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What is the gravitational-wave memory? 
example: nonlinear memory from binary black-hole mergers 

The	wave	no	longer	returns	to	the	zero-point	of	its	oscilla>on.	
This	growing-offset	is	called	the	memory.	

Gravita+onal-wave	signal	vs.	+me	



Why is this called “memory”? 
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The linear and nonlinear memory: 
Linear	memory:	(Braginskii,	Grishchuck,	Thorne,	Zeldovich,	Polnarev)	
§  	Arises	from	the	non-oscillatory	mo>on	of	a	

source,	especially	due	to	unbound	masses.		

§  	Ex:	hyperbolic	orbits,		
mass/neutrino	ejec>on		
in	supernovas/GRBs	

Nonlinear	memory:	(Christodoulou,	Blanchet,	Damour)	

§  	Arises	from	the	GWs	produced	by	GWs:	

§  	“Unbound	par>cles”	are	the	individual	“radiated	gravitons”.	[Thorne	‘92]	

§  	Produced	by	all	sources	of	GWs.	

§  	Allows	us	to	probe	one	of	the	most	nonlinear	features	of	GR.		

[Murphy,	O[,	&	
Burrows	’09]	
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Understanding the memory: 
the linear memory effect [Zel’Dovich	&	Polnarev	’74;	Braginsky	&	Grishchuk	‘85;		

Braginsky	&	Thorne	‘87]	



Understanding the memory: 
the linear memory effect [Zel’Dovich	&	Polnarev	’74;	Braginsky	&	Grishchuk	‘85;		

Braginsky	&	Thorne	‘87]	
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Hyperbolic	orbit/two-body	scaAering	
[Turner	‘77,	Turner	&	Will	‘78,	Kovacs	&	
Thorne	‘78	]	



Understanding the memory: 
the linear memory effect 

Supernova	simula+ons	and	GRBs	also	show	a	linear	memory	due	to	the	asymmetric	
ejec>on	of	masses	or	neutrinos	[Epstein	‘78,	Burrows	&	Hayes	‘96,	Murphy,	O[,	&	Burrows	’09,	
Segalis	&	Ori	’01,	Sago	et	al	‘04]:	

large	memory	



Understanding the memory: 
the linear memory effect 

General	formula	for	the	memory	jump	in	a	system	w/	N	components		[Braginsky	&	
Thorne	‘87,	Thorne	‘92]	



solve	EFE	

[Wiseman	&	Will	‘91]	

harmonic	gauge	
EFE…	

…has	a	nonlinear	source	from	
the	GW	stress-energy	tensor…	

Understanding the memory: 
the nonlinear memory [Christodoulou	‘91;	Blanchet	&	Damour	‘92]	

Mathema>cally,	the	nonlinear	memory	arises	from	the	contribu>on	of	
the	gravita+onal-wave	stress-energy	to	Einstein’s	equa>ons:	



Understanding the memory: 
the nonlinear memory [Christodoulou	‘91;	Blanchet	&	Damour	‘92]	

Mathema>cally,	the	nonlinear	memory	arises	from	the	contribu>on	of	
the	gravita+onal-wave	stress-energy	to	Einstein’s	equa>ons:	

Nonlinear	memory	can	be	related	to	the	“linear”	memory	if	we	interpret	the	
component	masses	as	the	individual	radiated	gravitons	(Thorne’92):	



§ 	Memory	piece	scales	like	the	radiated	energy.	

	
§ 	So	the	nonlinear	memory	is	present	in	all	GW	sources.	

§ 	The	effect	is	hereditary	(depends	on	en>re	past	evolu>on).	

Understanding the memory: 
the nonlinear memory [Christodoulou	‘91;	Blanchet	&	Damour	‘92]	

Can	also	think	of	it	as	a	nonlinear	correc>on	to	the	mul>poles:	



Understanding the memory: 
the nonlinear memory: inspiralling binaries 

Although	it	arises	from	a	2.5PN	correc>on	to	the	mul>pole	moments,	for	
inspiralling	binaries	the	nonlinear	affects	the	waveform	at	leading	
(Newtonian)	order:	
	
	
	
	
	
Why?		

[Wiseman	&	Will	‘91]	



Simple	analy+c	memory	model:	

[	MF,	PRD	’11	]	
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Simple	analy+c	memory	model:	

Using	step	func>on	model	and	range	of	rise	
>mes,	cri>cal	characteris>c	memory	strain	for		
<SNR>=1	is:	
	
	

[MF,	PRD	’11	]	
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Note	that	the	nonlinear	is	suppressed	by	
several	orders	of	magnitude	in	hyperbolic/
parabolic	binaries.	

Memory	sources:	gravita+onal	scaAering	

[	MF,	PRD	’11	]	
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Memory	sources:	supernovae	
Simula>ons	from	mul>ple	groups	
show	a	memory	effect	due	to	
anisotropic	ma[er	or	neutrino	
emission:	
[Burrows	&	Hayes	‘94,	Murphy,	O[,	
Burrows	’09,	Kotake	et	al	‘09,	Muller	
&	Janka	’97,	Yakunin	et	al	‘10]		

[Yakunin	et	al	’10]	

Size	of	memory	varies	among	
simula>ons	depending	on	input	
physics.	
[reviews	by	O[’09	&	Kotake	‘11]	



Nonlinear memory for inspiralling binaries: 
	Survey	of	previous	and	recent	work	
	
Part	I:	Inspiral	memory	in	PN	approxima+on		

•  needed	to	fully	describe	waveform	amplitude	correc>ons	
(including	at	0PN	order)	

•  provide	input	to	merger/ringdown	calcula>on	
	

Part	II:	memory	from	merger/ringdown	
•  provides	full	memory	signal;	grows	rapidly	during	merger	
•  semi-analy>c	descrip>ons	or	full	NR	

Part	III:	detectability	es+mate	
•  apply	above	models	to	evaluate	detec>on	prospects	

	
	
	



Nonlinear memory for inspiralling binaries: 
	Survey	of	previous	and	recent	work	

ü 	0PN	inspiral,	circular,	nonspinning:	Wiseman	&	Will	’91	

ü 	3PN	inspiral,	circular,	nonspinning:	MF	’09a	

ü 	0PN	inspiral,	eccentric,	nonspinning:	MF	’11	

ü 	merger/ringdown,	nonspinning,	equal-mass:	MF	’09b,	‘10		
	

ü 	merger/ringdown,	aligned-spins,	equal-masses:	Pollney	&	Reisswig	‘11	

ü 	crude	detectability	es>mates	for	LISA	&	LIGO:	MF	‘09,	‘11,	Pollney	&	Reisswig	

ü 	es>mates	of	recoil-induced	QNM	Doppler	shiu	and	memory:	MF	’09c	

ü 	pulsar	>ming	studies/searches:	Seto	‘09,	van	Haasteren	&	Levin	‘10,	Pshrikov	et	
al’10,	Cordes	&	Jenet	‘12,	Madison,	Cordes,	Cha[erjee	‘14,	Wang	et	al	’15,	
Arzoumanian	et	al	’15	

ü Lasky	et.	al	’16:	aLIGO	detectability	via	combina>ons	of	mul>ple	events.		
	

[See	also	mathema>cal	aspects	of	memory:	Bieri,	Garfinkle,	Tolish,	Wald.]	



[MF,	Phys.	Rev.	D	‘09]	

nonlinear memory from circular binaries: 
3PN hlm modes and polarization 



linear	memory	case:	
	

Hyperbolic	orbits:		
	

Parabolic	orbits:	no	linear	memory	
	

Ellip>cal	orbits:	no	linear	memory	

Nonlinear	memory	case:	
	

Hyperbolic/parabolic	orbits:		
	
Ellip>cal	orbits:		

0PN	

2.5PN	

nonlinear memory from eccentric binaries 

[MF	PRD’11]	



Spin-orbit corrections to nonlinear memory (inspiral): 
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§  Spin	correc>on	maximized	for	maximally	
spinning,	aligned	binaries.	

§  Spin	terms	produce	～20%	maximum	
correc>on	at	Schwarzchild	ISCO.	

§  Small-inclina>on	angle	case	also	computed	
analy>cally.	(Depends	on	perpendicular	
spin	components.)	

§  Generic	precessing	case	computed	
numerically.	

Aligned-spin	case:	[	w/	Xinyi	Guo]	
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Merger/ringdown memory (nonspinning): 

[w/	Goran	Dojcinoski]	
	
§  Express	m=0	memory		

modes	in	terms	of		
oscillatory	modes.	

§  Use	hlm	from	SXS	catalog.	

§  Match	to	inspiral	memory.	
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Merger/ringdown memory (nonspinning): 



Detectability of memory: 
	

§  Use	analy>c	model	from	MF	ApJL	‘09	to	
compute	SNR	for	equal-mass	case	
(extension	to	other	mass	ra>os	via	new	
waveforms	in	progress).	

§  MF	ApJL	’09	focused	on	detectability	by	
LISA.	(SMBH	memory	easily	seen	to	z=2.)	

§  Also	es>mated	aLIGO	SNR	of	8	for	100	M☉	
binary	at	20	Mpc.	

§  Next:	extend	the	analysis	to	future	
ground-based	detectors...	

MF	ApJL’09	



Detectability: aLIGO (preliminary) 
[w/	Emanuele	Ber>]	



Detectability: future ground-based (preliminary) 



Detectability: future ground-based (preliminary) 

§  Good	prospects	for	most	sensi>ve	3rd	genera>on	detectors.	

§  For	masses	～5	to	4000	solar	masses,	memory	SNR	～O(1%)	of	inspiral	SNR.	



Detectability: stacking multiple events 
4

d = 410Mpc and fixed component masses (m1 = 36M�,
m2 = 29M�), but random values of inclination, polari-
sation, and sky position.

For each binary we calculate three (expectation val-
ues of) signal-to-noise ratios. Firstly, we calculate the
oscillatory signal-to-noise ratio, hS/Ncbci. Secondly, we
calculate the  -degeneracy-breaking signal-to-noise ratio,
hS/N�hi (see Eqn. (1)). We include `  3 modes that
are key to resolving  . Measurement of hS/N�hi > 0
is, in and of itself, interesting as it is evidence of higher-
order modes. We calculate that a single detection of a
GW150914-like event at design sensitivity will produce
an hS/N�hi & 5 detection, suggesting this e↵ect can be
detected well before design sensitivity [see also 21–23].
Thirdly, we calculate the memory signal-to-noise ratio
hS/Ni. We only retain confident oscillatory detections,
hS/Ncbci � 12 [24].

The cumulative hS/Ntoti is shown in Fig. 3. In the top
panel, the solid curves represent the expectation value
while the shaded region is the one-sigma uncertainty. The
blue curve sums the memory contributions from all bina-
ries. This is unrealistic as it includes binaries where we
cannot measure the polarisation, and therefore do not
know the memory sign. The red curve adds the mem-
ory contribution only from binaries where we are confi-
dent the memory sign is correct. That is, we only add
the memory contribution for signals with hS/N�hi > 2,
implying we are & 95% confident that  is accurately
measured, and the sign of the memory is correct. We
have verified through simulations3 that we recover the
correct sign of the memory 95% of the time for signals
with hS/N�hi = 2. Binaries that fail this cut are added
with memory hS/Ni = 0.

The bottom panel of Fig. 3 shows 20 Monte Carlo reali-
sations, highlighting the stochasticity of hS/Ntoti growth,
and the contribution of the second cut. We highlight one
realisation in red, and show with blue crosses binaries
with hS/N�hi < 2, and therefore have zero memory con-
tribution.

Figure 3 shows that one can expect an hS/Ntoti = 3 (5)
detection of memory after ⇠ 35 (90) GW150914-like de-
tections with aLIGO at design sensitivity, although this
could happen with as few as ⇠ 20 (75).

In Fig. 4 we plot the cumulative Bayes factor of the
memory signal as a function of the number of events.
As with Fig. 3, we plot in blue the cumulative memory
signal from all the binaries, and in red we only add the
memory contribution from signals where we are confident

3 We perform a Monte Carlo study with GW150914-like binary
mergers at a distance such that

⌦
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↵
= 2 with aLIGO sen-

sitivity. We compute the maximum likelihood using templates
with the correct sign of the memory, and with the opposite sign,
finding that the larger likelihood gives the correct sign of the
memory for 95% of binaries.
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FIG. 3: Evolution of the cumulative signal-to-noise
⌦
S/N

tot

↵

as a function of the number of binary black hole mergers. All
binaries have the same distance and mass as the maximum
likelihood parameters of GW150914, but have random distri-
butions of inclination, polarisation and sky position. In the
top panel, the solid curves represent the expectation value
and the shaded region is the one-sigma uncertainties. The
blue curve sums the memory signal-to-noise contribution from
all binaries, and the red curve assigns memory hS/Ni = 0 for
those binaries where the polarisation angle, and hence the
sign of the memory cannot be determined. The bottom panel
shows 20 individual realisations of the red curve in the top
panel. One particular realisation is highlighted in red; the
binaries assigned hS/Ni = 0 are shown with blue crosses.
In both panels, the horizontal dashed and solid lines show⌦
S/N

tot

↵
= 3 and 5 respectively.

that the sign of the memory signal is correct. Again, the
thick curves show the mean value and the shaded region is
the one-sigma uncertainties. As before we highlight the
stochastic nature of the growth of this signal by show-
ing 10 individual realisations. The results of Fig. 4 are
consistent with that of Fig. 3: one is likely to be confi-
dent of a detection of memory after ⇠ 35 events when
(lnBF)tot & 8
Repeating the simulations presented in Figs. 3 and 4,

but assuming that events are distributed uniformly in
volume, we find that the time to detection changes by
less than a few percent. This is because the growth of
hS/Nitot is dominated by a relatively small number of
loud events.
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sation, and sky position.

For each binary we calculate three (expectation val-
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as a function of the number of binary black hole mergers. All
binaries have the same distance and mass as the maximum
likelihood parameters of GW150914, but have random distri-
butions of inclination, polarisation and sky position. In the
top panel, the solid curves represent the expectation value
and the shaded region is the one-sigma uncertainties. The
blue curve sums the memory signal-to-noise contribution from
all binaries, and the red curve assigns memory hS/Ni = 0 for
those binaries where the polarisation angle, and hence the
sign of the memory cannot be determined. The bottom panel
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binaries assigned hS/Ni = 0 are shown with blue crosses.
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that the sign of the memory signal is correct. Again, the
thick curves show the mean value and the shaded region is
the one-sigma uncertainties. As before we highlight the
stochastic nature of the growth of this signal by show-
ing 10 individual realisations. The results of Fig. 4 are
consistent with that of Fig. 3: one is likely to be confi-
dent of a detection of memory after ⇠ 35 events when
(lnBF)tot & 8
Repeating the simulations presented in Figs. 3 and 4,

but assuming that events are distributed uniformly in
volume, we find that the time to detection changes by
less than a few percent. This is because the growth of
hS/Nitot is dominated by a relatively small number of
loud events.

Lasky,	et	al.,	PRL	’16	

§  Build	evidence	for	nonlinear	
memory	via	stacking	of	mul>ple	
events.	

§  Need	to	also	measure	higher-order	
modes	to	break	degeneracy	w/	
polariza>on	angle.	



Gravitational Waves from Orphan Memory

Lucy O. McNeill,1 Eric Thrane,1, ⇤ and Paul D. Lasky1

1
Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800, Australia

Gravitational-wave memory manifests as a permanent distortion of an idealized gravitational-
wave detector and arises generically from energetic astrophysical events. For example, binary
black hole mergers are expected to emit memory bursts a little more than an order of magni-
tude smaller in strain than the oscillatory parent waves. We introduce the concept of “orphan
memory”: gravitational-wave memory for which there is no detectable parent signal. In particular,
high-frequency gravitational-wave bursts (& kHz) produce orphan memory in the LIGO/Virgo band.
We show that Advanced LIGO measurements can place stringent limits on the existence of high-
frequency gravitational waves, e↵ectively increasing the LIGO bandwidth by orders of magnitude.
We investigate the prospects for and implications of future searches for orphan memory.

The detection of gravitational waves by LIGO and
Virgo [1] has opened up new possibilities for observing
highly-energetic phenomena in the Universe. It was re-
cently shown that ensembles of binary black hole detec-
tions can be used to measure gravitational-wave memory
[2]: a general relativistic e↵ect, manifest as a permanent
distortion of an idealized gravitational-wave detector [3–
8]. It is not easy to detect memory. The memory strain
is significantly smaller than the oscillatory strain; ⇠ 20
times smaller for GW150914.

For gravitational-wave bursts, the memory strain in-
creases monotonically with a rise time comparable to the
burst duration; e.g., ⌧ ⇠ 10 ms for GW150914 [2]. For
su�ciently short bursts (with timescales that are short
compared to the inverse frequency of the detector’s sen-
sitive band), the memory is well-approximated by a step
function, or equivalently an amplitude spectral density
proportional to 1/f , where f is the frequency. It follows
that the memory of a high-frequency burst introduces
a significant low-frequency component which extends to
frequencies arbitrarily below 1/⌧ . If the parent burst is
above the detector’s observing band, this can lead to “or-
phan memory”: a memory signal for which there is no
detectable parent.

There are a number of mechanisms that can lead to
orphan memory. In the example above, a high-frequency
burst outside the observing band creates in-band mem-
ory. This is the premise of memory burst searches in
pulsar timing arrays [9–13], which look for memory from
merging supermassive black holes for which the oscilla-
tory signal is out of band. Orphan memory can also be
sourced by phenomena other than gravitational waves,
e.g., neutrinos [14, 15], although the probability of de-
tection from known sources is small. In principal, it is
possible for beamed gravitational-wave sources to pro-
duce orphan memory signals when the oscillatory signal
is beamed away from Earth. In practice, however, the
number of orphan detections from beaming will be small
compared to the number of oscillatory detections. In
this Letter, we focus on memory where high-frequency
gravitational-wave bursts produce orphan memory in
LIGO/Virgo.

Scaling relations. As a starting point it is useful to in-
vestigate scaling relations for gravitational-wave bursts.
For a gravitational-wave source with timescale, ⌧ , fre-
quency f

0

⇡ 1/⌧ , and energy E
gw

, the strain amplitude
scales as

hosc

0

⇠ E
1/2
gw

f
1/2
0

d
, (1)

where d is the distance to the source, and throughout we
use natural units, c = G = 1. A sine-Gaussian wave-
form is well described by these assumptions, and so we
work with sine-Gaussian waveforms in the analysis that
follows. In Figure 1 we show two sine-Gaussian bursts
(top panel) with their corresponding memory waveforms
approximated by tanh functions (bottom panel).
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FIG. 1: Strain time series for a gravitational-wave burst.
The top panel shows both the burst (solid curves) and mem-
ory (dashed curves) strains for two bursts of the same ampli-
tude. The high-frequency burst (red) has frequency ten times
the low-frequency burst (blue). The bottom panel shows an
enlarged version of the memory time series’. As the frequency
of the burst increases, the rise time approaches zero and the
memory is well-approximated by a step function.
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§  High	frequency	detectors	could	
detect	bursts	from	exo>c	sources	
(DM	collapse	in	stars,	...)	

§  Memory	component	of	high-
frequency	burst	could	be	in	the	
LIGO	band.		
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The dashed black curve in Figure 2 shows the sine-
Gaussian amplitude h

0

necessary for an average signal-
to-noise ratio hS/Ni = 5 detection in Advanced LIGO
operating at design sensitivity as a function of burst fre-
quency f

0

. The solid black curve shows the same h
0

ver-
sus f

0

sensitivity curve except that we include memory
in the matched filter calculation. This has the e↵ect of
extending the LIGO observing band to sources for which
the dominant oscillatory component has arbitrarily high
frequencies. For burst frequencies higher than a few kHz,
the memory becomes more easily detectable than the os-
cillatory burst. The colored curves show h

0

verus f
0

sen-
sitivity for dedicated high-frequency detectors, which we
discuss presently.

We compare the Advanced LIGO sensitivity curve to
several dedicated high-frequency detectors. Fermilab’s
“Holometer” (labeled with a blue curve in Figure 2) is
a pair of co-located ⇠ 40m, high-powered Michelson in-
terferometers, sensitive to gravitational wave frequencies
105�106 Hz. It has reached an amplitude spectral density
of ⇠ 7⇥10�20 Hz�1/2 [18]. The Bulk Acoustic Wave (la-
beled with a red curve in Figure 2) cavity is a proposed
resonant mass detector, sensitive to 106 � 109 Hz pro-
jected amplitude spectral density of ⇠ 10�22 Hz�1/2 [17].
The detector is labeled in plots as “Goryachev” using the
first author from [17]. The final proposed detector that
we consider here consists of optically levitated sensors,
sensitive to frequencies between 50� 300 kHz, with pro-
jected sensitivity to ⇠ 3⇥10�22 Hz�1/2 [16]. It is labeled
in Figure 2 with a green curve and denoted “Arvanitaki”
after the first author of [16].

Comparing the Figure 2 colored sensitivity curves for
dedicated high-frequency detectors with the solid black
sensitivity curve for Advanced LIGO, we see that—given
our fiducial value of —Advanced LIGO will detect
orphan memory before currently-proposed, dedicated,
high-frequency detectors observe an astrophysical burst.

Two e↵ects, not included in Figure 2, will tend to make
it harder to detect high-frequency bursts compared to
low-frequency memory detection. First, high-frequency
detectors produce false positives at a higher rate than
Advanced LIGO. Second, the memory search template
bank is trivially small. All orphan memory looks the
same: like a step function. In order to span the space of
oscillatory bursts, it is likely that many more templates
must be used.

This result has an interesting implication. If high-
frequency detectors observe a detection candidate, Ad-
vanced LIGO should look for a corresponding memory
burst. A coincident memory burst could provide power-
ful confirmation that the high-frequency burst is of as-
trophysical origin. Similarly, if Advanced LIGO detects
orphan memory, it may be worthwhile looking for coin-
cident bursts in dedicated high-frequency detectors.

In Figure 2, we plot sensitivity curves in terms of h
0

:
the amplitude of a sine Gaussian burst. It is also useful

to frame our results in terms of amplitude spectral den-
sity Sh(f)1/2. In Figure 3, we show the noise amplitude
spectral densities for the three high-frequency detectors
included in Figure 2, denoted with dashed red, blue, and
green curves. The dashed black curve shows the noise
amplitude spectral density of Advanced LIGO.

We also plot the amplitude spectral density for three
sine-Gaussian bursts with memory. The frequency of
each burst is matched to the observing bands of di↵er-
ent high-frequency detectors. The colors are chosen so
that, e.g., the red burst spectrum matches with the red
Goryachev detector. The burst amplitude is tuned so
that hS/Ni = 5 in the associated high-frequency detec-
tor. The solid curves show the memory + oscillatory
component of the signal while the dotted curves show
only the oscillatory component.

While the oscillatory matched filter signal-to-noise ra-
tio is 5 in each high-frequency detector, the associated
LIGO memory signal-to-noise ratio is many times louder:
300 for Arvanitaki, 1.4⇥105 for Holometer, and 3.3⇥103

for Goryachev. This is consistent with the conclusion
drawn from Figure 2: for our fiducial value of , Ad-
vanced LIGO should be able to easily observe orphan
memory from high-frequency bursts observed in dedi-
cated high-frequency detectors.
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FIG. 3: Strain amplitude spectral density. The dashed curves
represent the noise in three di↵erent detectors: Advanced
LIGO (black) and three dedicated high-frequency detectors
(colored). For each dedicated detector, we plot the amplitude
spectral density for a sine-Gaussian burst in the middle of
the observing band (colored dotted peaks). The peak height
is tuned so that the oscillatory burst can be observed with a
signal-to-noise ratio hS/Ni = 5. The solid colored lines shows
the amplitude spectral density when we include the memory
calculated with our fiducial value of . The memory bursts
produce large signals in Advanced LIGO, with hS/Ni ranging
from 300 to 105.
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FIG. 3: Strain amplitude spectral density. The dashed curves
represent the noise in three di↵erent detectors: Advanced
LIGO (black) and three dedicated high-frequency detectors
(colored). For each dedicated detector, we plot the amplitude
spectral density for a sine-Gaussian burst in the middle of
the observing band (colored dotted peaks). The peak height
is tuned so that the oscillatory burst can be observed with a
signal-to-noise ratio hS/Ni = 5. The solid colored lines shows
the amplitude spectral density when we include the memory
calculated with our fiducial value of . The memory bursts
produce large signals in Advanced LIGO, with hS/Ni ranging
from 300 to 105.



Spin memory: 
•  Mo>vated	by	papers:	Strominger,	Zhiboedov,	Pasterski.	
•  Related	works	by	Flanagan	&	Nichols,	Madler	&	Winicour	
•  Recent	paper	by	Nichols	‘17	explains	“spin	memory”	in	PN	context:	
It	is	the	“nonlinear,	nonhereditary	memory”	discussed	in	MF	PRD	‘09	&	originally	found	in	
2.5PN	order	amplitude	correc>on	of	Arun	et	al	‘04.		
	
Current	mul>pole	moments	can	also	source	linear	and	nonlinear	memory	effects—these	are	(I	
think)	what	the	more	recent	literature	refers	to	as	“spin	memory”:	

UL = I(l)
L + U (tail)

L + U (nonlin. mem)

L + · · ·

VL = J (l)
L + V (tail)

L + V (nonlin. spinmem)

L + · · ·

[	MF	PRD	’09	]	

h

(nonlin. spinmem)

⇥ = �12

5

⌘

2

M

R

x

7/2
sin

2

⇥ cos⇥

Leads	to	polariza>on	
correc>on	[Arun	et.	al.’04]	

Detec>on	is	difficult	(need	mul>ple	
event	and	ET)	since	this	is	a	2.5PN	effect	
instead	of	a	0PN	effect	(like	the	
hereditary	nonlinear	memory).	[See	
Nichols	‘17]	



Summary: 
§ 		Linear	and	nonlinear	memories	are	interes>ng	non-oscillatory	
components	to	the	gravita>onal-wave	signal.	

§ 	Linear	memory	has	the	poten>al	to	tell	us	about	non-periodic	
sources	(binary	sca[ering,	supernovae,	GRB	jets,	...)	

§ 	Nonlinear	memory	let’s	us	probe	nonlinear	wave	genera>on	in	GR	
(“waves	that	produce	waves”).	

§ 	Detec>on	of	linear	memory	relies	on	“ge{ng	lucky”	with	a	nearby	
source.	

§ 	Nonlinear	memory	from	BBH	mergers	is	clearly	detectable	by	3rd	
genera>on	detectors	or	LISA;		
poten>ally	within	reach	of	LIGO	with	~100	detec>ons. 	 	 	 		
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