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Abstract

This note describes changes in the calculation of the inverse weight matrix due to multiple
scattering for the 45-Degree Chamber implementation of the WIC track fitter.

Introduction

 The WIC fitter assigns a chi-squared to a hypothetical track trajectory through the Warm
Iron Calorimeter as a function of a track parameters {P} and measured hit positions y*i :
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yi
∗  is the ith of the N measured coordinates that constitute the track,

yi ({P}) is the fitted function of the parameters corresponding to yi
∗ ,

The parameters set {P} consists of positions and slopes of the starting trajectory projected
along two orthogonal directions on a specified reference plane, and the magnitude of the
initial momentum,

W is the weight matrix.  It has non-diagonal terms arising from the persistence of
deflections due to multiple scattering.   The correlation between the measurement residues
at the ith and jth detector plane due to multiple scattering deviations is represented in the off
diagonal elements of the weight matrix:
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where the integral is taken over all the material in front of both detector planes i and j,

σi is the rms position resolution error assigned to the ith and measurement,
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si, sj  are the path lengths to the points where the track crossed the ith  and jth detector
planes,

ˆ , ˆm mi j  are unit vectors along the ith and jth measurement axes,

ˆ , ˆn ni j are unit vectors normal to me ith and jth detector planes,

p s′( ) is the momentum times c, and

X srad ′( )  is the radiation length at path length ′s  along the trajectory.

The expression has an obliquity factor
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which is appropriate to a fixed target geometry with all the detector planes aligned along a
common normal direction and with the track trajectory nearly normal to the detector planes
in all cases.

New Obliquity Factor

In the region of the barrel and end cap joint the assumption of small incident angle is not
applicable.  Furthermore the barrel, end cap, and 45-degree chambers do not have a
common normal direction.  Some pairs of hits are not appropriately correlated as a
consequence.

Figure 1 is event display of a 3.5 GeV Monte Carlo muon.  The particle trajectory through
the drift chamber is shown in green.   The yellow boxes are minimum ionizing depositions
in the Liquid Argon Calorimeter, the yellow arrow indicates some wire hits in the WIC for
wires parallel to the beam axis (the red dots) and the red lines indicate wire hits in the 45-
degree chambers.

If the track through the drift chamber is extrapolated through the WIC, it follows more or
less the green arrow.  Due to multiple scattering, however, the actual hit is much further to
the left as indicated by the red arrow.  A hypothetical 45-degree hit, indicated by the blue
arrow, would align better with the track trajectory.  The fitter however, should prefer the
actual hit because it is much better correlated with the hits in the barrel WIC as indicated by
the yellow arrow.



The weight matrix as constituted doesn't correlate certain of 45-degree chamber hits with
the relevant endcap and barrel hits.  Figure 2. below represents another 3.5 GeV muon in
the WIC.   The measurement axis for the inner endcap hits is vertical and the 45-degree
chamber hit has a horizontal measurement axis;  there is no correlation in the weight matrix
because the obliquity factor is zero for two detector planes with orthogonal measurement
axes. The 45-degree hit lines up well with the endcap hits and poorly with the extrapolated
chamber track.  Without the correlations being included the 45-degree hits tend to pull the
WIC track off of the correct trajectory in the direction of the multiple scatter.



We calculated a new obliquity factor with fewer simplifying assumptions:
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with the following definitions:
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 The calculation is in the next section.

Weight Matrix Calculation
Multiple scattering effects are included in the calculation of the inverse of the weight matrix.
This is done by estimating the effect of multiple scattering on residuals in the measurement
axis of each detector plane.

A muon moves through a block of matter a distance ∆z in the direction of the incident track.
Due to multiple scattering, when the particle exits the block, it has been displaced by an
impact parameter δ and deflected through an angle α. Its new direction is represented as t′.

 Fermi calculated the joint probability density for α and δ to be:
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               αααα is perpendicular to t and has magnitude α . For small enough α This vector is  
tt öö −′ .  The vector δδδδ is perpendicular to t and has the magnitude delta. And V is the vector

connecting the points where the undeviated track would intersect the plane to the place
where the multiple scattered track actually intersects it.

The weight matrix will be:
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The summation is the part due to multiple scattering and the delta term is due to
measurement uncertainties, including the strip width and uncorrelated alignment errors.
To find the average in the first term we set up the following coordinate systems:
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nö is the unit vector normal to the chamber plane and tö  is the unit vector in the track
trajectory direction. φ is the angle between the xö  axis and the vector α .

The coordinate axes are related by:
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Points on the cone obey:
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At the detector plane, 0=′z , or  z=-xtanα

Points on the intersection of that plane and the cone obey:
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Substituting  and rearranging:
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One can now obtain a new expression for  z on the plane:
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For small angles of deflection the second term in the denominator of each expression is
small.
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In the primes coordinate system the vector αV  (the α contribution to V ) is (x’,y’,0) .  Then
:
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taking the small angle α and large value for s in a limit so that as α→  0, sα→δ.
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In the inverse weight matrix:
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The two detector planes i and j will have different normal directions. Therefore they will
have different orientations for their axes. Their unprimed axes -x̂i

iyö and x̂ j ŷ j  lie in a plane

however.  We define the angle between the two axes iyö and jyö  is ∆.

We define the angle by:
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so that we can consistently use:
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The we have:
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and transforming to cartesian coordinates (α,δ,φα,φδ to αx,δx,αy,δy) and integrating:
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These results for the obliquity factor Λ correspond to the value quoted above.  The α2

term gives  the dominant contribution to the inverse weight now of the new form:
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