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Figure 2. The distribution of spin-tilt misalignments for our field and cluster populations as a function of chirp mass. The
colors show the field population, with the solid white line indicating the median value, and the blue, green, and pink regions
showing where 50, 90, and 99% of sources lie in each 2M� bin. The distribution of cluster misalignments, evenly distributed in
sin ✓LS, is shown in black, with the solid line indicating the median, and the dashed, dot-dashed, and dotted lines showing the
50, 90, and 99% regions respectively. As we have explicitly assumed no realignment of the spins between NKs, these represent
the largest possible spin-tilts from the field (see Figure A2 for less conservative estimates). Note that all binaries above ⇠ 15M�
in the fallback prescription have zero spin-tilt misalignment, and are not shown in the plot.

align the orbital and spin angular momenta, the NKs
must be able to reverse the orbital angular momentum,
which is best accomplished by a planar kick with suf-
ficient speed to reverse the orbital velocity. However,
the polar kick case explicitly excludes such planar kicks.
The only exception would be the case where the first
NK yields a misalignment ✓LS ⇠ 90�, placing the sec-
ond star in a position to emit a NK opposite to the
direction of the orbital velocity. However, such large
first kicks frequently unbind the binary, and any BBHs
that survive are left with such large orbital separations
that they will not merge within a Hubble time. The
large tilts in the isotropic models are best understood
by decomposing the kick into two components: a polar
component which can torque the orbit up to 90, and a
planar component, which can (in some cases) reverse the
orbital velocity, flipping the orbit by 180. Because the
planar kick component can be launched in a direction
opposite the orbital velocity, the binary can be pushed

into a tighter orbit, allowing it to merge within a Hubble
time. On the other hand, the polar component of the
kicks is always tangential to the orbit (for the first kick),
increasing the orbital angular momentum and widening
the orbit. This creates a bias for small NKs and cor-
respondingly small tilts in the polar kick models, since
only those systems will remain bound and merge within
a Hubble time (as noted by Kalogera 2000).
Even when we allow for full-NS NKs independent of

BH mass, the majority of systems do not show tilts be-
yond 90�. In Figure 3, we show the fraction of BBHs
in each model that have spin-tilts greater than 90� as
a function of chirp mass. For the polar kick models,
less than 1% of binaries achieve a spin-orbit misalign-
ment of greater than 90� at any given chirp mass. For
isotropic kicks, the possibility of a spin-flip is signifi-
cantly increased, since an isotropic distribution allows
for the planar kicks required to reverse the orbital ve-
locity. However, these kick magnitudes must be on the

Rules of thumb
• Distributions more useful than rates


• Scale tricky (IMF, all past SFR, 
distribution of conditions, many channels)


• Functions can encode an infinite number 
of parameters [e.g., ROS PRD 2013]


• At least one distribution (chirp mass) is 
easy to measure


!
• Robust observables are tricky


• Cluster formation: strong spin 
misalignment =


• Mass gaps


• (e.g., pair instability SN)
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Do we need more proof of concept calculations?
• Several for discrete model selection or ad-hoc mixtures, but…


• When do we / how do we measure real parameters?

3

Scope Of The Project
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• Pop-Synth simulations predict different 
component masses and merger time-delay of 
BBH starting from ZAMS  

• Different realizations of unknown model 
parameters lead to significantly different 
distributions of the component mass pairs 

• We demonstrate the proof-of-concept analysis 
with a very large suite (~ 1,200) of realistic 
pop-synth simulations with a few key 
phenomenological model parameters  

• Used the pop-synth models as prescribed in 
O'Shaughnessy,  Kalogera,   Belczynski ApJ 
2010; O’Shaughnessy, Belczynski, Kalogera, 
ApJ 2008

• Estimated suitable mass-parameters ({m1, m2} or {Mc, q}) using either fully Bayesian (e.g., 
Lal-Inference) effective-Fisher method (e.g., with rapid-PE) 

A plot to demonstrate the overlap:  
observation (GW150914) and prediction

Some Initial Results
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• We computed model evidences (un-
normalized though!) of every single 
pop-synth model with the observed data 
set.  

• Computed the Odds-ratios of various 
models having different values of pop-
synth model parameters  

• Looked for any plausible correlation of 
model ev idences as the model 
parameters are varied.  

• Found that winds parameters is very 
strongly correlated for GW150914 event 
(not surprizing!!)  

• A more detailed study is in progress.

• This indicates, BBH events observed with LIGO/Virgo detectors can be extremely useful to 
accomplish constraint on the values of pop-synth model parameters. 

Event GW150914

Mukherjee, ROS et al (in prep) 
[based on ROS et al 2008,2010]



Reconstructing and reporting the observations
• Density estimation
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Mandel et al 2017 MNRAS

Reconstruction using the samples and errors

Wysocki, O’Shaughnessy (RIT) CBC merger rate – X6.00004 APS – 2017-01-31 8 / 17

Wysocki, ROS (in prep) 
[includes spin, real measurement errors]

Clustering binary mergers 5
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Figure 6. Mean density inferred across mass space from mock observations using a binned distribution model with a Gaussian process
prior for N = 10, 20, 40 (top row, left to right) and 80, 160, 400 (bottom row, left to right) observations.

Figure 7. Water-filling clustering on the mean estimates of the
population fraction in each bin, as inferred from 400 mock obser-
vations.

Distinct NS-NS, NS-BH, and BH-BH clusters clearly appear
around 40 – 80 observations, consistently with the estimated
requirement of ⇠ 60 observations made by Mandel et al.
(2015).

In order to identify specific clusters, we use a water-
filling algorithm on the mean estimates of the population
density in each bin (see, e.g., Nielsen & Nock 2008; Van &
Pham-Gia 2010; Applegate et al. 2011, for other proposed
approaches to distributional clustering). We gradually flood

the posterior landscape until only three clusters stand above
the water level over the m1 > m2 half of the plane. Clus-
ters here are defined as sets of bins such that all elements
of a cluster are connected through shared edges, but such
connections do not exist between distinct clusters. Some of
the posterior ends up in the under-water bins; the clustering
is deemed successful only when under-water bins account
for no more than a few percent of the posterior. This hap-
pens starting with N = 80 for the plots in Figure 6. As an
example, Figure 7 shows the results of applying the water-
filling clustering strategy to the distribution inferred from
N = 400 observations (mirrored across m1 = m2 for plot-
ting). In this case, the NS-NS, NS-BH, and BH-BH sub-
populations contain 23%, 25%, and 51% of the population,
respectively, while less than 2% of the posterior is under-
water.

In general, the appropriate number of clusters does
not need to be assumed in advance, but should be chosen
from the data during the water-filling stage. Specifically, the
amount of water used for flooding can be optimised against
the flooded area. Flooding should continue only while the
flooded area grows rapidly with a modest increase in the
posterior volume (the amount of water used for flooding),
with the remaining above-water areas identified as clusters.

We can obtain estimates of the statistical uncertainty
on the inferred posterior fraction in each cluster by taking
advantage of the full PDFs on the fractional mass distri-
bution within each bin. We use the cluster boundaries pro-
vided by the water-filling clustering algorithm and compute
the posterior on the total mass density within each cluster

MNRAS 000, 1–7 (2016)



How many events to distinguish populations?
• KL divergence: unambigous way to compute average information gain per event


!
• Standard tool in probability and statistics


• Arbitrary dimensions / # of observables.     Coordinate-system independent


• Includes measurement error, selection bias (=apply to observed distribution)


!
!

!
• Trivial to use for for toy models (e.g., power laws, gaussians, …)


!
• Hard part: 


• Evaluating & exploring the model space with sufficient accuracy


• KL divergence is infinitely sensitive to gaps / exclusions, which are always decisive


• As written, distinguishes two models (=points in hyperparameter space), not family
5
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Fluctuations in �L̂ are smaller than its mean value when-
ever the number of detections is su�ciently large com-
pared to a ratio characterizing how di↵erent the two pa-
rameter distributions p, p⇤ are:9

1 >
�

�L̂

h�Li =
⌦
[ln p/p⇤]2

↵1/2

�pµ⇤DKL

(p⇤|p)
(33)

Both
⌦
[ln p/p⇤]2

↵
and hln p/p⇤i = �D

KL

(p⇤|p) char-
acterize di↵erences in two distributions. In general, the
two do not agree, as the first therefore is inevitably larger
than the square of the second:

⌦
[ln p/p⇤]2

↵
= hln p/p⇤i2 +

⌦
[ln p/p⇤ � hln p/p⇤i]2

↵
(34)

For example, substituting p, p⇤ both normal distributions
with zero mean and standard deviation �,�⇤, we can eas-
ily show

⌦
[ln p/p⇤]2

↵
= h[ln p/p⇤]i2 +

(�2
⇤ � �2)2

2�4
⇤

Critically, in the limit � ! �⇤, the second term scales
linearly as D

KL

(p⇤|p), not quadratically. We anticipate
similar behavior in general. Specifically, we can always
choose q

p

⌘ �D
KL

(p⇤|p) as one coordinate for the distri-
bution space p⇤. Since both terms go to zero (smoothly),
both can be expanded in Taylor series, in integer powers
qs

p

for s = 1, 2, . . . of q
p

. As in the event-rate-only case
[Eq. (27)], a leading-order linear term / D

KL

(p⇤|p) is
expected in general.

As in the rate-only case [Eq. (27)], the linear-order
term dominates the ratio on the right side of Eq. (33)
in the neighborhood of small D

KL

(p⇤|p). Expanding the
ratio in series, we find
⌦
[ln p/p⇤]2

↵ ⌘ c
o

D
KL

+ c1D
2
KL

+ . . . (35)
�

�L̂

h��Li '
1p
µ⇤

[
c
op

D
KL

(p⇤|p)
+

c1DKL

(p⇤|p)
2
p

c
o

+ . . .]

(36)

While the c
k

are in general also functions of the model
space, because D

KL

(p⇤|p) = 0 if and only if the two

distributions are identical, they may be locally approxi-
mated as constant.

This formal expression has an intuitive interpretation:
to distinguish two very similar parameter distributions
p, p⇤ (i.e., two distributions with D

KL

(p⇤|p) ' 0) re-
quires extracting many sample points from the distribu-
tion (µ � 1/D

KL

). The more similar the two distribu-
tions, the more samples are required.
How do measurements improve with more points? : Like
the likelihood, the KL divergence D

KL

(p⇤|p) has a local
extremum. Thus, as with the likelihood, if the collection
of indistinguishable models is a small ellipsoid, the pa-
rameter volume inside a contour of constant D

KL

scales
as D

d/2
KL

for d the total parameter space dimension. In
particular, if we choose our contour of constant D

KL

to
satisfy Eq. (33), then the parameter volume will scale as

V / 1/µ
d/2
⇤ .

By contrast, if a wide range of models are indistin-
guishable, then the indistinguishable volume V must
scale as a smaller power V / µ

�deff /2
⇤ for d

eff

< d.

C. Average versus fluctuating likelihood 3: Models
with di↵erent rates and numbers

In general, models predict both di↵erent numbers and
distributions of events. As above, on average, each suc-
cessive independent measurement changes the expected
log likelihood L̂ of a proposed model X = (µ, p) by a
fixed amount:

D
L̂(X)/n

E
=

⌧
ln p(n|µ)

n

�
� [H

p⇤ + D
KL

(p⇤|p)](37)

Di↵erences in likelihood between two models therefore
grow linearly with (average) detected number (i.e., lin-
early with time or range cubed).

By contrast, fluctuations in log likelihood do not scale as a simple power of the expected number of events (µ⇤). As
an example, consider the statistics of a single likelihood, assuming data is drawn from a reference model X⇤ = (µ⇤, p⇤):

L̂(X) ⌘ ln p(n|µ) +
nX

k=1

ln p(x
k

) (38)

The standard deviation of �L(X) ⌘ L̂(X)�L̂(X⇤) about its mean value can be directly evaluated. After some algebra,

ROS PRD 2013
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x
k

between x
k

, x
k

+ dx
k

is

P (x1 . . . x
n

)dnx = dnxp(n|µ)
Y

k

p(x
k

) (4)

p(n|µ) ⌘ µn

n!
e�µ (5)

Conversely, given a model X = (µ, p) and a set of events
d ⌘ (x1 . . . x

n

), we can define a likelihood estimate L̂

L̂(X) ⌘ L̂(X|d) = lnP (x1 . . . x
n

) (6)

where for shorthand we omit explicit dependence on the
data realization d. Modulo priors and model dimension
penalties, models with higher peak L̂ are more plau-
sible estimates for the generating process for x1 . . . x

k

than models with lower L̂. Suppose each measurement
is independently drawn instead from a fiducial model
X⇤ = (µ⇤, p⇤). Averaging over all measurements implies
D
L̂(X)

E

X⇤
= hln p(n|µ)i+ hni

Z
ddparamp⇤(x) ln p(x)

(7)

If the fiducial and test models X, X⇤ are equal, the av-
erage

D
L̂

E
is the sum of (a) the entropy of the Poisson

distribution plus (b) hni = µ⇤ times the entropy of the
parameter distribution p. In the more general case where
X 6= X⇤, the mean log likelihood

D
L̂

E
will be smaller

than this bound. We characterize the decrease in ex-
pected log likelihood with the KL divergence.

For a general pair of probability distributions
p(x), q(x), the entropy H

p

and KL divergence D
KL

(p|q)
are defined by [14, 15, 44? ]

H
p

= �
Z

dxp ln p (8)

D
KL

(p|q) ⌘
Z

dxp ln p/q (9)

Roughly, the KL divergence characterizes the informa-
tion gain the data must provide to go from a prior p to a
posterior q. The KL divergence is non-negative definite
with D = 0 if and only if p = q. The KL divergence is
not symmetric.4 Substituting into Eq. (7), the

D
L̂(X)

E

X⇤
= �[D

KL

(µ⇤|µ) + H
µ⇤ ]

�µ⇤[DKL

(p⇤|p) + H
p⇤ ] (10)

4 The exchange-antisymmetric combination D

KL

(p|q) �
D

KL

(q|p) =
R

dx(p + q) ln p/q is generally nonzero. Examples
are easily constructed by combining arbitrary distributions p̄

and functions f 2 [0, 1] via p = fp̄, q = (1 � f)p̄. Lacking
symmetry, the KL divergence is not a metric on the space of
probability distributions. Equivalently, our ability to distinguish
models from the truth depends on what the truth is. In this
paper, we always pick a single preferred model and sort models
in the neighborhood of that candidate model.

where D(µ⇤|µ) is shorthand for the KL divergence be-
tween two poisson distributions:

D
KL

(µ⇤|µ) =
X

n

p(n|µ⇤)[µ� µ⇤ + n ln(µ⇤/µ)]

= µ� µ⇤ + µ⇤ ln(µ⇤/µ) (11)

H
µ

= �
X

n

p(n|µ)[�µ + n lnµ� lnn!]

' 1
2

ln 2⇡eµ µ � 1 (12)

In particular, given a fixed reference model with parame-
ters �⇤, the expected di↵erence in log likelihood between
two candidate models �1,�2 can be expressed as a sum
of two contributions:

� �L = �(
D
L̂(X(�1))

E

⇤
�

D
L̂(X(�2))

E

⇤
)

= �(hln p(n|µ1)i � hln p(n|µ2)i) (13)
= [D

KL

(µ⇤|µ1)�D
KL

(µ⇤|µ2)]
+µ⇤[DKL

(p⇤|q1)�D
KL

(p⇤|q2)] (14)

The KL divergence therefore provides a simple, in-
variant diagnostic, quantifying di↵erences between mod-
els. Further, the di↵erences it identifies are statistically
meaningful, connected to di↵erences in (expected) log
likelihood. Finally, the di↵erences factor : the two terms
tell us how to weight models’ di↵erences, on the one hand
in rate (the mean number of detections) and on the other
hand in their predicted parameter distributions.

In this work, we de facto propose D
KL

(p(�)|p(�0))
as a local coordinate on �0 when �0 is in the neighbor-
hood of �. Being positive-definite and zero if and only
if p(�) = p(�0), this coordinate functions like a “distance
squared”, like the data-realization-dependent likelihood
function. Like the likelihood, D

KL

has statistical sig-
nificance. Being independent of the specific realization,
D

KL

therefore provides a well-posed, global, statistically-
significant measure of the di↵erence between two distri-
butions. The KL divergence has been extensively applied
to the theory and practice of Markov Chain Monte Carlo;
see [14] and references therein.

B. Fisher matrix and local dimensionality

One way to discriminate between models relies on max-
imum likelihood. Observations of viable models have
L̂ increase (with decreasing relative variance) as more
observations x

k

accumulate. For any given data real-
ization, statistical fluctuations insure that many models
with only marginally smaller hLi cannot be reasonably
distinguished. We therefore want to know how many
models are “nearby,” in the sense that the average hLi
is within some threshold of the value for the reference
model itself.

For well-determined observations, the log likelihood
has a narrow peak, defining a d

params

-dimensional ellip-
soid. In a small neighborhood surrounding the reference



Salvo Vitale
• Questions from Richard & audience


• Systematics: The approximants are approximate. How do you build confidence in 
the result given uncertainty in strong merger?


• What about NR (higher modes)?  Precession?  Uncertain high PN terms (tides?)


!
• Calibration errors: How can we test GR or measure EOS in future instruments, 

given systematic amplitude and phase errors?


!
• Dependence on parameters: What if tides / modified GR effects depend sensitively 

on nature of binary? How do we stack them?


!
• Prior: past infinity or in band?
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TIGER	- caveats

• Odds	in	favor	of	modGR not necessarily	equivalent	to	“GR	is	
wrong”

• Could	be	that	waveform	model	is	inappropriate	to	start	with	
• Something	weird	with	the	data	or	calibration
• Unaccounted	(GR)	physics	
– E.g.	non-linear	NS	tides	(Essick+	2016)

• Priors	on	GR	parameters	(?)
• Most	of	these	effects	shown	to	be	under	control	in	Agathos+	2013

S.	Vitale,	Aug	26	2016 14
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Measuring	the	mixture	fraction

S.	Vitale,	Aug	26	2016 27

True	
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Caveats	– To	dos

• Assumed	what	I	called	"aligned”	is	what	the	universe	calls	
aligned	– should	include	possible	prior	mismatch

• Can	extend	the	model	so	that	they	also	take	into	account	mass	
ratios,	eccentricity,	or	anything	else	that	might	be	useful	to	
distinguish

• Can	include	more	than	2	models

S.	Vitale,	Aug	26	2016 28



Chris Pankow 
• Questions from Richard and audience


• Does reweighting posteriors work?


!
• How do we deal with selection bias of real searches against interesting things (e.g., 

precessing; modified GR; …)
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Simon Stevenson 
• Questions from Richard and audience


• Joint constraints: How can you do multi-observation constraints with an 
interpolated model? Interpolate all observations? 


!
!

• [Technical] How does interpolation work safely and with high contrast? Basis 
functions for log(rate)?


• [Technical] Are you also interpolating observable universe (selection bias-selected) 
or full universe(including distribution of conditions and z)

11



Distinguishing a discrete model set straightforward

12

12

Figure 5. The median posterior probability for each model in the
set of Dominik et al. (2012) models after an O1 like observing pe-
riod of 0.16 years, calculated from 10000 repeats. The model which
observations were drawn from is shown on the axis labelled Uni-

verse. The models which these observations were then compared
to is labelled Model, so that the probabilities in each row sum to
one. Models 0-11 are described in Table 1. The two submodels, A
and B, are described in Section 2.2.2.

model.
In cases where one or few models have a high prob-

ability, these would be distinguishable from the other
models. However, all models with a high probability
would be consistent with the observations. We reiterate
that here we restrict attention to the models in Dominik
et al. (2012). Of course these do not cover the full space
of binary merger predictions. If we were to include a
broader range of models, it is likely that the conclusions
we are able to draw would be weaker as various models
would lead to comparable rates and mass distributions.
Nonetheless, some of the conclusions we reach, such as
excluding a number of models if there are no observations
in O1, are robust.
We first observe that, for the most part, we would

be able to distinguish between submodels A and B that
correspond to di↵erent common envelope scenarios (see
Sec. 2.2.2). This is unsurprising as the predicted rates
for the majority of models are significantly higher for
submodel A (cf. Table 2). Models which predict low de-
tection rates for model A remain degenerate with those
in model B. The mass distribution from such a small
sample does not provide enough additional information
to break these degeneracies in the rates. For example,
model 1 A uses a very high, fixed envelope binding en-
ergy, meaning that most binaries entering a common en-
velope event fail to throw o↵ the common envelope and
merge, causing them to never form BBH systems (for
a more detailed discussion of this, see Dominik et al.
(2012)). On the other hand, submodel B does not allow
a binary to survive a common envelope event if the donor
is on the Hertzsprung Gap, and so again, many binaries
merge and never form BBHs. This generically lowers the
merger rates and thus detection rates for submodel B
models, leading to the degeneracy visible in the upper
right quadrant of Fig. 5.

Another interesting example involves models 4 and 8
that, in the pessimistic submodel B, are consistent with
no observations at all during O1. Hence, they cannot
be distinguished from each other, or indeed model 8 A,
although they are favoured over all other models if indeed
no detection are made.
Within the two submodels, it is di�cult to identify

the correct model. Indeed, there are numerous varia-
tions which would be indistinguishable from the standard
model. The only model which can be clearly identified is
model 11, a model which reduces the strength of stellar
winds by a factor of 2 over the standard model. We now
discuss why we are able to distinguish this model from
the others in such a short observational period.

6.2. Stellar winds

In massive O-type stars, stellar winds of high tem-
perature charged gas are driven by radiation pressure.
In Wolf–Rayet stars mass loss rates can be as high as
10�4M�yr�1 (Nugis & Lamers 2002). This can cause
stars to lose a large amount of mass prior to the super-
nova. Theoretical uncertainties in modelling these mass
loss rates therefore translate into uncertainties in the
pre-supernova masses for massive stars. Dominik et al.
(2012) examine the e↵ects of reducing the strength of
stellar winds by a factor of 2 on the distribution of BBHs
in their Variation 11. Firstly, reducing stellar winds re-
sults in stars having a higher mass prior to supernova
than they would otherwise have. This in turn leads to
more mass falling back onto the compact object during
formation, which reduces the magnitude of natal kicks
given to black holes. This results in more systems sur-
viving the supernova (rather than being disrupted) and
increases the merger rates. More massive pre-supernova
stars also form more massive remnants, resulting in the
most massive BBH having a chirp mass of ⇠ 64M� with
reduced stellar winds compared to ⇠ 37M� using the
standard prescription. Finally, reducing the strength of
stellar winds allows stars with a lower zero age main se-
quence mass to form black holes due to more mass being
retained. This can boost the BBH merger rate compared
to the standard model.
All of these e↵ects combined mean that Variation

11 predicts BBHs with characteristically higher chirp
masses, as well as predicting a much higher merger rate
than all other models (even for the pessimistic submodel
B in O1, Variation 11 predicts O(10) observations). We
therefore expect that we would be able to correctly dis-
tinguish a universe following Variation 11 from all other
models with relatively few observations. In Figure 6 we
show the median posterior probability for each model
as a function of the observation time, based on 10000
redraws of the observations. We find that when draw-
ing observations from a universe following Variation 11
we overwhelmingly favour it within the duration of O1,
with O(10) observations.

6.3. Second aLIGO observing run (O2)

We now turn our attention to the second observing run,
O2, and investigate which models can be distinguished
using the much larger time-volume surveyed by O2. In
Figure 7 we again show a matrix plot showing the (me-
dian) posterior probability for each model after a period
corresponding to the O2 run.

Stevenson, Ohme, Fairhurst (1504.07802), based on Dominik et al 2012 
See also Miyamoto et al, GWPAW 2016; Dhani, Mukerjee et al 2016 (LVC meeting)

but this is driven by large rate differences. Rate is highly degenerate with other factors…
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Figure 6. The median posterior probability for each of the models
in the set as a function of observation time for a period of time cor-
responding to the aLIGO O1 run (0.16 years). GW observations are
drawn from a universe following Variation 11, submodel B which
reduces the strength of stellar winds by a factor of 2 compared to
the standard model. The blue (solid) line shows the median pos-
terior probability for Variation 11 taken from 10000 repeats, and
the shaded error bar shows the 68% confidence interval. Variations
0,2,5,6,7 & 10 are plotted in green (dot-dash), while variations 1,3
& 9 are plotted in black (dotted). Variations 4 & 8 predicting ⇠ 0
observations in O1 are plotted in red (dashed).

Figure 7. The median posterior probability for each model in
the set of Dominik et al. (2012) models after an O2 like observing
period of 0.32 years with a detector more sensitive than the early
aLIGO noise curve by a factor of 2. The median is calculated based
on 10000 redraws of the observations. The model which observa-
tions were drawn from is shown on the axis labelled Universe. The
model which these observations were then compared to is labelled
Model. Models 0-11 are described in Table 1. The two submodels,
A and B, are described in Section 2.2.2.

Figure 7 has a more diagonal form than Figure 5,
meaning that in many cases the correct model is favoured
and others are disfavoured within the O2 period. In par-
ticular, the optimistic and pessimistic submodels A and
B become almost entirely distinct from each other. This
is because most of the Dominik et al. (2012) models pre-

dict O(100) (O(10)) observations during the O2 period
for the optimistic (pessimistic) submodels respectively
(as shown in Table 2). Furthermore, the majority of
variations in submodel A can be unambiguously identi-
fied; the exception being that the standard model which
remains degenerate with models 5, 6 and 7, as we dis-
cuss in detail in Section 6.3.1. For the pessimistic sub-
model B, the standard model remains indistinguishable
from a number of other variations. However, there are a
few models which can be clearly distinguished, including
models 4 and 8 (that predict significantly lower rates),
and 9, 10 and 11. All of these models predict tens of
observations and consequently, we are able to use infor-
mation from both the chirp mass distribution and the
detection rate to help distinguish models. Model 10 in-
volves the variation of the supernova engine, which we
elaborate on in Section 6.3.2.

6.3.1. Black hole kicks and maximum neutron star mass

Not all models are distinguishable, even with the
O(100) observations predicted by the optimistic sub-
model A for O2. For example, in Figure 7 we see that the
standard model is degenerate with Variations 5, 6 and 7.
We now explain why this is so.
As already mentioned, it is unclear what the correct

distribution of natal kicks given to black holes upon for-
mation is. In order to investigate the possibilities, Do-
minik et al. (2012) vary two parameters relating to the
kicks imparted onto newly formed black holes; the char-
acteristic velocity � and the fraction of mass fb which
falls back onto the newly born black hole.
In their standard model, black holes receive a kick vk

whose magnitude v
max

is drawn from a Maxwellian distri-
bution with � = 265km s�1, and reduced by the fraction
of mass falling back onto the black hole fb as

vk = v
max

(1� fb), (28)

where fb is calculated using the prescription given in
Fryer et al. (2012).
In order to test the e↵ects of smaller natal kicks, in

Variation 7 Dominik et al. (2012) reduce the magnitude
of kicks given to neutron stars and black holes at birth by
a factor of 2. They use a Maxwellian distribution with
� = 132.5km s�1. For BBHs, this has very little e↵ect
on the chirp mass distribution, and so one cannot expect
to be able to distinguish this model from one using full
kicks.
The same holds true when the maximum neutron-star

mass is increased (decreased) from its fiducial value in
the standard model of 2.5M�. This has very little im-
pact on the BBH chirp mass distribution and so there
is e↵ectively a degeneracy between these models. This
could be resolved by also including BNS observations in
the comparison. We do not do this here as we concen-
trate on the BBH predictions, due to the prediction by
Dominik et al. (2012) that these will dominate the early
aLIGO detections.

6.3.2. Supernova engine

In their standard model, Dominik et al. (2012) employ
the Fryer et al. (2012) prescription to calculate the frac-
tion of mass falling back onto the black hole during for-
mation, and thus the black hole masses. In particular,

O1-scale O2-scale

https://emvogil-3.mit.edu/gwpaw2016/presentations/gwpaw2016_miyamoto.pdf
https://www.researchgate.net/publication/289525248_Distinguishing_population_synthesis_models_of_binary_black_holes_using_gravitational-wave_observations


Distinguishing a discrete model set straightforward
• Mass distributions alone are more similar, given measurement error
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Rates only Mass distribution only

Figure 8. Probabilities for the scenario of Fig. 7, separated into contributions from the rates (left) and the mass distribution (right).

ing information about binary evolution. Ignoring other
families of compact binaries also allowed us to avoid am-
biguities in discerning the family of the source (BNS,
NSBH or BBH) due to degeneracies which exist in mea-
suring the mass ratio for these systems (Hannam et al.
2013), although this can be dealt with in the future (Farr
et al. 2013).
All these considerations have to be carefully taken into

account in future studies. However, our results indicate
that the upcoming generation of advanced GW detectors
will soon start putting non-trivial bounds on current and
future binary evolution models, and analyses like the one
presented here will provide an important basis to link
theoretical models with GW observations.
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Figure 6. The median posterior probability for each of the models
in the set as a function of observation time for a period of time cor-
responding to the aLIGO O1 run (0.16 years). GW observations are
drawn from a universe following Variation 11, submodel B which
reduces the strength of stellar winds by a factor of 2 compared to
the standard model. The blue (solid) line shows the median pos-
terior probability for Variation 11 taken from 10000 repeats, and
the shaded error bar shows the 68% confidence interval. Variations
0,2,5,6,7 & 10 are plotted in green (dot-dash), while variations 1,3
& 9 are plotted in black (dotted). Variations 4 & 8 predicting ⇠ 0
observations in O1 are plotted in red (dashed).

Figure 7. The median posterior probability for each model in
the set of Dominik et al. (2012) models after an O2 like observing
period of 0.32 years with a detector more sensitive than the early
aLIGO noise curve by a factor of 2. The median is calculated based
on 10000 redraws of the observations. The model which observa-
tions were drawn from is shown on the axis labelled Universe. The
model which these observations were then compared to is labelled
Model. Models 0-11 are described in Table 1. The two submodels,
A and B, are described in Section 2.2.2.

Figure 7 has a more diagonal form than Figure 5,
meaning that in many cases the correct model is favoured
and others are disfavoured within the O2 period. In par-
ticular, the optimistic and pessimistic submodels A and
B become almost entirely distinct from each other. This
is because most of the Dominik et al. (2012) models pre-

dict O(100) (O(10)) observations during the O2 period
for the optimistic (pessimistic) submodels respectively
(as shown in Table 2). Furthermore, the majority of
variations in submodel A can be unambiguously identi-
fied; the exception being that the standard model which
remains degenerate with models 5, 6 and 7, as we dis-
cuss in detail in Section 6.3.1. For the pessimistic sub-
model B, the standard model remains indistinguishable
from a number of other variations. However, there are a
few models which can be clearly distinguished, including
models 4 and 8 (that predict significantly lower rates),
and 9, 10 and 11. All of these models predict tens of
observations and consequently, we are able to use infor-
mation from both the chirp mass distribution and the
detection rate to help distinguish models. Model 10 in-
volves the variation of the supernova engine, which we
elaborate on in Section 6.3.2.

6.3.1. Black hole kicks and maximum neutron star mass

Not all models are distinguishable, even with the
O(100) observations predicted by the optimistic sub-
model A for O2. For example, in Figure 7 we see that the
standard model is degenerate with Variations 5, 6 and 7.
We now explain why this is so.
As already mentioned, it is unclear what the correct

distribution of natal kicks given to black holes upon for-
mation is. In order to investigate the possibilities, Do-
minik et al. (2012) vary two parameters relating to the
kicks imparted onto newly formed black holes; the char-
acteristic velocity � and the fraction of mass fb which
falls back onto the newly born black hole.
In their standard model, black holes receive a kick vk

whose magnitude v
max

is drawn from a Maxwellian distri-
bution with � = 265km s�1, and reduced by the fraction
of mass falling back onto the black hole fb as

vk = v
max

(1� fb), (28)

where fb is calculated using the prescription given in
Fryer et al. (2012).
In order to test the e↵ects of smaller natal kicks, in

Variation 7 Dominik et al. (2012) reduce the magnitude
of kicks given to neutron stars and black holes at birth by
a factor of 2. They use a Maxwellian distribution with
� = 132.5km s�1. For BBHs, this has very little e↵ect
on the chirp mass distribution, and so one cannot expect
to be able to distinguish this model from one using full
kicks.
The same holds true when the maximum neutron-star

mass is increased (decreased) from its fiducial value in
the standard model of 2.5M�. This has very little im-
pact on the BBH chirp mass distribution and so there
is e↵ectively a degeneracy between these models. This
could be resolved by also including BNS observations in
the comparison. We do not do this here as we concen-
trate on the BBH predictions, due to the prediction by
Dominik et al. (2012) that these will dominate the early
aLIGO detections.

6.3.2. Supernova engine

In their standard model, Dominik et al. (2012) employ
the Fryer et al. (2012) prescription to calculate the frac-
tion of mass falling back onto the black hole during for-
mation, and thus the black hole masses. In particular,

O2-scale, no rate infoO2-scale, as before
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Bayesian Model Selection

• GW PE: (mostly) straightforward application of Bayes’ Law — posterior 
distribution on binary parameters derived from (mostly uninformative, but 
astrophysically motivated priors) and influenced through the data + 
waveform model through the likelihood ratio 

• Obtain a set of samples of physical parameters of interest: chirp mass 
(!c), mass ratio (q), spin orientations and magnitudes (s1, s2), and at 
some point probably eccentricity (not addressed here) 

• Question: Given a set of plausible astrophysical formation channels, 
how do we select a model resembling nature as well as quantify 
any parameters of that model? 

• Need to map {!c, q, s1, s2} to mass/spin spectrums, progenitor 
metallicity, SN kick prescriptions, evolutionary pathways, etc…

2
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Bayesian Hierarchical Modeling

• Foreman-Mackey, et al. 2014 lays out the foundation 

• convert p(mod|obs)  p(mod|PE) 

• Integral over model parameters (β) can be evaluated via 
importance sampling using parameter estimation (θk) samples 

• Recasts the problem as a “higher level” parameterization with no 
dependence on original data {hi}

3
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Beyond Two Parameter Models

• Are kick direction 
prescriptions (isotropic 
/ polar) measurable at 
the level of mass 
spectrums? 

• Spoilers: No. Most 
mass spectrums are 
degenerate, and 
spins (Stevenson, et 
al. 2017, Rodriguez, 
et al. 2016) are 
required

16

Nobs = 10000

Clusters

SN realign / iso

no SN realign / iso

SN realign / polar

no SN realign / polar



Stevenson 
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Richard
• Slides from KITP talk, 2016
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Familiar statistical challenge
• Inference via Poisson likelihood + bayes


!
!

!
• Same likelihood for nonparametric, 

parametric, and physical models


•         expected n (selection bias)


•            measurements and error


•          binary parameter distribution, 
given model parameters


!
• Informal approaches: weighted histograms 

(=gaussian mixture models)

19

Ivezic et al, Statistics, data mining, and machine learning in astronomy 
Gregory and Loredo (discrete photon light curves) !
ROS PRD 2013    
Hogg and Bovy 
W. Farr, LIGO LIGO-T1600562; Mandel, Farr, Gair LIGO-P1600187 
ROS LIGO T1600208

L(�) = e�µ µn

n!

�

k

�
d�kp(dk|�k)p(�k|�)

µ

p(dk|�k)

p(�k|�)

http://adsabs.harvard.edu/abs/2013PhRvD..88h4061O
https://dcc.ligo.org/LIGO-T1600208


Confronting theory with observations
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A function has infinitely many degrees of freedom

(Intrinsic distribution) (Intrinsic distribution)

http://arxiv.org/pdf/1606.04856v2.pdf


Distributions vary significantly…
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Fig. 6.— Compact BH-NS binaries visible by advanced
LIGO: Properties of the BH-NS binaries detectable by a single
advanced LIGO instrument, scaled in proportion to their detec-
tion probability. Different color and line styles indicate results for
different binary evolution models: high BH kicks (blue); delayed
SN (green); our standard model (black); and optimistic CE (red).
The top and and bottom panels shows the distribution of birth
time tbirth, birth metallicity and chirp mass, respectively. Though
our simulations use a discrete array of metallicity bins, to guide
the eye, their relative contributions have been joined by solid lines;
this histogram makes no correction for the density of metallicity
bins.

generation instruments.
These relatively small uncertainties pale in compari-

son to systematic uncertainties in stellar binary evolu-
tion astrophysics. Comparing our four fiducial binary
evolution models alone shows a wide range of mass dis-
tributions and event rates. Similarly large changes occur
when varying other parameters [ROS: citations] . That
said, advanced-LIGO scale instruments are only sensitive
to the local universe and hence, as a zeroth approxima-
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Fig. 7.— BH-BH binaries visible by advanced LIGO: Prop-
erties of BH-BH binaries detectable by a single advanced LIGO
instrument, scaled in proportion to their detection probability.
Different color and line styles indicate results for different binary
evolution models: high BH kicks (blue); delayed SN (green); our
standard model (black); and optimistic CE (red). Unlike NS-NS
binaries, the detected population of BH-BH binaries was preferen-
tially formed in the early universe over a wide range of metallicities.
Many detectable BH-BH binaries have high chirp mass and form
at significantly subsolar metallicities.

tion, to the parameters
〈

Mc
15/6

〉

and R(0) that enter

into Eq. (2). Crudely speaking, gravitational wave de-
tectors can identify a rate and typical chirp mass for each
type of binary, providing roughly 6 real parameters. Our
astrophysical intuition and simulation results that these
6 real parameters are not populated independently, av-
eraging over all astrophysically plausible models. Con-
versely, we anticipate that by constraining these 6 real
numbers, correlations between these measurements im-
ply they only constrain a few astrophysical parameters
well (e.g., the formation rate of massive binaries) and

30+30 60+60

Dominik et al (2015: 1405.7016)(Detected distribution)



Distributions vary significantly…
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…and for physical reasons, like pair instability
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Pablo Marchant et al.: A new route towards merging massive black holes

Fig. 4. Total masses and orbital periods at core helium depletion for
systems with qi = 1 at four di↵erent metallicities. Dashed lines are
for constant merger times assuming direct collapse into a black hole,
and the shaded region indicates the mass range at which PISNe would
occur, resulting in the total disruption of the stars instead of black-hole
formation. The colored bands represent for each metallicity the relative
number of objects formed.

jects is small, this opens the exciting possibility of eventually
observing primordial black hole mergers at high redshift.

3.4. Mass distribution and mass-ratios

Figure 5 shows the predicted intrinsic chirp-mass distribution for
BH+BH mergers for our di↵erent metallicity grids, again assum-
ing no mass loss in the BH-formation process. The most promi-
nent feature is the prediction of a clear gap in this distribution,
which occurs because systems which would otherwise populate
this gap do not appear since the stars explode as pair-instability
supernovae without leaving a stellar remnant. The BH progeni-
tors in the systems above the gap also become pair unstable, but
the explosive burning can not reverse the collapse which leads
straight to the formation of a black hole (Heger & Woosley 2002;
Langer 2012).

There is a strong general trend towards higher chirp masses
with decreasing metallicity. At the lowest metallicity (Z =
Z�/50) we produce also BHs above the PISN gap. While ob-
viously their number is smaller than the number of BH systems
below the gap, they may still be significant as the amplitude of
the gravitational-wave signal is a strong function of the chirp
mass (cf. Sect. 4).

As indicated in Fig. 5, the vast majority of merging sys-
tems have passed through a contact phase. Since both stars are
relatively unevolved when they undergo contact, these contact
phases result in mass transfer back and forth until a mass-ratio
q ' 1 is achieved. This is depicted in Figure 6, where final mass-
ratios are shown for systems with qi = 0.9, 0.8 and Z = Z�/50.
For each mass-ratio, two distinct branches are visible, corre-
sponding to systems that undergo contact and evolve to q ' 1,
and systems that avoid contact altogether. Owing to the strong
dependence of mass-loss rates with mass, at high masses, even
systems that avoid contact altogether evolve towards q = 1.

Mandel & de Mink (2016) model this channel without in-
cluding contact systems and find an important number of bina-
ries forming double BHs from progenitors below the PISN gap,
with final mass-ratios in the range of 0.6 to 1, reflecting just a

1.2 1.4 1.6 1.8 2.0 2.2 2.4

log Mchirp [M�]

0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
ve

nu
m

b
er

Contact during the MS

Contact at ZAMS

Z�/10

Z�/20

Z�/50

Fig. 5. Stacked distribution of chirp masses of BH+BH systems formed
at di↵erent metallicities, such that they merge in less than 13.8 Gyr. The
contribution from each metallicity is scaled assuming a flat distribution
in Z. At very short periods, systems are already at contact at the ZAMS.

Fig. 6. Mass-ratios of BH+BH systems resulting from our modelled
systems for qi = 0.9 and qi = 0.8 and a metallicity Z = Z�/50 under
the assumption that no mass is lost during collapse. The shaded region
indicates the limits for the occurrence of PISNe.

small shift from the initial mass-ratio distribution due to mass
loss. However, Mandel & de Mink (2016) do not perform de-
tailed stellar evolution calculations. They check whether their
binary components underfill their Roche-radii at the ZAMS, and
then assume that this will remain so in the course of the quasi-
homogeneous evolution of both stars. When considered in detail,
however, in particular the more massive and more metal-rich
stars undergo some expansion during core hydrogen burning,
even on the quasi-homogeneous path (Brott et al. 2011; Köh-
ler et al. 2015; Szécsi et al. 2015), likely due to the increase
of their luminosity-to-mass-ratio and the related approach to the
Eddington limit (Sanyal et al. 2015). As a result, the vast major-
ity of the binaries considered by Mandel & de Mink (2016) enter
contact when computed in detail. Therefore, our final mass-ratio
distribution is much more strongly biased towards q = 1.

Article number, page 5 of 13

Marchant et al A&A 2016 (1601.03718)

Belczynski et al 1607.03116 

(Intrinsic distribution)



…or multiple mergers and single star evolution
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Nuclear Star Clusters

Antonini and Rasio 2016

Black holes in nuclear star clusters 11

Fig. 6.— Same as Figure 5 but for Z = 0.25 Z�.

NSCs and GCs obtained from our models. NSCs are
defined here as clusters with masses in the range 5 ⇥
106 � 5 ⇥ 107 M�, while GCs have masses in the range
105 � 107 M�. We assumed that all clusters formed
12 Gyr ago regardless of their mass and consider two
values of metallicities, Z = 0.01 and 0.25 Z�. In order
to obtain the mean rate of mergers we weighted the num-
ber of mergers from each of the cluster models by a clus-
ter initial mass function (CIMF). For GCs we assume a
power law CIMF: dM/dN ⇠ M�2 (e.g., Bik et al. 2003).
For NSCs the initial mass function is largely unknown.
Here we take the IMF of NSCs directly from the mass
distribution of NSCs at z = 2 from the galaxy forma-
tion models of Antonini et al. (2015b) (their Figure 10).
These models produce a mass distribution at z = 0 that
is consistent with the observed NSC mass distribution
from Georgiev et al. (2016). We note that here we might
be underestimating the number of massive mergers from
NSCs occurring at low redshift because we have assumed
that these systems are as old as Galactic GCs. In fact,
while most NSCs appear to be dominated by old stellar
components they are also known to have a complex star
formation history and to contain young stellar popula-
tions which can produce high mass mergers also at later
times (we will come back to this point below). It is also
possible that a large fraction of the NSC stars accumu-
lated gradually in time by infalling globular clusters that

decayed to the center through dynamical friction. If this
process is the main mechanism for NSC formation, then
NSCs and GCs will comprise similar stellar populations
(Antonini 2014).
Table 1 shows that our models predict a few thousands

BH mergers per NSC over 12 Gyr of evolution. This
expectation also appears to be consistent with previous
estimates (Portegies Zwart & McMillan 2000; Miller &
Lauburg 2009). In addition, NSCs produce between 50 to
⇡ 500 BH mergers with high mass > 50M� at z < 0.3 de-
pending on the BH spin magnitudes and assumed metal-
licities distribution of the underlining stellar population.
Our GC models produce only a few mergers per cluster
within z < 0.3 and total mass > 50 M�. These massive
binaries are found to form only in the most massive GCs
(Mcl & 106M�).
The number of massive mergers at low redshift is also

sensitive to the spin magnitude distribution we assume.
For high spin models, a smaller number of BHs are re-
tained in the clusters compared to the uniform spin mod-
els. Consequently, high spin models produce fewer high
mass BH mergers at low redshift compared to models
that assume low spins. However, in either spin models a
number of inspiraling BH binaries with mass & 50 M� is
found to merge at low redshift. Finally, Table 1 gives the
number of BH mergers that are retained inside the clus-
ter. Between 10 and 20 percent of high mass (> 50 M�)
mergers occurring in NSCs at z < 1 are retained inside

Highest Mass 
BHs

Multiple BH 
Mergers

Spins ~ 0.7

1.5 Gpc�3yr�1

Nuclear Star Clusters

Antonini and Rasio 2016  
[see Carl Rodriguez talk]
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Fig. 5. Left panel: Observer frame (redshifted) total merger mass dis-
tribution for our models: with (M10; magenta broken line) and with-
out (M1; red solid line) pair-instability pulsation supernovae and pair-
instability supernovae included. The fiducial O2 LIGO upper limits
are marked; the most likely detections are expected when our models
are above these upper limits. Note that both models are hardly dis-
tinguishable by total merger mass with O2 observations, despite the
fact that more massive BH-BH mergers are produced in model M1.
The two detections and the next loudest gravitational-wave event from
LIGO O1 observations (The LIGO Scientific Collaboration et al. 2016)
are marked: GW150914 (36 + 29 M⊙ BH-BH merger at z ≈ 0.1),
GW151226 (14 + 8 M⊙ BH-BH merger at z ≈ 0.1), and LVT151012
(23 + 13 M⊙ BH-BH merger at z ≈ 0.2). Right panel: Source frame
BH-BH merger rate density for the local Universe. The local source
frame BH-BH merger rate density estimated by LIGO from the O1 run:
9 − 240 Gpc−3 yr−1 (range marked with blue arrows) may be compared
to our local (z < 0.1) source frame rate of RBHBH ≈ 220 Gpc−3 yr−1 (M1
and M10 models). Both model rate densities are almost the same and
are within the LIGO estimate. We additionally show the results for our
pessimistic model (M3) with high natal kicks: RBHBH ≈ 7 Gpc−3 yr−1
(just below of the LIGO allowed range).

∝ t−1delay (Dominik et al. 2012; Belczynski et al. 2016a). We also
show (Fig. 4) our pessimistic model with high compact object
natal kicks (M3). The local merger rate density is rather low:
RBHBH ≈ 7 Gpc−3 yr−1 (z < 0.1). Within the framework of our
model assumptions and simplifications (see Sec. 3) this model is
in tension with the LIGO estimate. This statement is subject to
degeneracy with other thus far untested model parameters that
could potentially increase the BH-BH merger rate density. For
example, an increase in the SFR at high redshifts (z > 2) with
respect to our adopted model (which is hard to exclude due to
rather weak observational constraints) could potentially bring
the high kick model back into agreement with the LIGO esti-
mate. We plan to present a detailed study of this and other similar
degeneracies when more stringent rate constraints appear from
LIGO’s next observation run (O2) in 2017. At the moment it

seems that full natal kicks (adopted in M3; see Sec. refmodel)
for black holes and heavy neutron stars are not supported by the
LIGO data.

Figure 5 shows the total redshifted (observer frame)
mass (Mtot,z = Mtot(1 + z)) distribution of NS-NS/BH-
NS/BH-BH mergers within the LIGO reach of the pro-
jected O2 scientific run with a NS-NS average detection dis-
tance of dnsns = 120 Mpc. The detection distance corre-
sponds to the optimistic O2 target sensitivity described by
The LIGO Scientific Collaboration et al. (2013). For compari-
son, O1 observations were sensitive only to dnsns = 70
Mpc. We have assumed that the O2 run will last 6 months,
and will produce 65 days of coincident data (duty cycle
p = 0.36 of two LIGO detectors observing simultaneously).
We have adopted a fiducial O2 noise curve (“mid-high”)
from The LIGO Scientific Collaboration et al. (2013). We show
both of our models and contrast them with the fiducial esti-
mate of the sensitivity of the O2 run (O2 expected upper lim-
its). In mass bins where our models are above the upper lim-
its (Mtot,z = 14–150 M⊙) we predict the most likely detections,
and detections are less likely in mass bins in which our models
are significantly below the upper limits (Mtot,z < 14 M⊙: NS-NS
mergers and most BH-NS mergers, and Mtot,z > 150 M⊙: the
heaviest and most redshifted BH-BH mergers). The most likely
detections are expected in three mass bins that exceed O2 upper
limits by the highest factors: Mtot,z = 25–73 M⊙.

In Table 1 we list local (within redshift of z < 0.1) merger
rate densities, as well as predicted O2 detection rates (RO2 yr−1).
The detection rate is easily transformed into a number of ex-
pected detection events in the O2 observational run (e.g., assum-
ing 65 effective O2 observation days): Rdet = (65/365)RO2. We
find that for our standard evolutionary model, whether or not
we include pair-instability pulsation supernovae (with the asso-
ciated mass loss) and pair-instability supernovae (with the total
disruption of BH progenitors), BH-BH mergers will dominate
the gravitational wave detections. In particular, we expect about
∼ 60 BH-BH merger detections in the O2 run for our standard
evolutionary assumptions (about 1 per day of coincident obser-
vations of two LIGO detectors). The prediction is significantly
lower for our pessimistic model M3; only ∼ 2 BH-BH merger
detections in the entire O2 run. Since model M3 is already be-
low the LIGO empirical estimate we expect more detections than
predicted in this model, and thus ! 2 detections.

In the mass regime in which we predict detections, bothmod-
els (M1 and M10) are almost indistinguishable (Fig. 5). Only at
very high total BH-BH merger mass (Mtot,z > 150 M⊙) are the
two models visibly different; the model with PPSN/PSN (M10)
does not extend to as high total merger mass as the model that
does not include PPSN/PSN (M1). The mass range in which the
two models differ significantly is not likely to be deeply probed
with the LIGO O2 observations. The number of expected detec-
tions in the entire O2 run is 3.5 and 1.5 for a total redshifted
merger mass of Mtot,z > 145 M⊙ and > 163 M⊙, respectively
for model M1, while it is 0.2 and 0 for Mtot,z > 145 M⊙ and
> 163 M⊙, respectively, for model M10. This is not a signifi-
cant difference, especially if the uncertainties on the maximum
mass of a black hole are taken into account (see Sec. 2). How-
ever, since the sensitivity of LIGO during the O2 observations
is already projected to be on the verge of distinguishing the two
models, it seems likely that the fully-advanced design sensitivity
will provide useful constraints on PPSN mass loss.

Article number, page 8 of 10
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Figure 5. The median posterior probability for each model in the
set of Dominik et al. (2012) models after an O1 like observing pe-
riod of 0.16 years, calculated from 10000 repeats. The model which
observations were drawn from is shown on the axis labelled Uni-

verse. The models which these observations were then compared
to is labelled Model, so that the probabilities in each row sum to
one. Models 0-11 are described in Table 1. The two submodels, A
and B, are described in Section 2.2.2.

model.
In cases where one or few models have a high prob-

ability, these would be distinguishable from the other
models. However, all models with a high probability
would be consistent with the observations. We reiterate
that here we restrict attention to the models in Dominik
et al. (2012). Of course these do not cover the full space
of binary merger predictions. If we were to include a
broader range of models, it is likely that the conclusions
we are able to draw would be weaker as various models
would lead to comparable rates and mass distributions.
Nonetheless, some of the conclusions we reach, such as
excluding a number of models if there are no observations
in O1, are robust.
We first observe that, for the most part, we would

be able to distinguish between submodels A and B that
correspond to di↵erent common envelope scenarios (see
Sec. 2.2.2). This is unsurprising as the predicted rates
for the majority of models are significantly higher for
submodel A (cf. Table 2). Models which predict low de-
tection rates for model A remain degenerate with those
in model B. The mass distribution from such a small
sample does not provide enough additional information
to break these degeneracies in the rates. For example,
model 1 A uses a very high, fixed envelope binding en-
ergy, meaning that most binaries entering a common en-
velope event fail to throw o↵ the common envelope and
merge, causing them to never form BBH systems (for
a more detailed discussion of this, see Dominik et al.
(2012)). On the other hand, submodel B does not allow
a binary to survive a common envelope event if the donor
is on the Hertzsprung Gap, and so again, many binaries
merge and never form BBHs. This generically lowers the
merger rates and thus detection rates for submodel B
models, leading to the degeneracy visible in the upper
right quadrant of Fig. 5.

Another interesting example involves models 4 and 8
that, in the pessimistic submodel B, are consistent with
no observations at all during O1. Hence, they cannot
be distinguished from each other, or indeed model 8 A,
although they are favoured over all other models if indeed
no detection are made.
Within the two submodels, it is di�cult to identify

the correct model. Indeed, there are numerous varia-
tions which would be indistinguishable from the standard
model. The only model which can be clearly identified is
model 11, a model which reduces the strength of stellar
winds by a factor of 2 over the standard model. We now
discuss why we are able to distinguish this model from
the others in such a short observational period.

6.2. Stellar winds

In massive O-type stars, stellar winds of high tem-
perature charged gas are driven by radiation pressure.
In Wolf–Rayet stars mass loss rates can be as high as
10�4M�yr�1 (Nugis & Lamers 2002). This can cause
stars to lose a large amount of mass prior to the super-
nova. Theoretical uncertainties in modelling these mass
loss rates therefore translate into uncertainties in the
pre-supernova masses for massive stars. Dominik et al.
(2012) examine the e↵ects of reducing the strength of
stellar winds by a factor of 2 on the distribution of BBHs
in their Variation 11. Firstly, reducing stellar winds re-
sults in stars having a higher mass prior to supernova
than they would otherwise have. This in turn leads to
more mass falling back onto the compact object during
formation, which reduces the magnitude of natal kicks
given to black holes. This results in more systems sur-
viving the supernova (rather than being disrupted) and
increases the merger rates. More massive pre-supernova
stars also form more massive remnants, resulting in the
most massive BBH having a chirp mass of ⇠ 64M� with
reduced stellar winds compared to ⇠ 37M� using the
standard prescription. Finally, reducing the strength of
stellar winds allows stars with a lower zero age main se-
quence mass to form black holes due to more mass being
retained. This can boost the BBH merger rate compared
to the standard model.
All of these e↵ects combined mean that Variation

11 predicts BBHs with characteristically higher chirp
masses, as well as predicting a much higher merger rate
than all other models (even for the pessimistic submodel
B in O1, Variation 11 predicts O(10) observations). We
therefore expect that we would be able to correctly dis-
tinguish a universe following Variation 11 from all other
models with relatively few observations. In Figure 6 we
show the median posterior probability for each model
as a function of the observation time, based on 10000
redraws of the observations. We find that when draw-
ing observations from a universe following Variation 11
we overwhelmingly favour it within the duration of O1,
with O(10) observations.

6.3. Second aLIGO observing run (O2)

We now turn our attention to the second observing run,
O2, and investigate which models can be distinguished
using the much larger time-volume surveyed by O2. In
Figure 7 we again show a matrix plot showing the (me-
dian) posterior probability for each model after a period
corresponding to the O2 run.

Stevenson, Ohme, Fairhurst (1504.07802), based on Dominik et al 2012 
See also Miyamoto et al, GWPAW 2016; Dhani, Mukerjee et al 2016 (LVC meeting)

but this is driven by large rate differences. Rate is highly degenerate with other factors…
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Figure 6. The median posterior probability for each of the models
in the set as a function of observation time for a period of time cor-
responding to the aLIGO O1 run (0.16 years). GW observations are
drawn from a universe following Variation 11, submodel B which
reduces the strength of stellar winds by a factor of 2 compared to
the standard model. The blue (solid) line shows the median pos-
terior probability for Variation 11 taken from 10000 repeats, and
the shaded error bar shows the 68% confidence interval. Variations
0,2,5,6,7 & 10 are plotted in green (dot-dash), while variations 1,3
& 9 are plotted in black (dotted). Variations 4 & 8 predicting ⇠ 0
observations in O1 are plotted in red (dashed).

Figure 7. The median posterior probability for each model in
the set of Dominik et al. (2012) models after an O2 like observing
period of 0.32 years with a detector more sensitive than the early
aLIGO noise curve by a factor of 2. The median is calculated based
on 10000 redraws of the observations. The model which observa-
tions were drawn from is shown on the axis labelled Universe. The
model which these observations were then compared to is labelled
Model. Models 0-11 are described in Table 1. The two submodels,
A and B, are described in Section 2.2.2.

Figure 7 has a more diagonal form than Figure 5,
meaning that in many cases the correct model is favoured
and others are disfavoured within the O2 period. In par-
ticular, the optimistic and pessimistic submodels A and
B become almost entirely distinct from each other. This
is because most of the Dominik et al. (2012) models pre-

dict O(100) (O(10)) observations during the O2 period
for the optimistic (pessimistic) submodels respectively
(as shown in Table 2). Furthermore, the majority of
variations in submodel A can be unambiguously identi-
fied; the exception being that the standard model which
remains degenerate with models 5, 6 and 7, as we dis-
cuss in detail in Section 6.3.1. For the pessimistic sub-
model B, the standard model remains indistinguishable
from a number of other variations. However, there are a
few models which can be clearly distinguished, including
models 4 and 8 (that predict significantly lower rates),
and 9, 10 and 11. All of these models predict tens of
observations and consequently, we are able to use infor-
mation from both the chirp mass distribution and the
detection rate to help distinguish models. Model 10 in-
volves the variation of the supernova engine, which we
elaborate on in Section 6.3.2.

6.3.1. Black hole kicks and maximum neutron star mass

Not all models are distinguishable, even with the
O(100) observations predicted by the optimistic sub-
model A for O2. For example, in Figure 7 we see that the
standard model is degenerate with Variations 5, 6 and 7.
We now explain why this is so.
As already mentioned, it is unclear what the correct

distribution of natal kicks given to black holes upon for-
mation is. In order to investigate the possibilities, Do-
minik et al. (2012) vary two parameters relating to the
kicks imparted onto newly formed black holes; the char-
acteristic velocity � and the fraction of mass fb which
falls back onto the newly born black hole.
In their standard model, black holes receive a kick vk

whose magnitude v
max

is drawn from a Maxwellian distri-
bution with � = 265km s�1, and reduced by the fraction
of mass falling back onto the black hole fb as

vk = v
max

(1� fb), (28)

where fb is calculated using the prescription given in
Fryer et al. (2012).
In order to test the e↵ects of smaller natal kicks, in

Variation 7 Dominik et al. (2012) reduce the magnitude
of kicks given to neutron stars and black holes at birth by
a factor of 2. They use a Maxwellian distribution with
� = 132.5km s�1. For BBHs, this has very little e↵ect
on the chirp mass distribution, and so one cannot expect
to be able to distinguish this model from one using full
kicks.
The same holds true when the maximum neutron-star

mass is increased (decreased) from its fiducial value in
the standard model of 2.5M�. This has very little im-
pact on the BBH chirp mass distribution and so there
is e↵ectively a degeneracy between these models. This
could be resolved by also including BNS observations in
the comparison. We do not do this here as we concen-
trate on the BBH predictions, due to the prediction by
Dominik et al. (2012) that these will dominate the early
aLIGO detections.

6.3.2. Supernova engine

In their standard model, Dominik et al. (2012) employ
the Fryer et al. (2012) prescription to calculate the frac-
tion of mass falling back onto the black hole during for-
mation, and thus the black hole masses. In particular,

O1-scale O2-scale

https://emvogil-3.mit.edu/gwpaw2016/presentations/gwpaw2016_miyamoto.pdf
https://www.researchgate.net/publication/289525248_Distinguishing_population_synthesis_models_of_binary_black_holes_using_gravitational-wave_observations


Distinguishing a discrete model set straightforward
• Mass distributions alone are more similar, given measurement error
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Figure 8. Probabilities for the scenario of Fig. 7, separated into contributions from the rates (left) and the mass distribution (right).

ing information about binary evolution. Ignoring other
families of compact binaries also allowed us to avoid am-
biguities in discerning the family of the source (BNS,
NSBH or BBH) due to degeneracies which exist in mea-
suring the mass ratio for these systems (Hannam et al.
2013), although this can be dealt with in the future (Farr
et al. 2013).
All these considerations have to be carefully taken into

account in future studies. However, our results indicate
that the upcoming generation of advanced GW detectors
will soon start putting non-trivial bounds on current and
future binary evolution models, and analyses like the one
presented here will provide an important basis to link
theoretical models with GW observations.
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Figure 6. The median posterior probability for each of the models
in the set as a function of observation time for a period of time cor-
responding to the aLIGO O1 run (0.16 years). GW observations are
drawn from a universe following Variation 11, submodel B which
reduces the strength of stellar winds by a factor of 2 compared to
the standard model. The blue (solid) line shows the median pos-
terior probability for Variation 11 taken from 10000 repeats, and
the shaded error bar shows the 68% confidence interval. Variations
0,2,5,6,7 & 10 are plotted in green (dot-dash), while variations 1,3
& 9 are plotted in black (dotted). Variations 4 & 8 predicting ⇠ 0
observations in O1 are plotted in red (dashed).

Figure 7. The median posterior probability for each model in
the set of Dominik et al. (2012) models after an O2 like observing
period of 0.32 years with a detector more sensitive than the early
aLIGO noise curve by a factor of 2. The median is calculated based
on 10000 redraws of the observations. The model which observa-
tions were drawn from is shown on the axis labelled Universe. The
model which these observations were then compared to is labelled
Model. Models 0-11 are described in Table 1. The two submodels,
A and B, are described in Section 2.2.2.

Figure 7 has a more diagonal form than Figure 5,
meaning that in many cases the correct model is favoured
and others are disfavoured within the O2 period. In par-
ticular, the optimistic and pessimistic submodels A and
B become almost entirely distinct from each other. This
is because most of the Dominik et al. (2012) models pre-

dict O(100) (O(10)) observations during the O2 period
for the optimistic (pessimistic) submodels respectively
(as shown in Table 2). Furthermore, the majority of
variations in submodel A can be unambiguously identi-
fied; the exception being that the standard model which
remains degenerate with models 5, 6 and 7, as we dis-
cuss in detail in Section 6.3.1. For the pessimistic sub-
model B, the standard model remains indistinguishable
from a number of other variations. However, there are a
few models which can be clearly distinguished, including
models 4 and 8 (that predict significantly lower rates),
and 9, 10 and 11. All of these models predict tens of
observations and consequently, we are able to use infor-
mation from both the chirp mass distribution and the
detection rate to help distinguish models. Model 10 in-
volves the variation of the supernova engine, which we
elaborate on in Section 6.3.2.

6.3.1. Black hole kicks and maximum neutron star mass

Not all models are distinguishable, even with the
O(100) observations predicted by the optimistic sub-
model A for O2. For example, in Figure 7 we see that the
standard model is degenerate with Variations 5, 6 and 7.
We now explain why this is so.
As already mentioned, it is unclear what the correct

distribution of natal kicks given to black holes upon for-
mation is. In order to investigate the possibilities, Do-
minik et al. (2012) vary two parameters relating to the
kicks imparted onto newly formed black holes; the char-
acteristic velocity � and the fraction of mass fb which
falls back onto the newly born black hole.
In their standard model, black holes receive a kick vk

whose magnitude v
max

is drawn from a Maxwellian distri-
bution with � = 265km s�1, and reduced by the fraction
of mass falling back onto the black hole fb as

vk = v
max

(1� fb), (28)

where fb is calculated using the prescription given in
Fryer et al. (2012).
In order to test the e↵ects of smaller natal kicks, in

Variation 7 Dominik et al. (2012) reduce the magnitude
of kicks given to neutron stars and black holes at birth by
a factor of 2. They use a Maxwellian distribution with
� = 132.5km s�1. For BBHs, this has very little e↵ect
on the chirp mass distribution, and so one cannot expect
to be able to distinguish this model from one using full
kicks.
The same holds true when the maximum neutron-star

mass is increased (decreased) from its fiducial value in
the standard model of 2.5M�. This has very little im-
pact on the BBH chirp mass distribution and so there
is e↵ectively a degeneracy between these models. This
could be resolved by also including BNS observations in
the comparison. We do not do this here as we concen-
trate on the BBH predictions, due to the prediction by
Dominik et al. (2012) that these will dominate the early
aLIGO detections.

6.3.2. Supernova engine

In their standard model, Dominik et al. (2012) employ
the Fryer et al. (2012) prescription to calculate the frac-
tion of mass falling back onto the black hole during for-
mation, and thus the black hole masses. In particular,

O2-scale, no rate infoO2-scale, as before



Beyond the mass distribution: Power of spin
• High mass binaries may be strictly and positively aligned (fallback)


• Low spins required for GW150914…possible?      [Kushnir et al]


• Tells us something about how massive stars evolve? About tides?

• Or favors dynamics?
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FIG. 7. Aligned spin components not constrained [aligned only
shown]: Colors represent the marginalized log likelihood as a func-
tion of the aligned spin components �1,z and �2,z. Each point rep-
resents an NR simulation; only nonprecessing simulations are in-
cluded. Points with 265.8 < ln L < 268.6 are shown in light
gray, with ln L > 268.6 are shown in black, and with ln L < 265.8
are shown according to the color scale on the right (points with
lnLmarg < 172 have been suppressed to increase contrast). [The
quantity ln L is the maximum value of lnLmarg with respect to mass;
see Eq. (7).] Consistent with our other results, flow = 30 Hz. For
comparison, the solid black contours show the 90% credible intervals
derived in LVC-PE[1], assuming spin-orbit alignment and omitting
corrections for waveform systematics. The solid and dashed green
contours are the nominal 90% credible interval derived using an ap-
proximation to our data for lnLmarg, assuming both spins are exactly
parallel to the orbital angular momentum, for l = 2 (solid) and l = 3
(dashed), respectively; see Section IV B for more details.

Figure 5.
The di↵erences between the results reported here and

LVC-PE[1] should be considered in context: not only does
our study employ numerical relativity without analytic wave-
form models, but it also adopts a slightly di↵erent starting
frequency, omits any direct treatment of calibration uncer-
tainty, and employs a quadratic approximation to the likeli-
hood. That said, comparisons conducted under similar lim-
itations and using real data, di↵ering only in the underlying
waveform model, reproduce results from LALInference; see
PE+NR-Methods[10] for details.

By assuming the binaries are strictly aligned but permitting
generic spin magnitudes, our analysis (and that in LVC-PE[1])
neglects prior information that could be used to significantly
influence the posterior spin distributions. For example, the
part of the posterior in the bottom right quadrant of Figure 7
is unstable to large angle precession [100]: if a comparable-
mass binary formed at large separation with �1,z > 0 and
�2,z < 0, it could not remain aligned during the last few orbits.
Likewise, the astrophysical scenarios most likely to produce
strictly aligned binaries — isolated binary evolution — are
most likely to result in both �1,z, �2,z > 0: both spins would be

strictly and positively aligned (see, e.g, [101]). In that case,
only the top right quadrant of Figure 7 would be relevant. Us-
ing the analytic tools provided here, the reader can regenerate
approximate posterior distributions employing any prior as-
sumptions, including these two considerations.

C. Transverse and precessing spins

Figure 8 shows the maximum likelihood for the available
NR simulations, plotted as a function of the magnitude of the
aligned and transverse spin components. The figure shows
that there are both precessing and nonprecessing simulations
that have large likelihoods (black points), indicating that many
precessing simulations are as consistent with the data as non-
precessing simulations. Moreover, simulations with large pre-
cessing spins are consistent with the GW150914: many con-
figurations have �e↵ ' 0 but large spins on one or both BHs in
the binary. Keeping in mind the limited range of simulations
available, the magnitude and direction of either BHs spin can-
not be significantly constrained by our method.

Not all precessing simulations with suitable q, �e↵ are con-
sistent with GW150914; some have values of ln L that are
not within 10 of the peak; see the right panel of Fig. 8) The
marginal log-likelihood ln L depends on the transverse spins,
not just the dominant parameters (q, �e↵ ,Mz). As a concrete
illustration, Figure 9 shows that the marginalized log likeli-
hood depends on the specific direction of the transverse spin,
in the plane perpendicular to the angular momentum axis.
Specifically, this figure compares the peak marginalized log
likelihood (ln L) calculated for each simulation with the value
of ln L predicted from our fit to nonprecessing binaries. For
precessing binaries, ln L is neither in perfect agreement with
the nonprecessing prediction, nor independent of rotations of
the initial spins about the initial orbital angular momentum by
an angle �.

While the transverse spins do influence the likelihood,
slightly, the data do not favor any particular precessing con-
figurations. No precessing simulations had marginalized like-
lihoods that were both significant overall and significantly
above the value we predicted assuming aligned spins. In other
words, the data do not seem to favor precessing systems, when
analyzed using only information above 30 Hz.

Our inability to determine the most likely transverse spin
components is expected, given both our self-imposed restric-
tions ( flow = 30 Hz) and the a priori e↵ects of geometry. For
example, the lack of apparent modulation in the signal re-
ported in LVC-detect[2] and LVC-Burst[4] points to an ori-
entation with J parallel to the line of sight, along which
precession-induced modulations are highly suppressed. In ad-
dition, the high mass and hence extremely short observation-
ally accessible signal above 10 Hz provides relatively few cy-
cles with which to extract this information. The timescales
involved are particularly unfavorable to attempts to extract
precession-induced modulation from the pre-merger signal:
the pre-coalescence precession rate for these sources is low
(⌦p ' (2 + 3m2/m1)J/2r3 ' 2⇡ ⇥ 1 Hz( f /40 Hz)5/3 for this
system, where J is the magnitude of the total orbital angu-
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Fig. 8. Angular-momentum profiles at core helium depletion for the
primary stars of binaries from our grid that result in double-helium-
star binaries. Shown are stars of three di↵erent initial masses in bi-
naries with similar initial orbital periods, at metallicities of Z =
Z�/50,Z�/20,Z�/10. The curves for the specific angular momentum
of the last stable orbit for a non-rotating (Schwarzschild) and critically
rotating (Kerr) black hole are also included.

3.9. Explosive mass loss and momentum kicks

In all models below the pair-instability regime we expect the for-
mation of black holes. If the whole star collapses without eject-
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Fig. 9. Kerr parameter as function of the final system mass, for our
models at Z = Z�/50,Z�/20,Z�/10, assuming a complete collapse of
our helium stars to black holes. Binaries indicated through symbols with
a red frame have merger times which exceed the Hubble time.

Fig. 10. The evolution in the Tc � ⇢c-diagram for the three stellar mod-
els at Z = Z�/50 (with the masses at helium depletion as indicated)
calculated to the final evolutionary stage. The shaded region shows the
region that is unstable to pair creation. Both the 35 M� and the 200 M�
stars collapse to form black holes, while the 90 M� is disrupted in a
PISN.

ing any mass or energy, the masses and periods in Figure 4 would
also represent the masses of the final black holes and the post-
collapse orbital periods. On the other hand, as our helium stars
tend to be rapidly rotating, some of them may go through a col-
lapsar phase (Woosley 1993), producing LGRBs, in which part
of the collapsing star is ejected, and the binary orbit may receive
a supernova kick. The e↵ect of the mass loss would be to reduce
the final black-hole masses (and to reduce the strength of any
eventual gravitational-wave signal) and widen the system (and
increase the merger time), while the e↵ect of a kick can be to ei-
ther increase or decrease the orbital period and the merger time
(see Appendix A for a more detailed discussion). While the de-
tails of the collapse phase are still very uncertain, which may
have an e↵ect on the BH+BH detection rates, our main conclu-
sions are not dependent on these.

In any case, the final angular-momentum profiles of our
models (see Sect. 3.7) suggest that only the lowest-mass models
(Mfinal ⇠< 40 M�) at the two lowest metallicities (Z = Z�/20,
Z�/50) may retain enough angular momentum in the core to
be good LGRB candidates. Nevertheless, because of the large
amount of available angular momentum, we expect many of the
BHs formed in this scenario to be rapidly rotating, with the spin
parameter roughly scaling inversely with the final orbital pe-
riod shown in Fig. 4 (i.e. the largest spins are expected for the
lowest-mass BHs at the lowest metallicity). Finally, we note that,
below the disruptive PISN regime, there is a regime of pulsa-
tional PISNe (Chatzopoulos & Wheeler 2012), where substantial
mass loss is expected but a BH is nevertheless ultimately formed
(Woosley et al. 2007).

4. Merger rates

Concerning the conventional scenario to produce close double
compact binaries involving common envelope evolution (see
Appendix B), except for a few cases (Voss & Tauris 2003; Bel-
czynski et al. 2010; Dominik et al. 2015), the far majority of
published population synthesis studies predict a much higher
NS+NS merger rate per Milky Way equivalent galaxy (MWEG)
compared to the rate of BH+BH mergers. Based on a detailed
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