

Measuring the imprint of spin in the strong field

Richard O'Shaughnessy

Strong Gravity and Binary Dynamics 2017-02-28 Oxford, MS

Outline

- What is the imprint of spin on gravitational waves?
 - ...and do we know what it is well enough for our purposes?
- Parameter estimation
 - Review
 - Measuring imprint of spin at low mass, with long signals
 - Measuring imprint of spin at high mass, with short signals

Basics of inspiral, merger, and ring down

Abbott et al, PRL 116, 061102 (2016)

Binary inspiral and merger

Higher-order modes

• Strong field mergers complicated: **not** simple quadrupole

$$h(t|\hat{n}) = \sum_{lm} {}_{-2}Y_{lm}(\hat{n})h_{lm}(t)$$

$$\simeq h_{22}^{lm}(t){}_{-2}Y_{22} + h_{2,-2}(t){}_{-2}Y_{2,-2} + 0$$

RIT GW150914-like simulation

Basics of precession-induced modulations

Radiation from precessing binary~ rotation x (radiation from nonprecessing)

Schmidt et al 2011 ROS et al 2011 [arxiv: 1109.5224] Boyle et al 2012 Ochsner and ROS 2012 [arxiv:1205.2287]

Dynamics of and GW from a BH-NS

Dynamics of and GW from a BH-NS

Rotation, polarization modulation robust

NR solves GR more completely, accurately

- Analytic models are good first approximations but not perfect
- Example: Edge-on line of sight

NR solves GR more completely, accurately

• One reason: "higher modes" are missing or not calibrated

Differences matter

- Conclusions about BBH derived from NR are often slightly different
 - Even where models are "well-calibrated"

Differences matter

Differences matter

fects depend on line of sight

to be detected than others

.0

Some lines of sight lead to biased reconstructions (if performed without higher order modes)

Reconstructions on this slide all done without higher modes

Higher modes missing & matter

- **Example**: Current quadrupole (sourced by orbiting misaligned spins)
 - Strong, well-known effect (e.g., recoil kicks)...providing unique access to spin info

Higher modes missing & matter

- **Example**: Current quadrupole (sourced by orbiting misaligned spins)
 - Strong, well-known effect (e.g., recoil kicks)...providing unique access to spin info

Precessing, NR

NR-calibrated surrogate models

Surrogate models can

Blackman et al <u>2015</u>,2017 <u>ROS et al 2017</u>

- interpolate between NR simulations directly
- include most higher modes & precession approximately

Limitations so far

Placement (exploration in 'q'; spins), duration

Parameter estimation: foundations

Evidence for signal

- Inputs:
 - Prior knowledge $p(\lambda|H_1)$
 - Signal model
 - Noise model

- $p(\{d\}|H_0)$
 - $p(\{d\}|\vec{\lambda}, H_1) = p(\{d h(\vec{\lambda})\}|H_0)$

about distribution of λ

Algorithm for integral/exploration in many dimensions

 $h(\lambda)$

Noise model: Gaussian

$$\mathcal{L} \equiv p(\{d\} | \vec{\lambda}, H_1) / p(\{d\} | H_0)$$
$$= \frac{e^{-\langle h(\lambda) - d | h(\lambda) - d \rangle / 2}}{e^{-\langle d | d \rangle / 2}}$$

How to explore the space?

- Grids? $\int m d(\lambda) = \int \int f(\lambda \ \theta) n(\theta)$
- Monte Carlo

$$\mathcal{L}_{\rm red}(\lambda) = \int \mathcal{L}(\lambda,\theta) p(\theta) d\theta$$

• Trivial theory & convergence. Embarassingly parallel.

$$\mathcal{L}_{\rm red}(\lambda) = \int \frac{\mathcal{L}(\lambda, \theta) p(\theta)}{p_s(\theta)} p_s(\theta) d\theta \simeq \frac{1}{N} \sum_{i=1}^N \frac{\mathcal{L}(\lambda, \theta_i) p(\theta_i)}{p_s(\theta_i)}$$

- Many adaptive variants
- MCMC: Oracle for independent samples
 - Easy to get started: write likelihood+prior
 - "Walker" with jumps satisfying detailed balance + ergodicity. Serial.
 - Results follow by histograms. Coordinate transformations trivial.
 - Many adaptive variants
 - Practical efficiency and convergence tests rare, tricky

Example: Two integration-based strategies

· Parameter estimation for GW sources: Compare models and data, using gaussian statistics

$$\ln \mathcal{L}(\lambda;\theta) = -\frac{1}{2} \sum_{k} \langle h_k(\lambda,\theta) - d_k | h_k(\lambda,\theta) - d_k \rangle_k - \langle d_k | d_k \rangle_k$$

 $\mathcal{L}_{\mathrm{marg}}(\lambda_k)$

- Method 1: grid : [e.g., Pankow et al 2015 (1502.04370)]
 - Integrate over extrinsic parameter space [NR can't vary intrinsic params]

$$\mathcal{L}_{\text{marg}}(\lambda) \equiv \int \mathcal{L}(\lambda,\theta) p(\theta) d\theta$$

- Stitch likelihood from discrete evaluations
 - Currently: Aligned spin via fit (or GP)
- Posterior via Bayes

$$p_{\text{post}}(\lambda) = \frac{\mathcal{L}_{\text{marg}}(\lambda)p(\lambda)}{\int d\lambda \mathcal{L}_{\text{marg}}(\lambda)p(\lambda)}$$

Example: Two integration-based strategies

· Parameter estimation for GW sources: Compare models and data, using gaussian statistics

$$\ln \mathcal{L}(\lambda;\theta) = -\frac{1}{2} \sum_{k} \langle h_k(\lambda,\theta) - d_k | h_k(\lambda,\theta) - d_k \rangle_k - \langle d_k | d_k \rangle_k$$

- Method 1: grid : [e.g., Pankow et al 2015 (1502.04370)]
 - Integrate over extrinsic parameter space [NR can't vary intrinsic params]
- Method 2: pure Monte Carlo [e.g., ROS et al 2017]
 - · Use a model which can be evaluated everywhere
 - Posterior = histogram

M=150, q=2, aLIGO SNR=25, zero spin

Short, high-mass signals

Short, high-mass signals

Priors: Parse statements about spin with care

- Issue: Likelihood alone not compelling, so prior choices matter
- Notes: Current prior is uniform in spin magnitude and both masses
 - Large aligned spins unlikely (alignment+magnitude: doubly special)
 - Configurations with two dynamically-significant spins very unlikely
- Example:

How accurately can we measure parameters?

- Model adequacy:
 - At low SNR / face on, we won't do terribly with what we have [Abbott et al 2017; Varma et al 2017]
 - If nature is kind, we could need better models soon [A. Taracchini today]
- Assessments based on one model (IMRP) with a single spin [Vitale et al 1611.01122; a few masses & spins]
 - Effectively spins: fairly reliably
 - Masses: few several tens percent total
 - Individual spins: poor
- What about systematics ?

ve measure parameters?

to be detected than others

.0

Edge-on lines of sight lead to biased reconstructions (if performed without higher order modes)

Reconstructions on this slide all done without higher modes

	\mathcal{M}	(M_{\odot})	<i>q</i>			 Xeff			
	Median E	Bias 90% CI	Median	Bias	90% CI	Median	Bias	90% CI	
SXS:BBH:0049	$\mathcal{M} = 27.15 \ M_{\odot}$			q = 0.3			$\chi_{\rm eff} = 0.13$		
$\iota = 163^{\circ}$	27.47 -0	0.32 4.92	0.31	0.02	0.18	0.14	-0.01	0.24	
$\iota = 90^{\circ}$	20.28 6	5.87 3.44	0.28	0.05	0.12	-0.66	0.78	0.28	
$\iota = 90^\circ, \psi = 120^\circ$	29.06 -1	.92 6.28	0.33	0.01	0.14	0.19	-0.06	0.33	
SXS:BBH:0522	$\mathcal{M}=30.79~M_{\odot}$		q = 0.57			$\chi_{\rm eff} = -0.65$			
$\iota = 163^{\circ}$	32.63 -1	.84 5.21	0.79	-0.22	0.42	-0.56	-0.09	0.30	
$\iota = 90^{\circ}$	30.26 0	9.46	0.46	0.11	0.58	-0.55	-0.11	0.46	
$\iota = 90^\circ, \psi = 120^\circ$	31.06 -0	0.27 5.98	0.67	-0.10	0.49	-0.63	-0.03	0.35	

Abbott et al (1611.0753)

Reconstructions on this slide all done without higher modes

Long, low-mass signals can be very degenerate

• "Exactly" measurable

Weak limits without precession

- Adding parameters (spin) degrades
 measurement accuracy
- Fisher matrix

$$\Gamma_{ab} = 2 \int_{-\infty}^{\infty} \frac{\partial_a h^* \partial_b h}{S_h} df$$

 η

Precession breaks degeneracies 1: Single spin

12d MCMC vs 7d Fisher ROS et al 2014 (PRD 89 102005)

Brown et al 2012

Sample precessing geometry: BH-NS

Long signals: Measuring conserved constants

Kesden/Berti talks

• Example: Both precessing spins measurable with PE

$$\mathbf{J}^2 = \mathbf{L}^2 + (\mathbf{S}_1 + \mathbf{S}_2)^2 + LS_1 \cos \theta_1 + LS_2 \cos \theta_2$$

Priors, again

Timescales as observables?

Final remarks

- What is the imprint of spin on gravitational waves
 - Strong modulations through merger
 - Several effects encode effects of spin strongly, **not** all included in models
 - Importance in short term depends on what nature provides
- Parameter estimation: things to keep in mind
 - Prior matters: mass range & spin magnitude choices can hide spin effects
 - Coordinates matter: use something meaningful and conserved
 - PE methods ~ mature...progress needed in physics / systematics
 - NR available directly at very high mass ... precessing hybrids on the way

Final remarks

- High mass
 - Information content limited by duration (=low frequency sensitivity, mass)
 - A few precession cycles could help immensely
 - Strong-field physics matters (e.g., higher-order modes)
 - Models ~ adequate at very low SNR and for "typical" orientations
 - Parameter inferences improved by direct comparison to NR, or to NR surrogates

- Low mass
 - Long signals immensely informative, but have degeneracy (face on)
 - With precession, can measure both spins
 - Little SNR at merger, so details less important; end time/frequency most critical
 - Higher modes less critical. Systematics important. Prior matters

Can you tell if more information is available ?

- What if you had a better model? Could you do better?
- Check: (Synthetic, known NR data): Is likelihood with full model better than aligned?

Interpolation

Finite duration & Hybrids

Original RIT GW150914-like SXS event-like

Finite duration & Hybrids

• Familiar, well-used techniques for aligned (& precessing) spin

Varma and Ajith,1612.05608

Babak, Taracchini, Buonanno 1607.05661 [comparison paper, not a hybrid paper..same ideas]

Simple approximate (intrinsic) Fisher matrix

 $\rho_{2ms}^2 \equiv |_{-2} Y_{2m}(\theta_{JN}) d_{m,2s}^2(\beta)|^2 \int_0^\infty \frac{df}{S_h(f)} \frac{4(\pi \mathcal{M}_c{}^2)^2}{3d_L^2} (\pi \mathcal{M}_c f)^{-7/3}$

- Amplitude
- Angular dependence
- Phase

$$\hat{\Gamma}_{ab}^{(ms)} = \frac{\int_{0}^{\infty} \frac{df}{S_{h}(f)} (\pi \mathcal{M}_{c}f)^{-7/3} \partial_{a} (\Psi_{2} - 2\zeta - ms\alpha) \partial_{b} (\Psi_{2} - 2\zeta - ms\alpha)}{\int_{0}^{\infty} \frac{df}{S_{h}(f)} (\pi \mathcal{M}_{c}f)^{-7/3}}$$
Good:

Easy to calculate
Similar to nonprecessing
(weighted average)
Intuition about separating
parameters
Bad"
Ansatz / approximation
At best, retains all degeneracies of full problem (phases, ...)

ROS et al 2014 (PRD 89 064048)

Bonus slide group: Review of parameter estimation

Evidence for signal

- Prior knowledge $p(\lambda|H_1)$
- Signal model
- Noise model

- about distribution of λ
- $h(\lambda)$ $p(\{d\}|H_0)$
- $p(\{d\}|\vec{\lambda}, H_1) = p(\{d h(\vec{\lambda})\}|H_0)$
- Algorithm for integral/exploration in many dimensions
- Noise model: Gaussian

$$\mathcal{L} \equiv p(\{d\} | \vec{\lambda}, H_1) / p(\{d\} | H_0)$$
$$= \frac{e^{-\langle h(\lambda) - d | h(\lambda) - d \rangle / 2}}{e^{-\langle d | d \rangle / 2}}$$

Measuring gravitational waves

Bonus slide group 1: Impact of higher modes

Higher modes have an impact (relative to mod-GR)

More important at high (observed) mass

Graff et al 2015 q=4, SNR=12, zero spinn

Omission introduces orientation-dependent error

Varma and Ajith,1612.05608

Literature review I: Varma et al

- Aligned-spin hybrid match-based calculation, to estimate PE biases
- Result: Higher modes matter
- MLE estimator bias with just 22 is modest [offset >= statistical error]
 - Figures illustrate it is significant, & MLE is not posterior

Literature review 2: JCB

Orientation-dependent biases

Literature review 3: LVC NR systematics paper

- NR injection study, but recovery with existing models
 - Orientation-dependent biases using quadrupole-only templates
 - What would the posterior be, with a better model?

Literature review 3: LVC NR systematics paper

- NR injection study, but recovery with existing models
 - Orientation-dependent biases using quadrupole-only templates
 - What would the posterior be, with a better model?

Literature review 4: Graff et al / ROS, JB, Field

- Zero-spin PE calculations with higher modes (EOB; NR surrogate)
- Higher modes matter. NR surrogate differs from EOB

Polarization (versus time)

- Left- and right-handed radiation easy to distinguish
 - Constrains opening angle of precession
 - Sets lower bound on (transverse) spin
 - Often: separation of timescales

Polarization for alignment and precession

- Polarization easy to measure
 - "Only see what we see" = at 100 Hz !

- Measure spin-orbit misalignment
 - via simple geometry + polarization
 - Traces strength whatever misaligns them
 - SN kicks
 - Stellar dynamics [binary collisions]
 - Measure BH spin
 - Insight into SN, massive star physics

