplunge waveform is matched to the
ringdown part, defined, up to now, as a linear superpo-
sition of quasi-normal modes (QNMs) of the final black
hole. The standard approach (initiated in Ref. [2]) to
compute this ringdown part is: (i) to identify the mass
MBH and angular momentum JBH of the final black hole
(either using the prediction of the EOB dynamics or us-
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FIG. 1. Three-dimensional representation of the time evo-
lution of the ν-rescaled complex strain (metric) waveform
h ≡ h22/ν, around merger, for dimensionless spin χ = 0.97.
The thicker portion of the curve (red online) highlights the
ringdown part.

to augment the analytical ringdown signal by including,
besides the real QNMs modes, some pseudo-quasi-normal
modes, i.e., fictitious modes with frequencies phenomeno-
logically chosen so as to bridge the gap between the fi-
nal gravitational wave frequency of the insplunge EOB
waveform measured at merger and the frequency of the
fundamental QNM.
In this paper, we propose a new, alternative, NR-

informed strategy for constructing accurate analytical
representations of the ringdown waveform of coalescing,
spinning, black hole binaries. Here we shall consider only
nonprecessing, equal-mass and equal-spin binaries, but
our method is general, being based on a new way of an-
alyzing and fitting the ringdown signal provided by NR
simulations. In this paper we rely on recent progress in
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FIG. 7. NR waveform (dashed line) and its ringdown fit
(solid line, for 0 ≤ τ ≤ 3.8/α1(χ)) for χ = 0.97: ampli-
tude (top panel), phase (middle panel) and frequency (bottom
panel). The vertical lines correspond to the merger, defined
as the peak of |h22|/ν.

which we found that a fourth-order polynomial gives a
better fit5. To complete the information needed to use
our results we also provide fits for the χ-dependence of

5 For completeness, let us mention that a (less accurate) second-

order fit for cφ3 reads cφ3 = 0.479448χ2 + 2.176818χ + 4.342270.

α1, α21, Â
mrg
22 and ∆ω ≡ ω1 −MBHω

mrg
22 . All our fits are

done with the convention ci(χ) = p4χ4 + p3χ3 + p2χ2 +
p1χ + p0. The explicit values of the pn coefficients are
listed in Table II.
The comparison between the χ-fits for (cA3 ; c

φ
3 , c

φ
4 ) and

the raw points is displayed in Fig. 6. The amplitude
coefficient plot shows more scatter around the fit, prob-
ably due to amplified numerical noise (this is consistent
with the fact that the oscillation around the plateau is
larger for amplitude than for phase, see Fig. 4). We
have checked that by reducing the τ -length of the fit-
ting interval the scatter could be reduced, especially for
large spins. Changing the extrapolation order N = 3
to N = 2 reduces the oscillations around the plateaux
in Fig. 4 and thereby the scatter. We have checked
that inserting the χ-fitted versions of (cA3 ; c

φ
3 , c

φ
4 ) and of

(Âmrg
22 , α21, α1,∆ω) in our functional forms Eq. (4)-(10)

leads to representations of the ringdown with phase and
fractional amplitude disagreements that remain smaller
than about 0.04 in all cases.
Finally, the very satisfactory representation, given by

our strategy, of the original ringdown waveform h(t) =
h22/ν (decomposed in amplitude, phase and frequency),
is displayed in Fig. 7 for the case χ = 0.97. The corre-
sponding phase and fractional amplitude differences were
given in the bottom panels of Fig. 5.

V. CONCLUSIONS AND OUTLOOK

Let us summarize our main results.

1. We introduced a new tool for analyzing ringdown
waveforms, consisting of studying the time evolu-
tion, after merger, of the QNM-rescaled complex
quantity h̄(τ), Eq. (1).

2. Using publicly available SXS, Caltech-Cornell,
waveform data [30] spanning dimensionless spins
−0.95 ≤ χ ≤ 0.98, and the h̄ tool, we have found
that, in the case of large spin, the ringdown signal is
compatible with the usually expected sum, Eq. (2),
of Kerr black hole quasi-normal-modes complex fre-
quencies, only for times sufficiently posterior to
merger, e.g., by about 20MBH when χ = 0.97. For
earlier times the h̄ diagnostics can be seen as a new
tool to study the building up of QNMs just after
merger.

3. To get an analytic representation of the ringdown
signal starting just after merger we emphasized
that two strategies are possible: (i) to introduce,
as in Refs. [15, 16, 18], pseudo-QNM frequencies,
in which case our h̄ diagnostics can provide an effi-
cient tool for optimizing their determination; or (ii)
to separately fit the amplitude and phase of the
QNM-rescaled signal h̄(τ) by hyperbolic-tangent-
based templates.
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(solid line, for 0 ≤ τ ≤ 3.8/α1(χ)) for χ = 0.97: ampli-
tude (top panel), phase (middle panel) and frequency (bottom
panel). The vertical lines correspond to the merger, defined
as the peak of |h22|/ν.
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compatible with the usually expected sum, Eq. (2),
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FIG. 7. NR waveform (dashed line) and its ringdown fit
(solid line, for 0 ≤ τ ≤ 3.8/α1(χ)) for χ = 0.97: ampli-
tude (top panel), phase (middle panel) and frequency (bottom
panel). The vertical lines correspond to the merger, defined
as the peak of |h22|/ν.
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coefficient plot shows more scatter around the fit, prob-
ably due to amplified numerical noise (this is consistent
with the fact that the oscillation around the plateau is
larger for amplitude than for phase, see Fig. 4). We
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ting interval the scatter could be reduced, especially for
large spins. Changing the extrapolation order N = 3
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is displayed in Fig. 7 for the case χ = 0.97. The corre-
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Let us summarize our main results.

1. We introduced a new tool for analyzing ringdown
waveforms, consisting of studying the time evolu-
tion, after merger, of the QNM-rescaled complex
quantity h̄(τ), Eq. (1).

2. Using publicly available SXS, Caltech-Cornell,
waveform data [30] spanning dimensionless spins
−0.95 ≤ χ ≤ 0.98, and the h̄ tool, we have found
that, in the case of large spin, the ringdown signal is
compatible with the usually expected sum, Eq. (2),
of Kerr black hole quasi-normal-modes complex fre-
quencies, only for times sufficiently posterior to
merger, e.g., by about 20MBH when χ = 0.97. For
earlier times the h̄ diagnostics can be seen as a new
tool to study the building up of QNMs just after
merger.

3. To get an analytic representation of the ringdown
signal starting just after merger we emphasized
that two strategies are possible: (i) to introduce,
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in which case our h̄ diagnostics can provide an effi-
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R E M N A N T  M A S S - S P I N  C O N S I S T E N C Y
estimate joint posterior probability for the intrinsic binary parameters 
(masses and spins) marginalized over all other parameters:  

infer the posterior on the final mass and dimensionless spin using 
fitting formulas: 

split the waveform (in the Fourier domain) into inspiral part and 
merger-ringdown part and estimate the remnant mass and spin from 
each 

look for consistency of the parameters of the remnant so derived
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2

of observing the data d given the signal model h
gr

and the set
of parameters �,

L = exp
"
�
Z fup

flow

|d̃( f ) � h̃
gr

( f ,�)|2
S ( f )

d f
#
. (2)

Above, d̃( f ) is the Fourier transform of the data, h̃
gr

( f ,�) is
the frequency-domain signal waveform corresponding to the
set of parameters �, and S ( f ) is the power spectral density of
the detector noise, while flow and fup are the lower and upper
cuto↵ frequencies used in the calculation. The sampling of
the likelihood function L(d|h

gr

,�) over the (typically large
dimensional) parameter space often makes use of stochas-
tic sampling methods such as Markov-chain Monte-Carlo or
nested sampling [17].

First, we estimate the joint posterior probability
P
imr

(m1,m2,S1,S2) (marginalized over all other param-
eters of the binary) from the complete observed IMR signal.2
This allows us to infer the posterior P

imr

(Mf , � f ) on the
mass Mf and dimensionless spin � f := |S f |/M2

f of the final
black hole, using fitting formulas (e.g., [18]) calibrated to NR
simulations

Mf = Mf (m1,m2,S1,S2), � f = � f (m1,m2,S1,S2). (3)

We use these estimates of Mf and � f to split the signal into
an inspiral part and a merger–ringdown part. In this paper,
we define the inspiral [merger–ringdown] part as Fourier fre-
quencies less [greater] than that of the innermost stable circu-
lar orbit (ISCO) of a Kerr black hole with mass and spin equal
to that given by the median value of P

imr

(Mf , � f ).3 However,
this choice is not unique; alternative ways of splitting the sig-
nal are possible, and reasonable alternatives do not have a sig-
nificant e↵ect on the test.

We can now independently estimate the posterior
P
i

(m1,m2,S1,S2) from the inspiral part of the signal
and compute the corresponding posterior P

i

(Mf , � f ) of the
mass and spin of the final black hole using the fitting formula
Eq. (3). We independently estimate the posterior P

mr

(Mf , � f )
from the merger–ringdown part of the signal. In the absence
of any deviations from GR (or significant systematic errors),
we expect the two posteriors P

i

(Mf , � f ) and P
mr

(Mf , � f ) to
overlap (see, e.g., the top left panel in Fig. 1).

To constrain possible departures from GR, we define two
parameters that describe departures from the GR prediction of
the mass and spin of the final black hole

�Mf := Mif � Mmrf , �� f := �if � �mrf , (4)

whose posterior distribution can be computed as

P�(�Mf ,�� f ) =
"

dMf d� f P
i

(Mf , � f ) ⇥

P
mr

(Mf � �Mf , � f � �� f ). (5)

2 From here onwards, we drop the explicit reference to the data d and the GR
model h

gr

in the posteriors, for simplicity.
3 While we split the signal in the Fourier domain, we have checked that

almost all the power below [above] our split frequency indeed comes from
the early [late] portions of the waveform; the e↵ect of the spectral leakage
is negligible.

FIG. 1: Left panels: The top left panel shows the 68% and 95% cred-
ible regions of the posterior distributions P

i

(Mf , � f ) and P
mr

(Mf , � f )
of the mass and spin of the final black hole estimated from the in-
spiral and merger–ringdown parts of a simulated GR signal, respec-
tively. Also shown is the posterior P

imr

(Mf , � f ) estimated from the
full IMR signal. The simulated GR signal is from a non-spinning
black hole binary with m1 = m2 = 50M�, producing an optimal SNR
of 25 in the Advanced LIGO Hanford–Livingston network. The cor-
responding value of the final mass and spin is indicated by a black
cross. The bottom left panel shows the posterior P(✏, ⇠) on the pa-
rameters ✏ := �Mf /Mf and ⇠ := �� f /� f that describe the devia-
tion from GR, estimated from the same simulation. The GR value is
marked by a “+” sign; the posterior is consistent with the GR value.
Right panels: Same as the left panels, except that here the injection
corresponds to a modified GR signal with ↵modGR = 400, with the
location and orientation of the binary same as that of the left panels,
thus producing an optimal SNR of 18.9. The GR value is well out-
side the 95% credible region. In this example, GR can be ruled out
with confidence� 99%.

In the absence of departures from GR, we expect
P(�Mf ,�� f ) to be consistent with zero. We define two quan-
tities ✏ := �Mf /Mf and ⇠ := �� f /� f that describe the frac-
tional di↵erences in the two predictions of the mass and spin
of the final black hole. The posteriors on these can be com-
puted as

P(✏, ⇠) =
"

dMf d� f P�(✏Mf , ⇠� f ) P
imr

(Mf , � f ) Mf � f .

(6)
Here, the posterior P

imr

(Mf , � f ) denotes our best estimate of
the mass and spin of the final black hole assuming GR, which
is estimated from the full IMR waveform. An example of the
posterior distribution P(✏, ⇠) from a simulated GR signal is
shown in the bottom left panel of Fig. 1. Finally, the poste-
riors P(✏, ⇠) from multiple observations of binary black holes
can be combined to construct a single posterior that can better
constrain deviations from GR (see, e.g., Fig. 2).
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mass and spin of the final black hole using the fitting formula
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from the merger–ringdown part of the signal. In the absence
of any deviations from GR (or significant systematic errors),
we expect the two posteriors P
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(Mf , � f ) and P
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(Mf , � f ) to
overlap (see, e.g., the top left panel in Fig. 1).

To constrain possible departures from GR, we define two
parameters that describe departures from the GR prediction of
the mass and spin of the final black hole
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is negligible.

FIG. 1: Left panels: The top left panel shows the 68% and 95% cred-
ible regions of the posterior distributions P
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(Mf , � f ) and P
mr

(Mf , � f )
of the mass and spin of the final black hole estimated from the in-
spiral and merger–ringdown parts of a simulated GR signal, respec-
tively. Also shown is the posterior P
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(Mf , � f ) estimated from the
full IMR signal. The simulated GR signal is from a non-spinning
black hole binary with m1 = m2 = 50M�, producing an optimal SNR
of 25 in the Advanced LIGO Hanford–Livingston network. The cor-
responding value of the final mass and spin is indicated by a black
cross. The bottom left panel shows the posterior P(✏, ⇠) on the pa-
rameters ✏ := �Mf /Mf and ⇠ := �� f /� f that describe the devia-
tion from GR, estimated from the same simulation. The GR value is
marked by a “+” sign; the posterior is consistent with the GR value.
Right panels: Same as the left panels, except that here the injection
corresponds to a modified GR signal with ↵modGR = 400, with the
location and orientation of the binary same as that of the left panels,
thus producing an optimal SNR of 18.9. The GR value is well out-
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with confidence� 99%.

In the absence of departures from GR, we expect
P(�Mf ,�� f ) to be consistent with zero. We define two quan-
tities ✏ := �Mf /Mf and ⇠ := �� f /� f that describe the frac-
tional di↵erences in the two predictions of the mass and spin
of the final black hole. The posteriors on these can be com-
puted as

P(✏, ⇠) =
"

dMf d� f P�(✏Mf , ⇠� f ) P
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(6)
Here, the posterior P

imr

(Mf , � f ) denotes our best estimate of
the mass and spin of the final black hole assuming GR, which
is estimated from the full IMR waveform. An example of the
posterior distribution P(✏, ⇠) from a simulated GR signal is
shown in the bottom left panel of Fig. 1. Finally, the poste-
riors P(✏, ⇠) from multiple observations of binary black holes
can be combined to construct a single posterior that can better
constrain deviations from GR (see, e.g., Fig. 2).
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rameters ✏ := �Mf /Mf and ⇠ := �� f /� f that describe the devia-
tion from GR, estimated from the same simulation. The GR value is
marked by a “+” sign; the posterior is consistent with the GR value.
Right panels: Same as the left panels, except that here the injection
corresponds to a modified GR signal with ↵modGR = 400, with the
location and orientation of the binary same as that of the left panels,
thus producing an optimal SNR of 18.9. The GR value is well out-
side the 95% credible region. In this example, GR can be ruled out
with confidence� 99%.

In the absence of departures from GR, we expect
P(�Mf ,�� f ) to be consistent with zero. We define two quan-
tities ✏ := �Mf /Mf and ⇠ := �� f /� f that describe the frac-
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Here, the posterior P
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(Mf , � f ) denotes our best estimate of
the mass and spin of the final black hole assuming GR, which
is estimated from the full IMR waveform. An example of the
posterior distribution P(✏, ⇠) from a simulated GR signal is
shown in the bottom left panel of Fig. 1. Finally, the poste-
riors P(✏, ⇠) from multiple observations of binary black holes
can be combined to construct a single posterior that can better
constrain deviations from GR (see, e.g., Fig. 2).
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full IMR signal. The simulated GR signal is from a non-spinning
black hole binary with m1 = m2 = 50M�, producing an optimal SNR
of 25 in the Advanced LIGO Hanford–Livingston network. The cor-
responding value of the final mass and spin is indicated by a black
cross. The bottom left panel shows the posterior P(✏, ⇠) on the pa-
rameters ✏ := �Mf /Mf and ⇠ := �� f /� f that describe the devia-
tion from GR, estimated from the same simulation. The GR value is
marked by a “+” sign; the posterior is consistent with the GR value.
Right panels: Same as the left panels, except that here the injection
corresponds to a modified GR signal with ↵modGR = 400, with the
location and orientation of the binary same as that of the left panels,
thus producing an optimal SNR of 18.9. The GR value is well out-
side the 95% credible region. In this example, GR can be ruled out
with confidence� 99%.

In the absence of departures from GR, we expect
P(�Mf ,�� f ) to be consistent with zero. We define two quan-
tities ✏ := �Mf /Mf and ⇠ := �� f /� f that describe the frac-
tional di↵erences in the two predictions of the mass and spin
of the final black hole. The posteriors on these can be com-
puted as

P(✏, ⇠) =
"
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Here, the posterior P
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(Mf , � f ) denotes our best estimate of
the mass and spin of the final black hole assuming GR, which
is estimated from the full IMR waveform. An example of the
posterior distribution P(✏, ⇠) from a simulated GR signal is
shown in the bottom left panel of Fig. 1. Finally, the poste-
riors P(✏, ⇠) from multiple observations of binary black holes
can be combined to construct a single posterior that can better
constrain deviations from GR (see, e.g., Fig. 2).
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FIG. 2: Left panels: Shaded regions show the 68% and 95% credible intervals on the combined posteriors on ✏, ⇠ from multiple observations of
GR signals plotted against the number of observations by Advanced LIGO. The GR value (✏ = ⇠ = 0) is indicated by horizontal dashed lines.
The mean value of the posterior from each event is shown as an orange dot along with the corresponding 68% credible interval. Posteriors on
✏ are marginalized over ⇠, and vice versa. Middle panel: The orange contours show the 68% credible regions of the individual posteriors on
the ✏, ⇠ computed from the same events while the thick red contour shows the 68% and 95% credible regions on the combined posterior. Right
panel: The width of the 68% credible region in the marginalized posteriors of �Mf /Mf and �� f /� f from multiple observations.

weighted SNR ' 15 when filtering with the best-fit GR wave-
form and would thus likely be detected by a standard detection
pipeline [30].

VI. CONCLUSIONS

The test that we propose assumes the validity of GR and
tests the null hypothesis by computing the posterior distribu-
tion for the parameters (✏, ⇠) that quantify a deviation from
the result in GR, where both parameters are identically zero.
Multiple observations could be combined to produce better
constraints on the deviation. We have seen that this test is able
to detect deviations from GR that are not constrained by radio
observations of the orbital decay of the double pulsar – the
tightest constraint available. The test is not based on a specific
theory and, consequently, could work in any theory in which
massive compact binaries inspiral, merge, and then ringdown.
Conversely, if the data were inconsistent with the null hypoth-
esis, then they would not be able to give any direct indica-
tion of which modified theory is responsible for the deviation
from GR. We expect this test to complement other GW-based
tests of GR, including those looking for specific modifications
to GR and those looking for generic parametrized deviations,
providing confidence in any statements of whether a given sig-
nal (or population of signals) is consistent with GR.

Although we have used the ISCO frequency of the final
Kerr black hole to delineate between inspiral and merger–
ringdown in this paper, alternative ways of splitting the sig-
nal are possible. We have verified that the main results are
robust against (reasonable) choices of cuto↵ frequencies. We
have neglected the e↵ect of spin precession and subdominant
modes in this paper. However, they can be readily included
in this method by incorporating these e↵ects in our GR model
h
gr

and also (in the case of precession) in the fitting formulas
for the final mass and spin. Systematic errors due to waveform

inaccuracies could be mitigated or quantified by using wave-
form models that are better calibrated to NR simulations as
they become available. Methods for mitigating the systematic
errors due to detector calibration errors have been indepen-
dently developed which involve marginalizing the posterior
distributions of the masses and spins over additional parame-
ters that model calibration errors [31]. Studies pertaining to
these aspects are to be reported in a forthcoming paper [32].

The test introduced in this paper has already had its first
application: This was one of the tests used to establish the
consistency of LIGO’s first gravitational wave detection with
a binary black hole signal as predicted by GR [33, 34].
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FIG. 2: Left panels: Shaded regions show the 68% and 95% credible intervals on the combined posteriors on ✏, ⇠ from multiple observations of
GR signals plotted against the number of observations by Advanced LIGO. The GR value (✏ = ⇠ = 0) is indicated by horizontal dashed lines.
The mean value of the posterior from each event is shown as an orange dot along with the corresponding 68% credible interval. Posteriors on
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the ✏, ⇠ computed from the same events while the thick red contour shows the 68% and 95% credible regions on the combined posterior. Right
panel: The width of the 68% credible region in the marginalized posteriors of �Mf /Mf and �� f /� f from multiple observations.

weighted SNR ' 15 when filtering with the best-fit GR wave-
form and would thus likely be detected by a standard detection
pipeline [30].

VI. CONCLUSIONS

The test that we propose assumes the validity of GR and
tests the null hypothesis by computing the posterior distribu-
tion for the parameters (✏, ⇠) that quantify a deviation from
the result in GR, where both parameters are identically zero.
Multiple observations could be combined to produce better
constraints on the deviation. We have seen that this test is able
to detect deviations from GR that are not constrained by radio
observations of the orbital decay of the double pulsar – the
tightest constraint available. The test is not based on a specific
theory and, consequently, could work in any theory in which
massive compact binaries inspiral, merge, and then ringdown.
Conversely, if the data were inconsistent with the null hypoth-
esis, then they would not be able to give any direct indica-
tion of which modified theory is responsible for the deviation
from GR. We expect this test to complement other GW-based
tests of GR, including those looking for specific modifications
to GR and those looking for generic parametrized deviations,
providing confidence in any statements of whether a given sig-
nal (or population of signals) is consistent with GR.

Although we have used the ISCO frequency of the final
Kerr black hole to delineate between inspiral and merger–
ringdown in this paper, alternative ways of splitting the sig-
nal are possible. We have verified that the main results are
robust against (reasonable) choices of cuto↵ frequencies. We
have neglected the e↵ect of spin precession and subdominant
modes in this paper. However, they can be readily included
in this method by incorporating these e↵ects in our GR model
h
gr

and also (in the case of precession) in the fitting formulas
for the final mass and spin. Systematic errors due to waveform

inaccuracies could be mitigated or quantified by using wave-
form models that are better calibrated to NR simulations as
they become available. Methods for mitigating the systematic
errors due to detector calibration errors have been indepen-
dently developed which involve marginalizing the posterior
distributions of the masses and spins over additional parame-
ters that model calibration errors [31]. Studies pertaining to
these aspects are to be reported in a forthcoming paper [32].

The test introduced in this paper has already had its first
application: This was one of the tests used to establish the
consistency of LIGO’s first gravitational wave detection with
a binary black hole signal as predicted by GR [33, 34].
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A M P L I T U D E S  O F  H I G H E R  M O D E  C A R R Y  
T H E  S I G N AT U R E  O F  I N S P I R A L

20

consisted of 2–4 inspiral orbits before merger. There were
three sets of simulations: (1) binaries with nonprecessing
equal spins !i ¼ Si=m

2
i ¼ f0;"0:3;"0:5;"0:7g and mass

ratios q ¼ m1=m2 ¼ f2; 4g, (2) systems with antialigned
nonprecessing spins such that the final black-hole spin was
the same as that for the corresponding nonspinning binary
for ðq;!finÞ ¼ ð2; 0:62Þ, (3, 0.54), and (4, 0.47), using the
final-spin fits in Refs. [3,9] and (3) four q ¼ 2 precessing
binaries having equal initial spins with (x, y, z) components
equal to (0.2, 0, 0), (0, 0.4, 0), (0.6, 0, 0) and (0.2, 0.2, 0.1),
where the orbital plane lies on xy. There were a total of 40
configurations, not including additional tests to verify that
the results were robust against changes in the number of
inspiral orbits.

All simulations were performed with the BAM code
[10]. As is standard, the error bars in the amplitudes were
estimated by varying the numerical resolution and GW
extraction radius. The highest resolution near the black
holes was %m=35, where m is the mass of the smallest
black hole, and the GW signal was typically calculated at
140Min from the source. The ringdown amplitudes A‘m

were computed by fitting an exponential decay function to
the data from t ¼ 10M after the peak of the (2, 2) lumi-
nosity, until the point where the signal was dominated by
numerical noise. A22 and A21 are typically accurate to
within 2%, and A33 and A32 to within 10%. The weaker
modes are too noisy to be measured accurately, and are
shown only for qualitative comparison.

Figure 1 shows the results for the first set of simula-
tions, of equal spin binaries. The amplitudes of the seven
strongest modes (A‘m¼A‘&m for nonprecessing binaries)
are plotted as a function of a total spin parameter !þ ¼
ðm1!1 þm2!2Þ=Min, whereMin ¼ m1 þm2 and !þ ¼ !i

for these cases. This is the same spin parameter that has
been used in recent phenomenological models of binary

waveforms [11,12]. The amplitudes are all relative to the
22 mode, for which we show the absolute amplitude.
We see immediately that A22 and A33 change with mass

ratio, but vary only weakly with respect to spin. In contrast,
A21 varies strongly with spin. Figure 1, therefore, suggests
that the 22 and 33 modes carry information about the
progenitor mass ratio, and the 21 mode carries information
about the effective total spin.
The second series of simulations tests this hypothesis.

For each mass ratio, this set generates approximately the
same final black hole with different progenitor spin con-
figurations. The goal was to show that the mode amplitudes
carried a signature of the progenitor spins independently
of the final black-hole spin. The mode amplitudes for the
q ¼ 2 case are shown in the left panel of Fig. 2, as a
function of !þ. As before, 22 and 33 show little variation,
but the 21 mode changes by nearly a factor of five. This is
strong evidence that the final black holes in this set are not
really degenerate: although their mode frequencies and
damping times will be identical, they will differ from one
another in the 21 mode amplitude. This is consistent with
studies of black-hole recoil: the recoil is mostly due to the
interplay of the (2, "2) and (2, "1) modes [13], and both
the recoil and (2,"1) mode amplitudes depend strongly on
the progenitor spins.
Unfortunately, the trend of 21 is now the opposite of that

in Fig. 1 with respect to !þ, implying that the 21 mode
amplitude is not determined by !þ. Consider instead the
effective spin parameter

!eff ¼
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4"

p
!1 þ !&Þ; !& ¼ m1!1 &m2!2

Min
:

The right panel of Fig. 2 shows the amplitude of 21 as a
function of !eff for all the simulations discussed so far. In
all cases they are well approximated by
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FIG. 1 (color online). Quasinormal mode amplitudes of binaries with aligned spins and mass ratio q ¼ 2 (or " ¼ 2=9, left panel) and
q ¼ 4 (or " ¼ 4=25, right panel). The values from the nonspinning binary simulations are at !þ ¼ 0. Also shown in the left panel,
with asterisks, are the results from the q ¼ 2 equal initial !i precessing simulations. Note that for the 22 mode, the absolute amplitudes
are always shown, scaled according to the final black-hole mass, that is ðr=MÞh22.
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21

Â21 ! A21=A22 ¼ 0:43½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ 4!

p
$ "eff%; (1)

which is shown by dashed lines in Fig. 2 for different
values of q. The above equation is consistent with
the expectation that A21 will be excited in the case of
equal mass binaries when "1 ! "2, and also predicts
that in general it will be zero when "eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ 4!

p
¼

jm1 $m2j=Min. We tested these predictions with six addi-
tional simulations, shown in Table I. The predicted ampli-
tudes ÂP

21 agree with the computed amplitudes ÂM
21 within

error bars. Negative values indicate that the 21 phase is
offset by 180& with respect to the 22 phase; in the equal-
mass cases this is equivalent to swapping "1 and "2, or
rotating the initial data by half an orbit.

All of these results apply to nonprecessing binaries: the
progenitor spins and final spin were all parallel or antipar-
allel to the binary’s orbital angular momentum. This will
not be true in general; the spins and orbital plane will
precess during the inspiral, and the final black hole’s spin
will be misaligned with respect to the premerger orbital
plane. Even if the ringdown modes were rotated into an
optimal frame by a procedure like that introduced in
Ref. [14], there would be an asymmetry between the þm
and$mmodes, since this is a signature of the out-of-plane
recoil (see Sec. III.A in Ref. [15]). However, it is possible
that if the ringdown modes were described in the optimal
frame, then their average would satisfy the relations we

have observed. To test this, we simulated four precessing
binaries. In each case the final spin was misaligned with the
initial orbital plane, but only slightly, so that to a first
approximation we could still consider the average of the
(2, (2) and (3, (3) modes. The results for these cases
are shown in Fig. 1, and, remarkably, satisfy the same
relations we have observed for nonprecessing binaries.
This provides strong evidence that our results carry over
to generic binaries.
Interpretation.—Post-Newtonian (PN) theory provides a

clue to the behavior of the amplitudes of the various
modes. It is quite possible that the various modes excited
during the inspiral phase retain the memory of their struc-
ture through to the ringdown phase. (There are signs that
this will be true from, e.g., Fig. 11 in Ref. [16] for non-
spinning binaries.) It is, therefore, instructive to look at
the inspiral mode amplitudes. In particular, the 21 mode
reads [17]

h21 /
!Minv

3

D

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ 4!

p
$ 3

2
v"$

#
: (2)

Here v is the PN expansion parameter, namely the orbital
speed. There are three points to note. First, for nonspinning
systems, the 21 amplitude has identical dependence on the
mass ratio during the inspiral and ringdown phases.
Second, the spin terms in the 22 and 33 modes (indeed,
all modes for which lþm is even) appear at 1.5 PN order
beyond the leading order and so spins have a negligible
effect. For v ¼ 1=

ffiffiffi
3

p
, 22 and 33 vary by about )20%

when "1 and "2 change from $0:8 to þ0:8. However,
for 21 (and all odd lþm modes) the spin effect occurs
at 0.5 PN order beyond the leading order; spins affect odd
lþm modes far more strongly than they do even lþm
modes. For v ¼ 1=

ffiffiffi
3

p
, the 21 mode varies by a factor of
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FIG. 2 (color online). Left panel plots the amplitude of the various modes as a function of the total spin parameter "þ for the q ¼ 2
simulations that end in a black hole of " ’ 0:62. Modes 22, 33 are again rather insensitive to progenitor spins, while 21 varies by
nearly a factor of 5. Right panel plots the 21 amplitudes from all simulation sets as a function of an effective spin term "eff allowing us
to estimate this parameter from a measurement. We verified our predictions with additional simulations marked with asterisks.

TABLE I. Additional simulations to test Eq. (1).

q 1 1.5 2 2 4 4

"eff $0:375 0.220 $0:500 0.500 $0:600 0.600
ÂP
21 0.161 $0:005 0.358 $0:070 0.516 0.000

ÂM
21 0.174 $0:016 0.348 $0:059 0.509 0.039
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Â21 ! A21=A22 ¼ 0:43½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ 4!

p
$ "eff%; (1)

which is shown by dashed lines in Fig. 2 for different
values of q. The above equation is consistent with
the expectation that A21 will be excited in the case of
equal mass binaries when "1 ! "2, and also predicts
that in general it will be zero when "eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ 4!

p
¼

jm1 $m2j=Min. We tested these predictions with six addi-
tional simulations, shown in Table I. The predicted ampli-
tudes ÂP

21 agree with the computed amplitudes ÂM
21 within

error bars. Negative values indicate that the 21 phase is
offset by 180& with respect to the 22 phase; in the equal-
mass cases this is equivalent to swapping "1 and "2, or
rotating the initial data by half an orbit.

All of these results apply to nonprecessing binaries: the
progenitor spins and final spin were all parallel or antipar-
allel to the binary’s orbital angular momentum. This will
not be true in general; the spins and orbital plane will
precess during the inspiral, and the final black hole’s spin
will be misaligned with respect to the premerger orbital
plane. Even if the ringdown modes were rotated into an
optimal frame by a procedure like that introduced in
Ref. [14], there would be an asymmetry between the þm
and$mmodes, since this is a signature of the out-of-plane
recoil (see Sec. III.A in Ref. [15]). However, it is possible
that if the ringdown modes were described in the optimal
frame, then their average would satisfy the relations we

have observed. To test this, we simulated four precessing
binaries. In each case the final spin was misaligned with the
initial orbital plane, but only slightly, so that to a first
approximation we could still consider the average of the
(2, (2) and (3, (3) modes. The results for these cases
are shown in Fig. 1, and, remarkably, satisfy the same
relations we have observed for nonprecessing binaries.
This provides strong evidence that our results carry over
to generic binaries.
Interpretation.—Post-Newtonian (PN) theory provides a

clue to the behavior of the amplitudes of the various
modes. It is quite possible that the various modes excited
during the inspiral phase retain the memory of their struc-
ture through to the ringdown phase. (There are signs that
this will be true from, e.g., Fig. 11 in Ref. [16] for non-
spinning binaries.) It is, therefore, instructive to look at
the inspiral mode amplitudes. In particular, the 21 mode
reads [17]

h21 /
!Minv

3

D

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ 4!

p
$ 3

2
v"$

#
: (2)

Here v is the PN expansion parameter, namely the orbital
speed. There are three points to note. First, for nonspinning
systems, the 21 amplitude has identical dependence on the
mass ratio during the inspiral and ringdown phases.
Second, the spin terms in the 22 and 33 modes (indeed,
all modes for which lþm is even) appear at 1.5 PN order
beyond the leading order and so spins have a negligible
effect. For v ¼ 1=

ffiffiffi
3

p
, 22 and 33 vary by about )20%

when "1 and "2 change from $0:8 to þ0:8. However,
for 21 (and all odd lþm modes) the spin effect occurs
at 0.5 PN order beyond the leading order; spins affect odd
lþm modes far more strongly than they do even lþm
modes. For v ¼ 1=

ffiffiffi
3

p
, the 21 mode varies by a factor of
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FIG. 2 (color online). Left panel plots the amplitude of the various modes as a function of the total spin parameter "þ for the q ¼ 2
simulations that end in a black hole of " ’ 0:62. Modes 22, 33 are again rather insensitive to progenitor spins, while 21 varies by
nearly a factor of 5. Right panel plots the 21 amplitudes from all simulation sets as a function of an effective spin term "eff allowing us
to estimate this parameter from a measurement. We verified our predictions with additional simulations marked with asterisks.

TABLE I. Additional simulations to test Eq. (1).

q 1 1.5 2 2 4 4

"eff $0:375 0.220 $0:500 0.500 $0:600 0.600
ÂP
21 0.161 $0:005 0.358 $0:070 0.516 0.000

ÂM
21 0.174 $0:016 0.348 $0:059 0.509 0.039
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consisted of 2–4 inspiral orbits before merger. There were
three sets of simulations: (1) binaries with nonprecessing
equal spins !i ¼ Si=m

2
i ¼ f0;"0:3;"0:5;"0:7g and mass

ratios q ¼ m1=m2 ¼ f2; 4g, (2) systems with antialigned
nonprecessing spins such that the final black-hole spin was
the same as that for the corresponding nonspinning binary
for ðq;!finÞ ¼ ð2; 0:62Þ, (3, 0.54), and (4, 0.47), using the
final-spin fits in Refs. [3,9] and (3) four q ¼ 2 precessing
binaries having equal initial spins with (x, y, z) components
equal to (0.2, 0, 0), (0, 0.4, 0), (0.6, 0, 0) and (0.2, 0.2, 0.1),
where the orbital plane lies on xy. There were a total of 40
configurations, not including additional tests to verify that
the results were robust against changes in the number of
inspiral orbits.

All simulations were performed with the BAM code
[10]. As is standard, the error bars in the amplitudes were
estimated by varying the numerical resolution and GW
extraction radius. The highest resolution near the black
holes was %m=35, where m is the mass of the smallest
black hole, and the GW signal was typically calculated at
140Min from the source. The ringdown amplitudes A‘m

were computed by fitting an exponential decay function to
the data from t ¼ 10M after the peak of the (2, 2) lumi-
nosity, until the point where the signal was dominated by
numerical noise. A22 and A21 are typically accurate to
within 2%, and A33 and A32 to within 10%. The weaker
modes are too noisy to be measured accurately, and are
shown only for qualitative comparison.

Figure 1 shows the results for the first set of simula-
tions, of equal spin binaries. The amplitudes of the seven
strongest modes (A‘m¼A‘&m for nonprecessing binaries)
are plotted as a function of a total spin parameter !þ ¼
ðm1!1 þm2!2Þ=Min, whereMin ¼ m1 þm2 and !þ ¼ !i

for these cases. This is the same spin parameter that has
been used in recent phenomenological models of binary

waveforms [11,12]. The amplitudes are all relative to the
22 mode, for which we show the absolute amplitude.
We see immediately that A22 and A33 change with mass

ratio, but vary only weakly with respect to spin. In contrast,
A21 varies strongly with spin. Figure 1, therefore, suggests
that the 22 and 33 modes carry information about the
progenitor mass ratio, and the 21 mode carries information
about the effective total spin.
The second series of simulations tests this hypothesis.

For each mass ratio, this set generates approximately the
same final black hole with different progenitor spin con-
figurations. The goal was to show that the mode amplitudes
carried a signature of the progenitor spins independently
of the final black-hole spin. The mode amplitudes for the
q ¼ 2 case are shown in the left panel of Fig. 2, as a
function of !þ. As before, 22 and 33 show little variation,
but the 21 mode changes by nearly a factor of five. This is
strong evidence that the final black holes in this set are not
really degenerate: although their mode frequencies and
damping times will be identical, they will differ from one
another in the 21 mode amplitude. This is consistent with
studies of black-hole recoil: the recoil is mostly due to the
interplay of the (2, "2) and (2, "1) modes [13], and both
the recoil and (2,"1) mode amplitudes depend strongly on
the progenitor spins.
Unfortunately, the trend of 21 is now the opposite of that

in Fig. 1 with respect to !þ, implying that the 21 mode
amplitude is not determined by !þ. Consider instead the
effective spin parameter

!eff ¼
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4"

p
!1 þ !&Þ; !& ¼ m1!1 &m2!2

Min
:

The right panel of Fig. 2 shows the amplitude of 21 as a
function of !eff for all the simulations discussed so far. In
all cases they are well approximated by
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FIG. 1 (color online). Quasinormal mode amplitudes of binaries with aligned spins and mass ratio q ¼ 2 (or " ¼ 2=9, left panel) and
q ¼ 4 (or " ¼ 4=25, right panel). The values from the nonspinning binary simulations are at !þ ¼ 0. Also shown in the left panel,
with asterisks, are the results from the q ¼ 2 equal initial !i precessing simulations. Note that for the 22 mode, the absolute amplitudes
are always shown, scaled according to the final black-hole mass, that is ðr=MÞh22.
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consisted of 2–4 inspiral orbits before merger. There were
three sets of simulations: (1) binaries with nonprecessing
equal spins !i ¼ Si=m

2
i ¼ f0;"0:3;"0:5;"0:7g and mass

ratios q ¼ m1=m2 ¼ f2; 4g, (2) systems with antialigned
nonprecessing spins such that the final black-hole spin was
the same as that for the corresponding nonspinning binary
for ðq;!finÞ ¼ ð2; 0:62Þ, (3, 0.54), and (4, 0.47), using the
final-spin fits in Refs. [3,9] and (3) four q ¼ 2 precessing
binaries having equal initial spins with (x, y, z) components
equal to (0.2, 0, 0), (0, 0.4, 0), (0.6, 0, 0) and (0.2, 0.2, 0.1),
where the orbital plane lies on xy. There were a total of 40
configurations, not including additional tests to verify that
the results were robust against changes in the number of
inspiral orbits.

All simulations were performed with the BAM code
[10]. As is standard, the error bars in the amplitudes were
estimated by varying the numerical resolution and GW
extraction radius. The highest resolution near the black
holes was %m=35, where m is the mass of the smallest
black hole, and the GW signal was typically calculated at
140Min from the source. The ringdown amplitudes A‘m

were computed by fitting an exponential decay function to
the data from t ¼ 10M after the peak of the (2, 2) lumi-
nosity, until the point where the signal was dominated by
numerical noise. A22 and A21 are typically accurate to
within 2%, and A33 and A32 to within 10%. The weaker
modes are too noisy to be measured accurately, and are
shown only for qualitative comparison.

Figure 1 shows the results for the first set of simula-
tions, of equal spin binaries. The amplitudes of the seven
strongest modes (A‘m¼A‘&m for nonprecessing binaries)
are plotted as a function of a total spin parameter !þ ¼
ðm1!1 þm2!2Þ=Min, whereMin ¼ m1 þm2 and !þ ¼ !i

for these cases. This is the same spin parameter that has
been used in recent phenomenological models of binary

waveforms [11,12]. The amplitudes are all relative to the
22 mode, for which we show the absolute amplitude.
We see immediately that A22 and A33 change with mass

ratio, but vary only weakly with respect to spin. In contrast,
A21 varies strongly with spin. Figure 1, therefore, suggests
that the 22 and 33 modes carry information about the
progenitor mass ratio, and the 21 mode carries information
about the effective total spin.
The second series of simulations tests this hypothesis.

For each mass ratio, this set generates approximately the
same final black hole with different progenitor spin con-
figurations. The goal was to show that the mode amplitudes
carried a signature of the progenitor spins independently
of the final black-hole spin. The mode amplitudes for the
q ¼ 2 case are shown in the left panel of Fig. 2, as a
function of !þ. As before, 22 and 33 show little variation,
but the 21 mode changes by nearly a factor of five. This is
strong evidence that the final black holes in this set are not
really degenerate: although their mode frequencies and
damping times will be identical, they will differ from one
another in the 21 mode amplitude. This is consistent with
studies of black-hole recoil: the recoil is mostly due to the
interplay of the (2, "2) and (2, "1) modes [13], and both
the recoil and (2,"1) mode amplitudes depend strongly on
the progenitor spins.
Unfortunately, the trend of 21 is now the opposite of that

in Fig. 1 with respect to !þ, implying that the 21 mode
amplitude is not determined by !þ. Consider instead the
effective spin parameter

!eff ¼
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4"

p
!1 þ !&Þ; !& ¼ m1!1 &m2!2

Min
:

The right panel of Fig. 2 shows the amplitude of 21 as a
function of !eff for all the simulations discussed so far. In
all cases they are well approximated by
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FIG. 1 (color online). Quasinormal mode amplitudes of binaries with aligned spins and mass ratio q ¼ 2 (or " ¼ 2=9, left panel) and
q ¼ 4 (or " ¼ 4=25, right panel). The values from the nonspinning binary simulations are at !þ ¼ 0. Also shown in the left panel,
with asterisks, are the results from the q ¼ 2 equal initial !i precessing simulations. Note that for the 22 mode, the absolute amplitudes
are always shown, scaled according to the final black-hole mass, that is ðr=MÞh22.
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C O N S I S T E N C Y  B E T W E E N  D I F F E R E N T  
M U LT I P O L E S  O R  M O D E S

originally proposed in the context of EMRI’s for a single black hole by Ryan 

in that case one avoids the problem of having to do with the spacetime 
of two black holes 

the small black hole is a test body orbiting supermassive black hole 
under radiation reaction; primarily interested in measuring the 
multipoles of the big blackhole 

the current proposal is to measure the multipole structure of a binary black 
hole 

identify a set of parameters that most accurately determined by higher 
modes 

look for parameter-independent description - multipole structure of the 
binary 

pose the test as consistency between different modes
27
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