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Figurative representation of a black hole in action. All details of the infalling matter
are washed out. The final configuration is believed to be uniquely determined by
mass, electric charge, and angular momentum. Figure 1
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The “no-hair” idea

Motivated by uniqueness theorems
e.g: Israel 1967, 1968; Carter 1970; Hawking 1972; Robinson 1975, 1977; and many others
Overview: “Four decades of black hole uniqueness theorems” D. Robinson (2004, 2009) 

Original idea: 
collapse leads to equilibrium black holes uniquely determined by M,J,Q - 

asymptotically measured quantities subject to a Gauss law 
and no other independent characteristics (hair)

- 6

ANGULAR MOMENTUM (<ip/mf.)

Closest stable circular orbits for the Schwarzschild and Kerr black holes. For Newtonian gravity
there are stable orbits of all radii down to zero. The parabola gives the radius of each orbit as a
function of angular momentum. For the curved geometries, there are both a minimum (black) and
a maximum (color) in the effective potential for each value of the angular momentum down to a
critical value below which there is only a point of inflection—hence no stable orbits. A is the mini-
mum Schwarzschild stable orbit; B and C are the minimum stable Kerr orbits for counterrotating
and corotating particles respectively. These results have great significance for the amount of gravi-
tational radiation a particle can emit before falling into a black hole. Figure 7

black hole, given by the Kerr geometry,
which is appropriate to a rotating sys-
tem.

The "standard solution" for a black
hole of given mass and angular momen-
tum has certain well defined quadmpole
and higher moments. One finds12'13

that any perturbation from the standard
Kerr solution decreases exponentially
with time. To the outside observer, all
details of the gravitational field get
washed out except mass and angular
momentum, provided that the original
perturbation was not too large.

In a similar way, all distributions of
charge near a black hole appear to a
distant observer to have spherical sym-
metry. The extreme gravitational field
near a black hole greatly distorts the
lines of force from the normal pattern.
Far from the black hole, the lines ap-
pear to diverge from a point much
closer to the center of the sphere than
the actual location of the charge. The
dipole moment goes to zero as the
charge approaches 2m. Nothing in the
final pattern reveals the true location
of the charge. We see in the black
hole simply mass plus charge, and no
other details. The law for the disap-
pearance of the dipole, p, as given by
R. Price, i s "

P
log t

This disappearance of the dipole
takes place according to the same kind
of law as the fadeout of perturba-
tions of the quadruoole and higher
moments of the mass distribution.

The collapse leads to a black hole
endowed with mass and charge and
angular momentum but, so far as we can
now judge, no other adjustable param-
eters: "a black hole has no hair."
Make one black hole out of matter;

another, of the same mass, angular
momentum and charge, out of anti-
matter. No one lias ever been able to
propose a workable way to tell which
is which. Nor is any way known to
distinguish either from a third black
hole, formed by collapse of a much
smaller amount of matter, and then
built up to the specified mass and
angular momentum by firing in enough
photons, or neutrinos, or gravitons.
And on an equal footing is a fourth
black hole, developed by collapse of a
cloud of radiation altogether free from
any "matter."

Electric charge is a distinguishable
quantity because it carries a long-range
force (conservation of flux; Gauss's
law). Baryon number and strangeness
carry no such long-range force. They
have no Gauss's law. It is true that
no attempt to observe a change in
baryon number has ever succeeded.
Nor has anyone ever been able to give
a convincing reason to expect a di-
rect and spontaneous violation of the
principle of conservation of baryon
number. In gravitational collapse, how-
ever, that principle is not directly vio-
lated; it is transcended. It is trans-
cended because in collapse one loses
the possibility of measuring baryon
number, and therefore this quantity can
not be well defined for a collapsed ob-
ject. Similarly, strangeness is no longer
conserved.

Angular momentum
The third property of a black hole is

angular momentum. When it is non-
zero, the geometry becomes more com-
plicated. One deals with the Kerr solu-
tion2 to the field equations instead of
the Schwarzschild solution. There are
two interesting surfaces associated with
the Kerr geometry, the "surface of in-

finite red shift" and inside it, the "event
horizon." An object at or within the
event horizon can send no photons to a
distant observer, independent of the
object's state of motion or the direction
of photon emission. For this reason,
the event horizon is also called the
"one-way membrane."

The Schwarzschild geometry repre-
sents the degenerate case of the Kerr
geometry, in which the surface of in-
finite red shift and the event horizon
coincide. In the general case, the two
surfaces are separated everywhere ex-
cept at the poles, as shown in figure 6.
The very interesting region between
these surfaces is called the "ergosphere."
A particle that comes within the ergo-
sphere can still, if properly powered,
escape again to infinity. However, its
life in this region has an unusual fea-
ture; there is no way for it to remain at
rest, rocket powered or not!

Energy can be extracted from the
ergosphere by a mechanism that may
occasionally have significance for a cos-
mic ray. Consider a particle that en-
ters the ergosphere and disintegrates,
one fragment falling into the hole and
the other escaping to infinity (see figure
6. R. Penrose3 has shown that the
process can be so arranged that the
emerging fragment has more energy at
infinity than the original particle.

The extra energy is effectively ex-
tracted from the rotational energy of
the black hole. If a particle can dip
through the ergosphere and escape with
some of the energy and angular mo-
mentum of the black hole, it is also true
that a particle that is captured can in-
crease the energy and angular mo-
mentum of the black hole. Capture is
possible when the particle passes by
sufficiently close to the black hole. The
critical impact is smaller for a capture
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Ruffini, Wheeler (1971)



Vacuum:
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D=4, asymptotically flat, regular (on and outside the event horizon) 
black hole (BH) solutions of Einstein’s gravity
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Electro-vacuum:

Kerr Kerr 1963

Uniqueness Israel 1967; Carter 1970; Hawking 1972

No (independent-multipolar) hair

Kerr-Newman Newman et al. 1965

Uniqueness Israel 1968; Robinson 1975, 1977

No (independent-multipolar) hair



Many no-scalar-hair theorems:
(only scalars, D=4, asymptotically flat)

May 1, 2015 0:21 WSPC/INSTRUCTION FILE reviewscalarhair

Asymptotically flat black holes with scalar hair: a review 29

Theory No-hair Known scalar hairy BHs with
Lagrangian density L theorem regular geometry on and outside H

(primary or secondary hair;
regularity)

Scalar-vacuum Chase22
1
4R − 1

2∇µΦ∇µΦ

Massive-scalar-vacuum Bekenstein11
1
4R− 1

2∇µΦ∇µΦ− 1
2µ

2Φ2

Massive-complex-scalar-vacuum Pena– Herdeiro–Radu136, 137
1
4R −∇µΦ∗∇µΦ− µ2Φ∗Φ –Sudarsky61 (primary, regular);

generalizations:159

Xanthopoulos– Bocharova–Bronnikov–Melnikov–
Conformal-scalar-vacuum –Zannias32 –Bekenstein (BBMB)16–18
1
4R− 1

2∇µΦ∇µΦ− 1
12RΦ2 Zannias33 (secondary, diverges at H);

generalizations:87

V -scalar-vacuum Heusler46, 47, 50 Many, with non-positive
1
4R− 1

2∇µΦ∇µΦ− V (Φ) Bekenstein26 definite potentials:71–75, 78–80

Sudarsky51 (typically secondary, regular)

P -scalar-vacuum Graham–
1
4R+ P (Φ, X) –Jha62

Einstein-Skyrme Droz–Heusler–Straumann126
1
4R− 1

2∇µΦa∇µΦa (primary but topological; regular);
−κ|∇[µΦ

a∇ν]Φ
b|2 generalizations:129, 131

Hawking27

Scalar-tensor theories Saa34, 35

ϕR̂ − ω(ϕ)
ϕ ∇̂µϕ∇̂µϕ− U(ϕ) Sotiriou–

–Faraoni31

Sotiriou-Zhou43

Horndeski/Galileon theories Hui– (secondary; regular)
Full L in eq. (41) –Nicolis45 Babichev–Charmousis88, 90

(secondary88 or primary,90

diverges at H+ or H−);
generalizations:91–93

Table 1: Summary of no-scalar-hair theorems and asymptotically flat scalar-hairy BHs.

possible mechanisms to construct regular asymptotically flat BHs with scalar hair.
This, in particular, means that physical properties may vary substantially.

Nevertheless some patterns emerge. One pattern that can be observed from this
overview is that scalar field theories that, when minimally coupled to gravity, allow

C.H., Radu, 2015
Sotiriou, 2015
Volkov, 2016

Reviews
hairy

solutions



Massive-complex-scalar-vacuum:

There are BH solutions:
- within GR (not alternative theories of gravity);

- with matter obeying all energy conditions;
- which can yield distinct phenomenology;

which are:
- asymptotically flat

- regular on and outside the horizon
- continuously connecting to the Kerr solution

- continuously connected to relativistic Bose-Einstein condensates (boson stars)
- with an independent scalar charge (primary hair)

Kerr Black Holes with scalar hair 
C.H. and Radu, PRL 112 (2014) 221101 
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Goal: Present a simple model of hairy black holes 



Continuum of hairy black hole solutions, interpolating between...

Kerr Rotating 
Boson Stars 

This model is an example of a more general construction. Generalizations include:

- other spin fields (Proca stars, Brito + 2016; ; C.H., Radu, Runarsson 2016), self-interactions,...
- scalarized black holes in scalar tensor theories (e.g. Kleihaus, Kunz, Yazadjiev 2015)
- higher dimensional models and different asymptotics

Plan:

1) What is the physics rationale for these solutions to exist ?
2) How could one distinguish them phenomenologically from Kerr ?

3) Open issues (dynamics, nature of the scalar field, ...)

Vanishing horizon 

Vanishing scalar field 



Linear analysis: Klein-Gordon equation on Kerr

�Φ = µ2Φ Φ = e−iwteimϕS�m(θ)R�m(r)

Generically one obtains quasi-bound states:

ω = ωR + iωI
critical frequency

wc = mΩH

Radial Teukolsky equation: Teukolsky (1972); Brill et al. (1972)

∆ ≡ r2 − 2Mr + a2

K ≡ (r2 + a2)w − am

d

dr

�
∆
dR�m

dr

�
=

�
a2w2 − 2maw + µ2r2 +A�m − K2

∆

�
R�m

1a) How can the scalar field be in equilibrium with a horizon? 
Superradiance (review) Brito, Cardoso, Pani 2015.



ω = ωR + iωI
critical frequency

wc = mΩH

wI < 0 if wR > wc decay

wI > 0 if wR < wc
grow

Press and Teukolsky 
(1972)

wI = 0 if w = wc
true bound 
states: clouds

Degollado et. al. 2012

Degollado and C.H. 2014

Degollado, CH, 
unpublished



Klein-Gordon (linear) stationary clouds around Kerr:
Damour, Deruelle and Ruffini (1976);  Zouros and Eardley (1979); Detweiler (1980); Hod 2012; 

(...); Yakov Shilapentokh-Rothman (2014)

M
µ

H/µ
 0

 1

 2

 3

 0  0.25  0.5  0.75  1

m=1m=2
m=3

m=4

m=10

Clouds for Kerr: discrete set labelled by (n,l,m) subject to one 
                             quantization condition which yields BH mass,spin. Hod (2012)

Stationary clouds are synchronized “atomic orbitals” around a  Kerr BH



Scalar Boson stars
D. J. Kaup, Phys. Rev. 172 (1968) 1331; R. Ruffini and S. Bonazzola,  Phys. Rev. 187 (1969) 1767; 

Reviews: F. E. Schunck and E. W. Mielke, Class. Quant. Grav. 20 (2003) R301 [arXiv:0801.0307 [astro-ph]]
S. L. Liebling and C. Palenzuela, Living Rev. Rel. 15 (2012) 6 [arXiv:1202.5809 [gr-qc]]
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Rotating 
boson stars:
S.Yoshida and Y. Eriguchi, 
Phys. Rev. D 56 (1997) 762; 
F. E. Schunck and E. W. Mielke, 
Phys. Lett. A 249 (1998) 389

ds2 = −e2F0(r,θ)dt2 + e2F1(r,θ)
�
dr2 + r2dθ2

�
+ e2F2(r,θ)r2 sin2 θ (dϕ−W (r, θ)dt)2

Φ = φ(r, θ)ei(mϕ−wt)

Three input parameters: (w,m,n)

1b) How do you construct them?



Boson stars phase space (nodeless):
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Surfaces of constant scalar energy density



Rotating Boson
Star

Time evolution of 
the real part of 
the scalar field

Simulation by M. Zilhão
(in progress)



Using boson stars technology to compute
black holes surrounded by “heavy stationary clouds”



Einstein Klein-Gordon: non-linear setup

Ansatz:

ds2 = −e2F0(r,θ)Ndt2 + e2F1(r,θ)

�
dr2

N
+ r2dθ2

�
+ e2F2(r,θ)r2 sin2 θ (dϕ−W (r, θ)dt)2

Φ = φ(r, θ)ei(mϕ−wt)

N = 1− rH
r

Asymptotically:

gtt = −1 +
2M

r
+ . . . , gϕt = −2J

r
sin2 θ + . . .

φ = f(θ)
e−

√
µ2−w2r

r
+ . . .

take: w < µ

Four input parameters: m,w, rH , n

Near the horizon:

x ≡
�

r2 − r2
H

W = ΩH +O(x2)

φ = φ0(θ) +O(x2)

take: ΩH =
w

m

Fi = F (0)
i (θ) + x2F (2)

i (θ) +O(x4)



Kerr black holes with scalar hair 

Existence proof
Chodosh and Shlapentokh-Rothman, arXiv: 1510.08025



Domain of existence:
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5% of M;  
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in scalar field
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in scalar field
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Domain of existence:
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 0.8
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 0.6  0.7  0.8  0.9  1

M
µ

w/(mµ)

Boson stars

extremal HBHs

m=1

Kerr black holes

KBHsSH
I

III

IV
V

Scalar w/µ rH/µ µMADM µ2JADM µMH µ2JH µM (Ψ) µ2J (Ψ)

I - Scalar boson star 0.85 0 1.25 1.30 0 0 1.25 1.30

II - Vacuum Kerr 1.1112 0.0663 0.415 0.172 0.415 0.172 0 0

III - KBHSH 0.975 0.2 0.415 0.172 0.393 0.150 0.022 0.022

IV - KBHSH 0.82 0.1 0.933 0.739 0.234 0.114 0.699 0.625

V - KBHSH 0.68 0.04 0.975 0.850 0.018 0.002 0.957 0.848
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Kerr black holes
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Proca stars
I
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M
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Kerr black holes

KBHsPH

Proca stars
I

III

IV

V
Vector w/µ rH/µ µMADM µ2JADM µMH µ2JH µM (P) µ2J (P)

I - Proca star 0.9 0 1.456 1.45 0 0 1.456 1.45

II - Vacuum Kerr 1.0432 0.1945 0.365 0.128 0.365 0.128 0 0

III - KBHPH 0.9775 0.2475 0.365 0.128 0.354 0.117 0.011 0.011

IV - KBHPH 0.863 0.09 0.915 0.732 0.164 0.070 0.751 0.662

V - KBHPH 0.79 0.06 1.173 1.079 0.035 0.006 1.138 1.073

Data avaliable online at:
http://gravitation.web.ua.pt

http://gravitation.web.ua.pt
http://gravitation.web.ua.pt


2) Phenomenology:

(the little exotic and the very exotic)
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In this region, hairy black holes are entropically favoured

There is a region of non uniqueness
(different solutions for same M,J); but degeneracy raised with q



Can we distinguish by a local measurement degenerate configurations?



Black hole shadows



Shadow of a Kerr black hole:
(equatorial plane observation)

Cunha, M.Sc. Thesis



Technique: backwards ray-tracing 

camera

Cunha, M.Sc. Thesis



We have performed ray tracing to compute
lensing and shadows.

The full celestial
sphere

The “camera” 
opening angle

Following A. Bohn et al. arXiv:1410.7775

Cunha et al. PRL115(2015)211102



Config III - the “not so hairy” BH
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Kerr BH with scalar hair
M=0.393; J=0.15 (horizon)

M=0.022; J=0.022 (scalar field) Vacuum Kerr BH 
M=0.415; J=0.172

Config III - the “not so hairy” BH
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Config IV - the “very hairy” BH



Kerr BH with scalar hair
M=0.234; J=0.114 (horizon)

M=0.699; J=0.625 (scalar field)

Vacuum Kerr BH 
M=0.933; J=0.739

Config IV - the “very hairy” BH
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Qualitatively new feature: 
multiple shadows of a single black hole

Config V - the “extremely hairy” BH



µ

µ

µ

µ

Figure 6: Configuration II images. Same as in Fig. 5. Left: Image of an accretion torus sur-

rounding the KBHSH of configuration II. Right: Same image for the comparable Kerr case.

Figure 7: Illustration of the various interesting regions in the image: the lensing ring is the outermost

ring, it is the outer boundary of the hyper-lensed region. The inner ring is the photon ring. It is both

the inner boundary of the hyper-lensed region and the outer boundary of the shadow.

12

“Academic
Setup”

Differences remain in an astrophysically more realistic setup
Vincent et al., PRD 94 (2016) 084045

Similar story for other observables such as the: 
- iron Kα-line in the reflexion spectrum Ni et al., JCAP1610(2016)003

- QPOs Franchini, Pani, Maselli, Gualtieri, C.H., Radu, Ferrari arXiv:1612.00038



The iron line method:

8.1 Reflection process 159
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Fig. 8.2 Disk reflection. The accretion disk around a black hole is illuminated by the radiation
from a hot corona. The spectrum of the incident radiation is described by a power-law E−! , where
! is the photon index. The reflection spectrum can be obtained from radiative transfer calculations
and presents some emission lines. See the text for more details. Adapted from [33].

de-excitation. Since the disk is optically thick, only the properties of its “skin” de-
termine the reflection spectrum.
The reflection spectrum can be obtained by solving numerically radiative transfer

equations describing the interaction of the X-ray photons with the gas on the surface
of the accretion disk. The resulting reflection spectrum is characterized by emission
lines in the 1-8 keV range and the so-called Compton hump around 20 keV (see top
right panel in Fig. 8.2).
In the case of neutral iron, photoelectric absorption of an X-ray photon can eject

one of the two electrons in the K-shell (principal quantum number n = 1). The ab-
sorption threshold is 7.1 keV. An L-shell electron (n= 2) moves to the K-shell and
releases 6.4 keV of energy: 34% of the times this energy is released with the emis-
sion of a photon (fluorescent line emission) and 66% of the times this energy is trans-

Propagation in strong gravity makes
the locally Dirac delta-like line...

... broad and skew
at the observation point...

Guainazzi, Ap&SS 320 (2009) 129



For our three solutions:
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Kerr black holes
3

4

5ISCO radius, i.e. rin = rISCO, and the outer edge at rout = rISCO + 256. The lines indicated
by the numbers 1, 2, 3, 4, and 5 corresponds to the iron lines produced from annuli of the
accretion disk at increasing radii. Their inner and outer radii are as follows:

Annulus 1: rin = rISCO rout = rISCO + 1
Annulus 2: rin = rISCO + 1 rout = rISCO + 2
Annulus 3: rin = rISCO + 2 rout = rISCO + 4
Annulus 4: rin = rISCO + 4 rout = rISCO + 10
Annulus 5: rin = rISCO + 10 rout = rISCO + 25

(3.3)

Here and in the next section we employ a “small” accretion disk, so our constraints have to
be taken with caution (more as a proof of principle indeed).

The iron line of the KBHSH III is closer to that of a Kerr BH without scalar hair, see
Fig. 3. The contribution from the inner annulus (annulus 1) is relatively moderate: while the
emission of radiation at small radii is higher (the local spectrum scales as 1/r3), a significant
fraction of the photons is swallowed by the central BH. The peak of the photon flux at
high energies results from photons emitted at larger radii, where the gravitational redshift is
milder.

The iron line of the KBHSH V is substantially different, see Fig. 5. The contribution
from the inner annulus is very important: the local spectrum still scales as 1/r3, but now
the photons emitted at small radii can more easily escape to infinity. Physically speaking,
this is because the horizon is smaller, as most of the mass is stored in the scalar hair rather
than the horizon, and thus the absorption cross section for light is also smaller. The two
peaks are produced by the Doppler redshift and blueshift, due to the rotation of the gas.
The presence of two peaks at low energy in the KBHSH V is a feature already found in a
large class of exotic compact stars without horizon [71] and in different types of traversable
wormholes [60, 72]. It is typical of objects without horizon, where only a small fraction
of photons emitted near the inner edge of the disk is captured by the central object. The
absence of the peak at high energies is because we are plotting a normalized iron line profile,
so the number of high energy photons is simply much lower than that of low energy photons.
The iron line of the KBHSH IV in Fig. 4 is something between the two previous cases.

4 Simulations with Suzaku and eXTP

In the previous section, we have obtained the iron line profiles expected in the three space-
times named, respectively, configuration III, IV, and V. It is clear that, at least in some cases,
the iron line profile can be very different from that expected in the reflection spectrum of
a Kerr BH. In this section, we want to be more quantitative and check whether present or
future observational facilities can constrain the hairiness of the BHs in this model.

Our strategy is as follows. We simulate the X-ray spectrum of a typical AGN and of
a typical binary. For the sake of simplicity, we model the spectrum of these sources with a
power law with photon index Γ = 2 (representing the spectrum of a hot corona) and a broad

6
As in previous works on KBHsSH, see e.g. Section 3.3 in Ref. [40], distances are expressed in units of the

Compton wave length of the scalar field (rather than Schwarzschild radii). Thus, the radial coordinate is in

units of 1/µ = 1, where µ is the scalar field mass (as usual we use GN = c = � = 1). Moreover, the ADM

masses of the three configurations are reported at the end of Section 2, as well as the horizon mass that can

be much lower when the most of the ADM mass is in the scale field cloud. For example, for the case III we

have r = rISCO +M/0.415.
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Config 3
5% of M;  13% of J in scalar field
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Figure 2. Iron line profiles of an extremal Kerr BH and of the three KBHsSH discussed in the present
paper. The “wiggles” appearing in the shape of these lines, in particular for the configurations III
and IV, are due to resolution effects of the numerical metric.
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Figure 3. Iron line profile from the whole disk (red solid line) and contributions to the total iron line
profile from different annuli (lines 1, 2, 3, 4, and 5) for the configuration III KBHSH. The annulus 1
has the inner edge at the ISCO and the outer edge at the radius r = rISCO + 1. The annulus 2 has
the inner edge at the same radius as the outer edge of the annulus 1 and the outer edge at the radius
r = rISCO+2. The annulus 3 has the inner edge at the same radius as the outer edge of the annulus 2
and the outer edge at the radius r = rISCO + 4. The annulus 4 has the inner edge at the same radius
as the outer edge of the annulus 3 and the outer edge at the radius r = rISCO + 10. The annulus 5
has the inner edge at the same radius as the outer edge of the annulus 4 and the outer edge at the
radius r = rISCO + 25, which corresponds to the outer edge of the disk.
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Config 4
75% of M;  85% of J in scalar field
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Figure 4. As in Fig. 3 for the configuration IV KBHSH.
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Figure 5. As in Fig. 3 for the configuration V KBHSH.

iron line (the reflection spectrum). Γ = 2 is quite a typical value of the photon index for

the continuum originated by inverse Compton scattering of thermal photons from the disk

off hot electrons in the corona, see, e.g., Ref. [73]. The iron lines used in these simulations

are the three iron lines presented in the previous section and obtained in the three KBHsSH

metrics assuming a viewing angle i = 45
◦
and an emissivity index α = 3.

In the case of the AGN, we assume that its energy flux in the 0.7-10 keV range is about

2 · 10−10
erg/s/cm

2
. In the case of the X-ray binary, we adopt the value 4 · 10−9

erg/s/cm
2
.

In both cases, we assume that the iron line has an equivalent width of about 200 eV. These

are quite typical parameters for sources suitable to reflection measurements.
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Config 5
98% of M;  98% of J in scalar field
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Figure 4. As in Fig. 3 for the configuration IV KBHSH.
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Figure 5. As in Fig. 3 for the configuration V KBHSH.

iron line (the reflection spectrum). Γ = 2 is quite a typical value of the photon index for

the continuum originated by inverse Compton scattering of thermal photons from the disk

off hot electrons in the corona, see, e.g., Ref. [73]. The iron lines used in these simulations

are the three iron lines presented in the previous section and obtained in the three KBHsSH

metrics assuming a viewing angle i = 45
◦
and an emissivity index α = 3.

In the case of the AGN, we assume that its energy flux in the 0.7-10 keV range is about

2 · 10−10
erg/s/cm

2
. In the case of the X-ray binary, we adopt the value 4 · 10−9

erg/s/cm
2
.

In both cases, we assume that the iron line has an equivalent width of about 200 eV. These

are quite typical parameters for sources suitable to reflection measurements.
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Iron Kα-line:



Astrophys Space Sci (2009) 320: 129–134 131

Fig. 2 Examples of
relativistically broadened iron
Kα profiles in a small sample of
Galactic Black Holes (top
panel; Miller 2007) and in the
Seyfert 1 MCG-6-30-15 (bottom
panel; Miniutti et al. 2007). In
all panels the ratio between the
data and the best-fit continuum
is shown

yields a = 0.989±0.009
0.002 (Brenneman and Reynolds 2006).

Guainazzi et al. (2006) claim that loose constraints on the
value of the black hole spin can be obtained on 5 further
bright Seyfert 1s observed with XMM-Newton. The av-
erage spin in the sample is 〈a〉 = 0.6, with a dispersion
σa = 0.3.

Early XMM-Newton observations of MCG-6-30-15
yielded also the suggestion that the region of the accretion
disk responsible for the bulk of the relativistic iron line emis-
sion is very small and very close to the supermassive black
hole. This requires a radial dependency of the emissivity
which is too steep when compared to the expectations of
physically sensitive models of accretion disks. This has led
to the suggestion that an intrinsically relativistic phenom-
enon could enhance the contribution of the innermost region

of the accretion disk to the line emission. Two hypothesis
have been proposed:

• extraction of energy from a rotating black hole via a
purely electromagnetic mechanism (the so-called “Bland-
ford-Znajek effect”; Blandford and Znajek 1977)

• bending of light rays emitted in the strong gravitational
potential of a supermassive black hole (see later).

4 Accretion flow geometry

From what said in Sect. 3, it follows that prominent red
wings may allow us to constrain the location of the iron
line region. Such measurements yield values between 1.24
to 3 gravitational radii in GBH (Miller 2007, and references

4 galactic BHs

1 AGN
Seyfert 1 MCG-6-30-15

Guainazzi, Ap&SS 320 (2009) 129
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Figure 2. Iron line profiles of an extremal Kerr BH and of the three KBHsSH discussed in the present
paper. The “wiggles” appearing in the shape of these lines, in particular for the configurations III
and IV, are due to resolution effects of the numerical metric.
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Figure 3. Iron line profile from the whole disk (red solid line) and contributions to the total iron line
profile from different annuli (lines 1, 2, 3, 4, and 5) for the configuration III KBHSH. The annulus 1
has the inner edge at the ISCO and the outer edge at the radius r = rISCO + 1. The annulus 2 has
the inner edge at the same radius as the outer edge of the annulus 1 and the outer edge at the radius
r = rISCO+2. The annulus 3 has the inner edge at the same radius as the outer edge of the annulus 2
and the outer edge at the radius r = rISCO + 4. The annulus 4 has the inner edge at the same radius
as the outer edge of the annulus 3 and the outer edge at the radius r = rISCO + 10. The annulus 5
has the inner edge at the same radius as the outer edge of the annulus 4 and the outer edge at the
radius r = rISCO + 25, which corresponds to the outer edge of the disk.
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3) Open issues/opportunities



What is the scalar field?
(the dark matter connection)

Ultra-light bosonic fields have been suggested as dark matter candidates (“fuzzy dark matter”);
they gravitationally clump into 

boson stars // Bose-Einstein condensates 
see e.g. recent discussion Hui, Ostriker, Tremaine, Witten, arXiv:1610.08297

First observed by Colpi, Shapiro, Wasserman PRL57(1986)2485, 
see e.g. for a discussion C. H., Radu, Rúnarsson PRD92(2015)084059

Introducing a quartic
self-coupling Mmax

λ�1� 0.208
√
λ
M3

Pl

µ2
= 0.208

√
λM⊙

�
GeV

µ

�2

Massive, complex,
scalar field, minimally

coupled to gravity
(no self-interactions)

Mmax � 1.315
M2

Pl

µ
= 1.315× 10−19M⊙

�
GeV

µ

�



In some HEP models it is natural to have bosonic particles with very low mass
(QCD axion, Axiverse Arvanitaki, Dimopoulos, Dubovsky, Kaloper and March-Russell PRD81(2010)123530)

These could have astrophysical impact
and convert black holes into (new) particle detectors.

Arvanitaki and Dubovsky, 1004.3558

What is the scalar field?
(the high energy physics connection)



In some HEP models it is natural to have bosonic particles with very low mass
(QCD axion, Axiverse Arvanitaki, Dimopoulos, Dubovsky, Kaloper and March-Russell PRD81(2010)123530)

These could have astrophysical impact
and convert black holes into (new) particle detectors.

Arvanitaki and Dubovsky, 1004.3558

What is the scalar field?
(the high energy physics connection)

If

the existence of a scalar field efficiently triggers the 
superradiant instability 

of a “bald” BH and can grow hair around the BH 
that saturates due to non-linear phenomena and forms a “hairy” BH

Mµ ∼ 1



Question:

In these models 
vacuum Kerr black holes are unstable 

(against superradiance).

What is the endpoint of the instability?

In a toy model it is a hairy black hole of this sort:
Sanchis-Gual et al. , PRL 116 (2016)141101

Simulations (under approximations) suggest the hairy BHs formed are never very hairy
Brito, Cardoso, Pani, CQG 32 (2015) 134001



- Dynamics: stability, formation or quasi-formation are open issues for both 
rotating boson stars or hairy black holes;

- This relates to gravitational wave signals: 
ringdown and possibility of echos ?  binaries ?

- Relation to dark matter (halos) ?

- Natural embeddings in HEP models ?

- More detailed astrophysical constraints (Shadows, Kα-line, QPOs) ?

- Approximate parameterizations of solutions ?

- Uniqueness theorems ?

- Differences/similarities with the real bosonic field case ?

Other issues:



Thank you for Your
Attention!

Gravitational lensing of the Aveiro Campus by a Kerr black hole with scalar hairKerr Comparable hairy Image:
P. Cunha


