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1. PN: spins and symmetries 
2. Spins remember precise formation steps! 
3. Spins remember mergers!

Outline



Spin in the waveform
M. Favata, soundofspacetime.org 

P. Schmidt 

• Different merger frequency 
(analog of the ISCO) 

• Aligned spins take longer 
to merge

• spin precession; orbital plane precession 

• Peculiar waveform modulations

Aligned components 
of the spins

Orbital-plane components 
of the spins



PN spin geometry

Post-Newtonian spin-orbit resonances
Evolutionary equations

• Spin precession

• Angular momentum conservation

• Radiation reaction

• 1 scale : M = m1 +m2 (total mass)

• 3 parameters: q = m2/m1 (mass ratio),
�1, �2 (spin magnitudes)

• 3 variables: ✓1, ✓2, �� (angles)

Spin-orbit couplings

• Three vector in a single resonant plane

S2 · (L⇥ S1) = 0
d

dt
S2 · (L⇥ S1) = 0

• Two resonances

✓1 < ✓2 : �� ! 0 and ✓12 ! 0

✓1 > ✓2 : �� ! ±⇡

x

y

L̂

z

S1

��

✓1

S2

✓2

✓12

•

PN: Kidder 1995; Arun et al. 2009 and many others
Resonances: Schnittman 2004; Kesden et al. 2010a,b; Berti et al. 2012

Evolutionary equations
Ṡi = ⌦i ⇥ Si

˙̂L = �(Ŝ1 + Ŝ2)/L

- Spin precession 
- Momentum conservation 
- Radiation reaction ṙ = PNapproximant

…3 evolving variables ✓1, ✓2, ��

Constraints
- Mass ratio  
- Spin magnitudes 
- Total mass 
- Take a smart frame

�1,�2

M = m1 +m2 = 1

q = m2/m1  1

…or equivalently ⇠ (�e↵), J, S

(more immediate)

(more physical! Timescale separation)

…often condensed in to 2 variables for 
waveform modeling �e↵ , �p

(not immediate, and half-way physical only…)



The secret is Δφ
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FIG. 4. E↵ective potentials ⇠
±

(S) of Eq. (14) for values of L, J , S
1

, and S

2

leading to three di↵erent sets of spin morphologies.
The loop formed by the two curves encloses all allowed configurations for the constants listed in the legends. As in the left panel
of Fig. 2, empty squares mark the extrema of S (S

min

and S

max

), empty triangles mark the extrema of ⇠ (⇠
min

and ⇠

max

), and
conservation of ⇠ restricts the BBH spins to precess along horizontal lines between the turning points S

±

. BBH spin precession
can be classified into three di↵erent morphologies by the behavior of �� during a precession cycle: oscillation about 0 (blue
region), circulation from �⇡ to ⇡ (green region), or oscillation about ⇡ (red region). The dashed boundaries between these
morphologies occur at values of ⇠ where the dotted curves cos ✓i = ±1 intersect the e↵ective-potential loop, as shown by the
empty circles. All three morphologies are present if one intersection occurs on ⇠

+

(S) and a second occurs on ⇠

�

(S) (left panel),
oscillation of �� about 0 is forbidden if two intersections occur on either ⇠

+

(S) or ⇠

�

(S) (middle panel), and only oscillations
about ⇡ are allowed if there are no such intersections (right panel).

FIG. 5. The (J, ⇠) parameter space for BBHs with di↵erent minimum allowed total angular momentum J

min

. BBH spin
morphology is shown with di↵erent colors, as indicated in the legend. The extrema ⇠

min

(J) and ⇠

max

(J) of the e↵ective
potentials constitute the edges of the allowed regions and are marked by solid blue (red) curves for �� = 0 (⇡). Dashed
lines mark the boundaries between the di↵erent morphologies. The parameters q, �

1

, �
2

and r are chosen as in Fig. 4, whose
panels can be thought of as vertical (constant J) “sections” of this figure (where we suppress the S dependence). The lowest
allowed value of ⇠ occurs at J = |L � S

1

� S

2

| in all three panels. Three phases are present for each vertical section with
J > |L� S

1

� S

2

|. This condition may either cover the entire parameter space (left panel) or leave room for additional regions
where vertical sections include two di↵erent phases in which �� oscillates about ⇡ and a circulating phase in between (center
panel) or only a single phase where the spins librate about �� = ⇡ (right panel). An animated version of this figure evolving
on the radiation-reaction time t

RR

is available online [54].

Morphologies

Transitions
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and at most two turning points can exist, it follows that
⇠+ admits a single maximum in [Smin, Smax] and ⇠

�

ad-
mits a single minimum in [Smin, Smax]. The e↵ective po-
tentials therefore have exactly two distinct extrema for
each value of the constants J , r, q, �1 and �2. As clari-
fied below, these special configurations correspond to the
spin-orbit resonances discovered by other means in [37].

The equal-mass limit q ! 1 corresponds to ⇠+(S) =
⇠

�

(S) [cf. Eq. (14)] implying that S is constant for all
values of ⇠ [note that ⇠

±

(Smin) 6= ⇠

±

(Smax)]. This fact
was noted at least as early as 2008 by Racine [56] and it
was recently exploited in numerical-relativity simulations
[39, 58], but the constancy of S is a peculiarity of the
equal-mass case and does not hold for generic binaries.

C. Morphological classification

Although the evolution of '

0 already provides a way to
characterize the precessional dynamics (Fig. 2), a more
intuitive understanding can be gained by switching back
to the L-aligned frame illustrated in the left panel of
Fig. 1. Substituting Eqs. (10) and (13) into (2), we can
express the angles ✓1, ✓2 and �� as functions of S, J and
⇠. This yields the remarkably simple expressions [1]
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FIG. 3. Analytical solutions given by Eq. (20) for the evo-
lution of the angles ✓

1

(top panel), ✓

2

(middle panel), and
�� (bottom panel) during a precession cycle. The evolution
of three binaries with ⇠ = 0.25 (blue), 0.3 (green) and 0.35
(red) is shown for q = 0.8, �

1

= 1, �
2

= 0.8, r = 20M and
J = 1.29M2. The evolution of ✓

1

and ✓

2

is monotonic during
each half of a precession cycle and is bounded by the dotted
lines for which cos' = ⌥1 [these curves can be found by sub-
stituting ⇠

±

(S) for ⇠ in Eq. (20)]. Three classes of solutions
are possible and define the binary morphology: �� can oscil-
late about 0 (⇠ = 0.25), circulate (⇠ = 0.3) or oscillate about
⇡ (⇠ = 0.35). An animated version of this figure is available
online at [54], where precession solutions are evolved on t

RR

.
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FIG. 3. Analytical solutions given by Eq. (20) for the evo-
lution of the angles ✓

1

(top panel), ✓

2

(middle panel), and
�� (bottom panel) during a precession cycle. The evolution
of three binaries with ⇠ = 0.25 (blue), 0.3 (green) and 0.35
(red) is shown for q = 0.8, �

1

= 1, �
2

= 0.8, r = 20M and
J = 1.29M2. The evolution of ✓

1

and ✓

2

is monotonic during
each half of a precession cycle and is bounded by the dotted
lines for which cos' = ⌥1 [these curves can be found by sub-
stituting ⇠

±

(S) for ⇠ in Eq. (20)]. Three classes of solutions
are possible and define the binary morphology: �� can oscil-
late about 0 (⇠ = 0.25), circulate (⇠ = 0.3) or oscillate about
⇡ (⇠ = 0.35). An animated version of this figure is available
online at [54], where precession solutions are evolved on t

RR

.
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FIG. 3. Analytical solutions given by Eq. (20) for the evo-
lution of the angles ✓

1

(top panel), ✓

2

(middle panel), and
�� (bottom panel) during a precession cycle. The evolution
of three binaries with ⇠ = 0.25 (blue), 0.3 (green) and 0.35
(red) is shown for q = 0.8, �

1

= 1, �
2

= 0.8, r = 20M and
J = 1.29M2. The evolution of ✓

1

and ✓

2

is monotonic during
each half of a precession cycle and is bounded by the dotted
lines for which cos' = ⌥1 [these curves can be found by sub-
stituting ⇠

±

(S) for ⇠ in Eq. (20)]. Three classes of solutions
are possible and define the binary morphology: �� can oscil-
late about 0 (⇠ = 0.25), circulate (⇠ = 0.3) or oscillate about
⇡ (⇠ = 0.35). An animated version of this figure is available
online at [54], where precession solutions are evolved on t
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FIG. 3. Analytical solutions given by Eq. (20) for the evo-
lution of the angles ✓

1

(top panel), ✓

2

(middle panel), and
�� (bottom panel) during a precession cycle. The evolution
of three binaries with ⇠ = 0.25 (blue), 0.3 (green) and 0.35
(red) is shown for q = 0.8, �

1

= 1, �
2

= 0.8, r = 20M and
J = 1.29M2. The evolution of ✓

1

and ✓

2

is monotonic during
each half of a precession cycle and is bounded by the dotted
lines for which cos' = ⌥1 [these curves can be found by sub-
stituting ⇠

±

(S) for ⇠ in Eq. (20)]. Three classes of solutions
are possible and define the binary morphology: �� can oscil-
late about 0 (⇠ = 0.25), circulate (⇠ = 0.3) or oscillate about
⇡ (⇠ = 0.35). An animated version of this figure is available
online at [54], where precession solutions are evolved on t
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and at most two turning points can exist, it follows that
⇠+ admits a single maximum in [Smin, Smax] and ⇠

�

ad-
mits a single minimum in [Smin, Smax]. The e↵ective po-
tentials therefore have exactly two distinct extrema for
each value of the constants J , r, q, �1 and �2. As clari-
fied below, these special configurations correspond to the
spin-orbit resonances discovered by other means in [37].

The equal-mass limit q ! 1 corresponds to ⇠+(S) =
⇠

�

(S) [cf. Eq. (14)] implying that S is constant for all
values of ⇠ [note that ⇠

±

(Smin) 6= ⇠

±

(Smax)]. This fact
was noted at least as early as 2008 by Racine [56] and it
was recently exploited in numerical-relativity simulations
[39, 58], but the constancy of S is a peculiarity of the
equal-mass case and does not hold for generic binaries.

C. Morphological classification

Although the evolution of '

0 already provides a way to
characterize the precessional dynamics (Fig. 2), a more
intuitive understanding can be gained by switching back
to the L-aligned frame illustrated in the left panel of
Fig. 1. Substituting Eqs. (10) and (13) into (2), we can
express the angles ✓1, ✓2 and �� as functions of S, J and
⇠. This yields the remarkably simple expressions [1]
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cos �� =
cos ✓12 � cos ✓1 cos ✓2

sin ✓1 sin ✓2
, (20c)

where the angle ✓12 = arccos ˆ

S1 · ˆ

S2 between the two
spins can also be written in terms of S:
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FIG. 3. Analytical solutions given by Eq. (20) for the evo-
lution of the angles ✓

1

(top panel), ✓

2

(middle panel), and
�� (bottom panel) during a precession cycle. The evolution
of three binaries with ⇠ = 0.25 (blue), 0.3 (green) and 0.35
(red) is shown for q = 0.8, �

1

= 1, �
2

= 0.8, r = 20M and
J = 1.29M2. The evolution of ✓

1

and ✓

2

is monotonic during
each half of a precession cycle and is bounded by the dotted
lines for which cos' = ⌥1 [these curves can be found by sub-
stituting ⇠

±

(S) for ⇠ in Eq. (20)]. Three classes of solutions
are possible and define the binary morphology: �� can oscil-
late about 0 (⇠ = 0.25), circulate (⇠ = 0.3) or oscillate about
⇡ (⇠ = 0.35). An animated version of this figure is available
online at [54], where precession solutions are evolved on t
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Field binaries, spin tracking

To isolate the effects of spin orientation during the PN
inspiral of the BH binaries, we fix the final mass ratio to the
typical value q ¼ 0:8 [12]. To ensure that this final mass
ratio is obtained, the initial stellar masses of the binaries
must be fixed to ðM0

Si;M
00
SiÞ ¼ ð35M$; 16:75M$Þ in the

SMR scenario, or ð30M$; 24M$Þ in the RMR scenario.
Throughout the paper, we use a single prime to identify
the initially more massive stellar progenitor or ‘‘primary,’’
and a double prime to denote the initially less massive
progenitor or ‘‘secondary.’’ This choice of initial masses
also fixes the total mass of our BH binaries to M ¼
13:5M$, quite close to the expected peak of the distribution
for the total mass [12]. The mass of the stars is somewhat
smaller than expected for the progenitors of BHs of these
masses because we have neglected stellar winds, that lead
to considerable mass loss prior to BH formation. Table I
provides numerical values for the masses and radii of both
the primary and secondary throughout the evolution in both
the SMR and RMR scenarios. Appendix A 1 shows how
this choice of initial masses leads to BHs of the desired
final masses.

The initial main-sequence stage of the evolution is
shown as phase a in Fig. 3. Binaries are assumed to form

on circular3 orbits with initial semimajor axes a0 drawn
from the distribution described in Appendix A 2. We
assume that the spins of the primary S0 and secondary S00

are initially aligned4 with the orbital angular momentum
L. As the primary evolves, its envelope expands until it
fills its Roche lobe, initiating stable mass transfer to the
secondary (phase b in Fig. 3). The efficiency of mass
transfer is usually parametrized via a parameter
fa 2 ½0; 1&: cf. Eq. (A9) of Appendix A 3. We assume
this mass transfer continues until the primary has depleted
its hydrogen envelope, leaving behind a helium core of
mass M0

C ¼ 8:5M$ (M0
C ¼ 8M$) in the SMR (RMR)

scenario. Following [12], we assume semiconservative

FIG. 3. A schematic representation of our model for BH binary formation and spin evolution. Empty circles represent stars, filled
circles represent BHs. Phase (a) shows the initial main-sequence stellar binary. Mass transfer from the primary to the secondary (b)
leads to a possible mass-ratio reversal. The first SN kick tilts the angle between the spins and the orbital plane (c). Tidal interactions
can realign the stellar member of the binary (d). The second SN kick tilts the orbital plane again (e). Gravitational radiation shrinks and
circularizes the binary before our explicit PN evolution begins (f).

3The initial eccentricity has minimal effect. In fact we have
repeated our calculations using an initially thermal distribution
of eccentricities of the form fðeÞ ¼ 2e, and we observed no
significant difference in the final distribution of !" and !12.

4The alignment of stellar spins in eclipsing binaries can be
measured through the Rossiter-McLaughlin effect [34,35].
Although many systems have aligned spins [36–38], there are
notable exceptions [39]. We expect efficient tidal alignment in
the progenitors of merging BH binaries, due to their small initial
separations.
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cos ✓1

! ¼ Mf=Mi is the ratio of the total binary mass before
and after the SN) without unbinding the binary. For ! ’
0:9, as in our SMR and RMR scenarios,! & 40", and kicks
are rarely large enough even to saturate this limit. This
explains the much narrower distribution of initial values of
"i in the left panel of Fig. 6 compared to Fig. 5. Binaries
with these smaller initial misalignments are more easily
captured into resonances, as can be seen from the near total
segregation of the SMR and RMR populations in"# by the

time the binaries reach aPNf ¼ 10M in the right panel of
Fig. 6.
In our model, two physical mechanisms are responsible

for changing BH spin orientations: SN kicks and tidal
alignment. Both mechanisms are critical: kicks generate
misalignments between the spins and the orbital angular
momentum, but only tides can introduce the asymmetry
between these misalignments that causes one family of
spin-orbit resonances (the "# ¼ #180" family in the

FIG. 6 (color online). Scatter plots of the same quantities shown in Fig. 5 for an astrophysical model with efficient tides and polar
kicks. For an animated version of this plot, see [56].

FIG. 7 (color online). Scatter plots of the same quantities shown in Fig. 5 for an astrophysical model with inefficient tides and
isotropic kicks. For an animated version of this plot, see [57].

RESONANT-PLANE LOCKING AND SPIN ALIGNMENT IN . . . PHYSICAL REVIEW D 87, 104028 (2013)

104028-13

! ¼ Mf=Mi is the ratio of the total binary mass before
and after the SN) without unbinding the binary. For ! ’
0:9, as in our SMR and RMR scenarios,! & 40", and kicks
are rarely large enough even to saturate this limit. This
explains the much narrower distribution of initial values of
"i in the left panel of Fig. 6 compared to Fig. 5. Binaries
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for changing BH spin orientations: SN kicks and tidal
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between these misalignments that causes one family of
spin-orbit resonances (the "# ¼ #180" family in the
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FIG. 7 (color online). Scatter plots of the same quantities shown in Fig. 5 for an astrophysical model with inefficient tides and
isotropic kicks. For an animated version of this plot, see [57].
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following the second SN; the residual eccentricity at aPNi
was less than 10!4 for all BH binaries in our samples.

C. Results

We evolved 103 BH binaries for each of the eight differ-
ent fiducial astrophysical scenarios described in Sec. II C
from an initial separation8 aPNi ¼ 1000M to a final sepa-
ration aPNf ¼ 10M. This final separation roughly indicates
where the PN approximation breaks down and full numeri-
cal relativity becomes necessary [46–49]. To reduce the
Poisson noise in the histograms of Fig. 2, we used larger
samples of 104 BH binaries. We integrated the PN equa-
tions (14)–(17) using a STEPPERDOPR5 integrator in C++

[59], progressively refining the time steps at small separa-
tions (see [9] for further details).

In Fig. 5, we show the evolution of the dynamical
variables ð!1; !2;!"Þ for both the SMR and RMR scenar-
ios with efficient tides and isotropic kicks. As already
anticipated in the Introduction, efficient tidal interactions
lead to spin orientations that are strongly affected by spin-
orbit resonances. When binaries are brought close enough
to resonant configurations by precessional motion and
gravitational-radiation reaction, they no longer precess
freely through all values of !", but instead oscillate about
the resonant configurations [6,9]. In the SMR scenario, the
initial orientation of the spins is such that !1 > !2, and the
binaries lock into resonances with !" ¼ %180& [darker
(red) points in Fig. 5]. In contrast, in the RMR scenario the
initial spins have !1 < !2 and the binaries lock into reso-
nances with !" ¼ 0& [lighter (green) points in Fig. 5].
Once the binaries are trapped near resonances, they evolve
toward the diagonal in the ð!1; !2Þ plane, as seen in the left
panel of Fig. 5. This corresponds to !12 ! 0& for binaries
near the !" ¼ 0& family of resonances (RMR scenario).
As seen in the right panel of Fig. 5, there is a much broader
range of final values for !12 in the SMR scenario, because
these final values depend on the initial astrophysical dis-

tribution of S0 ' L̂ according to Eq. (19).
Figure 6 shows that spin-orbit resonances can have

an even stronger effect on BH binaries when SN kicks are
polar (aligned within !b ¼ 10& of the stellar spin [60]). As
discussed in Appendix A 5, exactly polar kicks tilt the
orbital plane by an angle # given by Eq. (A24), which
can only attain a maximum value cos!1ð2"Þ!1=2 (where

FIG. 5 (color online). Scatter plots of the PN inspiral of maximally spinning BH binaries with mass ratio q ¼ 0:8 from an initial
separation aPNi just above 1000M to a final separation aPNf ¼ 10M. The left panel shows this evolution in the ð!1;!2Þ plane and the
right panel shows the evolution in the ð!";!12Þ plane. Darker (red) and lighter (green) dots refer to the SMR and RMR scenarios,
respectively. The initial distribution for these Monte Carlo simulations was constructed from an astrophysical model with efficient
tides and isotropic kicks. An animated version of this plot is available online at [55].

8The a ¼ 1000M snapshots in the figures of this section are
taken shortly after the beginning of the PN evolution. The angle
!" varies on the precessional time scale and can therefore
change quite rapidly before the separation decreases appreciably
on the longer inspiral time scale. The initial clustering in !"
visible in the top-right panels of Figs. 5 and 6 is not a resonant
effect, as the binaries continue to sweep through all values of
!" at these large separations. It results instead from the differ-
ent rates at which binaries in the SMR and RMR populations
precess, segregating the groups from each other during the first
few precessional cycles. This behavior is better illustrated by the
animations available online at the URLs [55–58], which refer to
efficient tides with isotropic kicks, efficient tides with polar
kicks, inefficient tides with isotropic kicks, and inefficient tides
with polar kicks, respectively.
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following the second SN; the residual eccentricity at aPNi
was less than 10!4 for all BH binaries in our samples.

C. Results

We evolved 103 BH binaries for each of the eight differ-
ent fiducial astrophysical scenarios described in Sec. II C
from an initial separation8 aPNi ¼ 1000M to a final sepa-
ration aPNf ¼ 10M. This final separation roughly indicates
where the PN approximation breaks down and full numeri-
cal relativity becomes necessary [46–49]. To reduce the
Poisson noise in the histograms of Fig. 2, we used larger
samples of 104 BH binaries. We integrated the PN equa-
tions (14)–(17) using a STEPPERDOPR5 integrator in C++

[59], progressively refining the time steps at small separa-
tions (see [9] for further details).

In Fig. 5, we show the evolution of the dynamical
variables ð!1; !2;!"Þ for both the SMR and RMR scenar-
ios with efficient tides and isotropic kicks. As already
anticipated in the Introduction, efficient tidal interactions
lead to spin orientations that are strongly affected by spin-
orbit resonances. When binaries are brought close enough
to resonant configurations by precessional motion and
gravitational-radiation reaction, they no longer precess
freely through all values of !", but instead oscillate about
the resonant configurations [6,9]. In the SMR scenario, the
initial orientation of the spins is such that !1 > !2, and the
binaries lock into resonances with !" ¼ %180& [darker
(red) points in Fig. 5]. In contrast, in the RMR scenario the
initial spins have !1 < !2 and the binaries lock into reso-
nances with !" ¼ 0& [lighter (green) points in Fig. 5].
Once the binaries are trapped near resonances, they evolve
toward the diagonal in the ð!1; !2Þ plane, as seen in the left
panel of Fig. 5. This corresponds to !12 ! 0& for binaries
near the !" ¼ 0& family of resonances (RMR scenario).
As seen in the right panel of Fig. 5, there is a much broader
range of final values for !12 in the SMR scenario, because
these final values depend on the initial astrophysical dis-

tribution of S0 ' L̂ according to Eq. (19).
Figure 6 shows that spin-orbit resonances can have

an even stronger effect on BH binaries when SN kicks are
polar (aligned within !b ¼ 10& of the stellar spin [60]). As
discussed in Appendix A 5, exactly polar kicks tilt the
orbital plane by an angle # given by Eq. (A24), which
can only attain a maximum value cos!1ð2"Þ!1=2 (where

FIG. 5 (color online). Scatter plots of the PN inspiral of maximally spinning BH binaries with mass ratio q ¼ 0:8 from an initial
separation aPNi just above 1000M to a final separation aPNf ¼ 10M. The left panel shows this evolution in the ð!1;!2Þ plane and the
right panel shows the evolution in the ð!";!12Þ plane. Darker (red) and lighter (green) dots refer to the SMR and RMR scenarios,
respectively. The initial distribution for these Monte Carlo simulations was constructed from an astrophysical model with efficient
tides and isotropic kicks. An animated version of this plot is available online at [55].

8The a ¼ 1000M snapshots in the figures of this section are
taken shortly after the beginning of the PN evolution. The angle
!" varies on the precessional time scale and can therefore
change quite rapidly before the separation decreases appreciably
on the longer inspiral time scale. The initial clustering in !"
visible in the top-right panels of Figs. 5 and 6 is not a resonant
effect, as the binaries continue to sweep through all values of
!" at these large separations. It results instead from the differ-
ent rates at which binaries in the SMR and RMR populations
precess, segregating the groups from each other during the first
few precessional cycles. This behavior is better illustrated by the
animations available online at the URLs [55–58], which refer to
efficient tides with isotropic kicks, efficient tides with polar
kicks, inefficient tides with isotropic kicks, and inefficient tides
with polar kicks, respectively.
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A diagnostic of BH binary formation
DG+2013

• Tides: when the system is 
formed of a BH and a star, 
can tidal interactions align 
the star’s spin?  

• Mass transfer: is mass 
transfer efficient enough to 
reverse the mass ratio?

Two main knobs:

Spin dynamics 
remembers precise 

formation steps!

• Progenitor stars ~30 
• BH binaries total mass 13.5 
• Mass ratio q=0.8 
• Maximally spinning BHs

Caveat: a fiducial binary

M�
M�

of the inspiral slows down the evolution of !" when the
components of the spin orthogonal to the orbital angular
momentum are also orthogonal to each other, causing
binaries that are not locked into resonance to pile up at
!" ¼ "90#.

Let us stress again that the statistical effect of resonances
is clearly visible at fGW ¼ 20 Hz, i.e., when BH binaries
enter the Advanced LIGO/Virgo band. GW measurements
of !" can therefore be used to constrain uncertainties in
BH binary-formation scenarios. The inclusion of resonant
effects in population-synthesis models (combined with a
statistically significant sample of GW measurements of
!") has the potential to constrain various aspects of the
models, such as the efficiency of tides, stable mass transfer,
common-envelope (CE) evolution, SN kick velocities, and
the metallicity of BH progenitors.

B. Outline of the paper

The rest of the paper provides details of our astrophys-
ical model and a more detailed discussion of the results. In
Sec. II we introduce our fiducial BH binary-formation
channels, which are based on detailed population-synthesis
models, as described in much greater length in
Appendix A. In order to focus on spin effects, we fix the
component masses to two representative values. We assume

that SN kicks follow a Maxwellian distribution in
magnitude. We also assume that the kicks are distributed
in a double cone of opening angle !b about the spin of
the exploding star and, to bracket uncertainties, we consider
two extreme scenarios: isotropic (!b ¼ 90#) or polar
(!b ¼ 10#) kicks.
Section III summarizes the results of evolving these BH

binaries under the effect of gravitational radiation down to
a final separation of 10GM=c2. We demonstrate that spin-
orbit resonances have a significant impact on the observ-
able properties of our fiducial BH binaries. Although we
have only explored a handful of evolutionary channels and
component masses, in Sec. IV we argue that the scenarios
described in Fig. 1 are broadly applicable: kicks, tides, and
the mass-ratio distribution control spin alignment. We ex-
plore the sensitivity of these three features (and hence of
the observable distribution of resonantly locked binaries)
to several poorly constrained physical inputs to binary-
evolution models, and we argue that GW observations of
precession angles could provide significant constraints on
binary-formation channels. Finally, in Sec. V we describe
the implications of our results for future efforts in binary-
evolution modeling and GW detection.
To complement and justify the simple astrophysical

model proposed in Sec. II, in Appendix A we describe
in detail the rationale underlying the model and its
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FIG. 2 (color online). Left: probability distribution of the angle between the projections of the spins on the orbital plane !". As the
binaries inspiral, the GW frequency fGW increases from 0.01 Hz (dotted blue lines) to 1 Hz (dashed red lines) and later 20 Hz (solid
black lines). Under the effect of tides the PN evolution brings the spins in the same plane (!" ! 0#,"180#), both in a reversed mass
ratio (top panel) and in a standard mass ratio (middle panel) scenario. When tidal effects are removed (bottom panel, where we show
both RMR and SMR binaries) the spins precess freely and pile up at !" ¼ "90#. Right: probability distribution of the angle between
the two spins !12. In the RMR scenario (top panel) the spins end up almost completely aligned with each other, i.e., most binaries have
!12 ’ 0#. In the SMR scenario (middle panel) and in the absence of tides (bottom panel, where again we show both RMR and SMR
binaries) a long tail at large values of !12 remains even in the late inspiral. All simulations shown in this figure assume that kick
directions are isotropically distributed. Error bars are computed assuming statistical Poisson noise.
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Bayesian model comparison is under way… DG Berti in prep
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Spins, 1st and 2ng generations
• At merger, the binary’s orbital 

angular momentum has to be 
converted into spin 

• More or less whatever you do when 
you merge to BHs, you get ~0.7!
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Primary’s spin
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Spins remember 
previous mergers!

DG Berti in prep



More mergers means…

DG Berti in prep
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• more massive 
• equal mass 
• closer 
• higher spins

Mergers 
means:

• filter SNR 
• measurement 

errors, spread 
over multiple bins 

• Bayesian model 
comparison

Analysis:



Try this at home
precession: new open-source python module 

pip install precession 
>>> import precession

1. Precessional dynamics 
2. Orbit-averaged inspirals 
3. Precession-averaged inspirals 
4. Superkick predictions 
5. API documentation 
6. Tests and tutorial

Distributed on GitHub, uploaded on 
the Python package index (pip)

I’m easy…

Features

davidegerosa.com/precession

… check me out!

DG , Kesden 2016

http://davidegerosa.com/precession


1. PN: spins and symmetries 
2. Spins remember precise formation steps! 
3. Spins remember mergers!

Outline



Interested? Here to know more
• Astrophysical spin modeling 

• PN dynamics: spin morphologies, 
transitions, etc 

• First and second generation black holes 

• PRECESSION code

Gerosa+ 2013,  arXiv:1302.4442

Gerosa+ 2015,  arXiv:1506.03492

Gerosa & Berti 2017, in preparation

Gerosa & Kesden  2015,  arXiv:1605.01067


