FROM RINGDOWN BACK TO INSPIRAL NO-HAIR TESTS FROM CONSISTENCY BETWEEN QUASI-NORMAL MODES AND INSPIRAL B.S. Sathyaprakash Penn State, University Park and Cardiff University, Cardiff StronG BAD Strong Gravity and Binary Dynamics, Ole Miss, Oxford, MS February 27-March 2

GW150914 IN FUTURE DETECTORS

Detector	GW150914 SNR	QNM SNR
01	25	7
Advanced LIGO	80	20
LIGO-India ALIGO+ (2024)	250	80
ET (2030)	800	200
Cosmic Explorer (2034)	2400	800

LISA (2034) 10 000 2 400

CURRENT PROPOSAL FOR TESTING "BLACK HOLE" NO-HAIR THEOREM

- measure more than one quasi-normal complex frequency
 - are mass and spin inferred from different quasi-normal modes consistent with one another?
- a more powerful way of doing the same test
 - measure the Bayes factor between two alternative models: one in which all modes depend on just two parameters vs another that has extra hair

$$K = rac{\Pr(D|M_1)}{\Pr(D|M_2)} = rac{\int \Pr(heta_1|M_1) \Pr(D| heta_1, M_1) \, d heta_1}{\int \Pr(heta_2|M_2) \Pr(D| heta_2, M_2) \, d heta_2}$$

on going: George+ 2017

SHORTCOMINGS OF THIS PROPOSAL

- Quasi-normal mode waveforms are derived in the perturbative approximation
 - need to wait for the signal to reach linear QNM regime
 - this could be 10 M to 20 M after the peak strain amplitude is reached
- \cdot most visible part of the signal will be trashed in this test

bott+PRL/2016

5

WHEN DO QNM BEGIN?

SO, DO WE SEE QNM? YES BUT CAN'T TEST THE NO-HAIR THEOREM

Abbott+ PRL, 2016

SO WHAT'S THE SOLUTION? FOUR PROPOSALS

- get a better model for post-merger
- compare the parameters of the remnant derived from inspiral waveform with those derived from QNM
 - from inspiral to ringdown
- compare the parameters of the binary derived from QNM to those derived from the inspiral
 - from ringdown back to inspiral

Search for a "binary black hole" no-hair theorem and test it

BETTER MODELS OF QNM EOB MADE A FIRST ATTEMPT IN THIS DIRECTION

FACTORIZE QNM FROM POST-MERGER WAVEFORM

- represent QNM as
 "multiplicative
 decomposition" of h(t) in
 contrast to linear
 decomposition
 - residual time-dependent
 complex factor is fitted
 separately

$$\bar{h}(\tau) \equiv e^{\sigma_1 \tau + i\phi_{22}^{\rm mrg}} h(\tau),$$

$$\bar{h}(\tau) \equiv A_{\bar{h}} e^{\mathrm{i}\phi_{\bar{h}}(\tau)}.$$

Damour and Nagar 2014; Del Pozzo and Nagar 2016

 $\Delta A_{\rm K}/A_{\rm K}$

WHY NOT START BEFORE THE PEAK AMPLITUDE?

FROM INSPIRAL TO RINGDOWN

REMNANT MASS-SPIN CONSISTENCY

• estimate joint posterior probability for the intrinsic binary parameters (masses and spins) marginalized over all other parameters:

 $P_{\text{IMR}}(m_1, m_2, S_1, S_2)$

· infer the posterior on the final mass and dimensionless spin using fitting formulas: $M_f = M_f(m_1, m_2, S_1, S_2), \quad \chi_f = \chi_f(m_1, m_2, S_1, S_2).$

 $P_{\rm IMR}(M_f,\chi_f)$

• split the waveform (in the Fourier domain) into inspiral part and merger-ringdown part and estimate the remnant mass and spin from each

 $P_{\rm I}(M_f,\chi_f)$ and $P_{\rm MR}(M_f,\chi_f)$

·⊱ look for consistency of the parameters of the remnant so derived

$$\Delta M_f := M_f^{I} - M_f^{MR}, \qquad \Delta \chi_f := \chi_f^{I} - \chi_f^{MR}, \qquad \text{Abhirup+ 2016}$$

GR INJECTION (LEFT) NON-GR (RIGHT)

Abhirup+ 2016

APPLICATION TO GW150914: FINAL BH MASS AND SPIN

Abbott+ PRL, 2016

FROM RINGDOWN BACK TO INSPIRAL PROGENITOR BINARY PARAMETERS FROM RINGDOWNS

BLACK HOLE RAINBOWS

AMPLITUDES OF HIGHER MODE CARRY THE SIGNATURE OF INSPIRAL

Kamaratsos+ PRL, 2012

A21 AS A FUNCTION OF EFFECTIVE SPIN CURRENTLY BEING GENERALIZED TO PRECESSING BINARIES AND IMPLEMENTATION OF THE TEST BY BORHANIAN+

$$\hat{A}_{21} = A_{21}/A_{22} = 0.43[\sqrt{1 - 4\nu} - \chi_{eff}],$$

$$\chi_{eff} = \frac{1}{2}(\sqrt{1 - 4\nu}\chi_1 + \chi_-), \quad 0.4$$

$$\chi_- = \frac{m_1\chi_1 - m_2\chi_2}{M_{in}}. \quad \checkmark^{\text{R}}_{\text{r}} \quad 0.2$$

$$0.1$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.7$$

$$0.4$$

$$0.7$$

$$0.4$$

$$0.7$$

$$0.4$$

$$0.7$$

$$0.6$$

$$0.4$$

$$0.7$$

$$0.6$$

$$0.4$$

$$0.7$$

$$0.6$$

$$0.4$$

$$0.7$$

$$0.6$$

$$0.4$$

$$0.7$$

$$0.6$$

$$0.4$$

$$0.7$$

$$0.6$$

$$0.4$$

$$0.7$$

$$0.6$$

$$0.4$$

$$0.7$$

$$0.6$$

$$0.4$$

$$0.7$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.0$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.4$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.0$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.4$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.0$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.4$$

$$0.6$$

$$0.4$$

$$0.6$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.0$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.4$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.$$

21

POSTERIOR DENSITY OF BINARY BLACK HOLE MASS

POSTERIOR PDF OF EFFECTIVE SPIN

POSTERIOR PDF OF COMPONENT SPIN

GENERALIZING THE NO-HAIR THEOREM TO BINARY BLACK HOLES

CONSISTENCY BETWEEN DIFFERENT MULTIPOLES OR MODES

·⊱ originally proposed in the context of EMRI's for a single black hole by Ryan

- in that case one avoids the problem of having to do with the spacetime of two black holes
- the small black hole is a test body orbiting supermassive black hole under radiation reaction; primarily interested in measuring the multipoles of the big blackhole
- the current proposal is to measure the multipole structure of a binary black hole
 - identify a set of parameters that most accurately determined by higher modes
 - Iook for parameter-independent description multipole structure of the binary
 Borhanian+ 2017
 - pose the test as consistency between different modes