Spins remember
 spin signatures of astrophysical
 black hole formation mechanisms

Davide Gerosa

NASA Einstein Fellow

California Institute of Technology

February 28th, 2017
StronG BaD
Oxford MS
dgerosa@caltech.edu

Outline

1. PN: spins and symmetries
2. Spins remember precise formation steps!
3. Spins remember mergers!

Spin in the waveform

Aligned components of the spins

- Different merger frequency (analog of the ISCO)
- Aligned spins take longer to merge

Orbital-plane components of the spins

- spin precession; orbital plane precession
- Peculiar waveform modulations

PN spin geometry

Evolutionary equations

Spin precession $\dot{\mathbf{S}}_{i}=\boldsymbol{\Omega}_{i} \times \mathbf{S}_{i}$
Momentum conservation $\hat{\hat{\mathbf{L}}}=-\left(\hat{\mathbf{S}_{\mathbf{1}}}+\hat{\mathbf{S}_{\mathbf{2}}}\right) / \mathbf{L}$

Constraints

- Mass ratio $\quad q=m_{2} / m_{1} \leq 1$
- Spin magnitudes χ_{1}, χ_{2}
- Total mass $\quad M=m_{1}+m_{2}=1$
- Take a smart frame

Radiation reaction $\dot{r}=$ PN approximant
\longrightarrow
... 3 evolving variables $\theta_{1}, \theta_{2}, \Delta \Phi$ (more immediate)
...or equivalently $\xi\left(\chi_{\text {eff }}\right), J, S$
(more physical! Timescale separation)
. ...often condensed in to 2 variables for waveform modeling $\chi_{\text {eff }}, \chi_{\mathrm{p}}$ (not immediate, and half-way physical only...)

The secret is $\Delta \phi$

Librating $\Delta \Phi \sim 0$
Circulating
Librating $\Delta \Phi \sim \pi$

Morphologies

Transitions

(A)symmetric spin orientations

Isotropic distributions stay isotropic

$$
\begin{array}{r}
q=9 / 11 \\
\chi_{1}=\chi_{2}=1
\end{array}
$$

(A)symmetric spin orientations

Attractors! Critical dependence on the initial conditions

$$
\begin{array}{r}
q=9 / 11 \\
\chi_{1}=\chi_{2}=1
\end{array}
$$

Field binaries, spin tracking

1. Massive binary stars

2. 1st Supernova explosion

3. 2nd Supernova explosion
4. Mass transfer

5. Tides, common envelope

6. Inspiral, merger, LIGO

A diagnostic of BH binary formation

Mass transfer: efficient? or not?

No Tides

- Tides introduce the necessary asymmetry to trigger spin orbit resonances: not tides, no fun
- Mass transfer decides who is the big guy

A diagnostic of BH binary formation

Two main knobs:

- Tides: when the system is formed of a BH and a star, can tidal interactions align the star's spin?
- Mass transfer: is mass transfer efficient enough to reverse the mass ratio?

Spin dynamics remembers precise formation steps!

Caveat: a fiducial binary

- Progenitor stars ~30 M_{\odot}
- BH binaries total mass $13.5 M_{\odot}$
- Mass ratio $\mathbf{q = 0 . 8}$
- Maximally spinning BHs

Can we infer previous mergers happened? Preliminary

Bayesian model comparison is under way... Dg Berti in prep

Spins, 1st and 2ng generations

- At merger, the binary's orbital angular momentum has to be converted into spin
- More or less whatever you do wher you merge to BHs, you get ~0.7!

Spins remember previous mergers!

More mergers means...

Mergers means:

- more massive
- equal mass
- closer
- higher spins

Analysis:

- filter SNR
- measurement errors, spread over multiple bins
- Bayesian model comparison

Try this at home

precession: new open-source python module

Distributed on GitHub, uploaded on the Python package index (pip)

Features

1. Precessional dynamics
2. Orbit-averaged inspirals
3. Precession-averaged inspirals
4. Superkick predictions
5. API documentation
6. Tests and tutorial
... check me out!
davidegerosa.com/precession

l'm easy...

pip install precession >>> import precession

Outline

1. PN: spins and symmetries
2. Spins remember precise formation steps!
3. Spins remember mergers!

Interested? Here to know more

- Astrophysical spin modeling

Gerosa+ 2013, arXiv:1302.4442
-PN dynamics: spin morphologies, transitions, etc

Gerosa+ 2015, arXiv:1506.03492

- First and second generation black holes Gerosa \& Berti 2017, in preparation
-PRECESSION code
Gerosa \& Kesden 2015, arXiv:1605.01067

