

Tau Physics@BaBar

Rahmat Rahmat University of Oregon

Outlines

- Tau Lepton
- BaBar Detector
- Lepton Flavor Violation
- Hadronic Spectrum of Tau Decay
- Summary

Tau Lepton

The tau lepton belongs to the 3rd generation of lepton. It is the third generation counterpart of the electron (1st generation) and the muon (2nd generation).

Tau Mass = 1776.90 ± 0.20 MeV (PDG 2007)

Tau Lifetime = (290.6±1) x 10⁻¹⁵ s (PDG 2007)

Tau is the only lepton which can decay to hadron

4/15/2008

The BABAR

Collaboration

USA [32/223]

Colorado State

Harvard U

U of Town

LBNL.

LI ML

MIT

Towa State U

U of Louisville

U of Maryland

U of Mississippi

U of Notre Dame Ohio State U

U of South Carolina

SUNY, Albany

U of Oregon

Princeton U

Stanford U

SEAC.

Johns Hopkins U

California Institute of Technology UC. Irvine U of Tennessee UC. Los Angeles UC. Riverside UC. Santa Barbara U of Wisconsin UC. Santa Cruz U of Cincinnati U of Colorado

U of Texas at Austin U of Texas at Dallas

Canada

4/19 University of British Columbia McGill University University de Montréal University of Victoria

France [5/41]

LAPP, Annecy U of Massachusetts, Amherst LAL Orsay LPNHE dés Universités Paris VI et VII INFN, Perugia & Univ Ecole Polytechnique, Laboratoire Leprince-Ringuet CEA, DAPNIA, CE-Sociay

Germany [6/28]

Ruhr Universitaet Bochum Universitaet Dortmund Technische Univeritaet Dresden Universitaet Heidelberg Universitaet Rostock Universitaet Karlsruhe

10 Countries 74 Institutions

459 Physicists

Italy

[12/83]

INFN, Bari INEN Formen Lab. Nazionali di Frascati dell' INFN INFN, Genova & Univ INFN, Milano & Univ INFN, Napoli & Univ INFN, Padova & Univ INFN, Pisa & Univ & Scuola Normale Superiore INFN, Roma & Univ "La Sapienza" INFN, Torino & Univ INFN. Trieste & Univ

The Netherlands [1/2] NIKHEF, Amsterdam

Norway [1/3] U of Bergen

Tau Physics@BaBar

Russia [1/11] Budker Institute, Novosibirsk

Spain [2/7]TEAE-Barcelona TETC-Valencia

United Kingdom [10/43]

U of Birmingham Brunel U U of Edinburgh U of Liverpool Imperial College Queen Mary , U of London U of London, Royal Holloway U of Manchester Rutherford Appleton Laboratory U of Warwick

4/15/2008

The BaBar Collaboration						
*				<u>.</u>		
	74	Institutions	in 10 cour	ntries		
	Faculty	PhD Staff	Postdoc	Grad	Non-PhD	Totals
Canada	10		2	7		19
France	14	12	3	12	4	45
Germany	7	4	1	15		27
Italy	27	28	15	14		84
Netherlands	1			1		2
Norway	2			1		3
Russia	2	6		2	1	11
Spain		3	2	3		8
United Kingdom	18	1	12	12	1	44
United States	72	47	40	64	19	242
<u>Totals</u>	<u>153</u>	<u>101</u>	<u>75</u>	<u>131</u>	<u>25</u>	<u>485</u>

With more than 200 students and postdocs the collaboration continues to be on a very strong foundation.

.....

BABAR

Integrated Luminosity

Cross Section $\sigma(e^+e^- \rightarrow \tau^-\tau^+) = 0.89 \text{ nb}$ 450 million τ pairs BaBar is a τ Factory

Lepton Flavor Violation

Lepton Flavor Violation

- Lepton Flavour Violation (LFV) prohibited in Standard Model (SM)
 with massless neutrinos
- observed neutríno oscillation
 - → extension of SM allow for LFV processes BUT BR not experimentally accessible
- ✓ New Physics (NP) allow for LFV with BRNP » BRSM

- One prong on "tag" side $(\pi\nu, \rho\nu, e\nu\nu, \mu\nu\nu, ...) \sim 85\%$
- Strict lepton identification
- No missing momentum on signal side

 ΔE vs. Δm for MC signal

"Neutrinoless" Decay

$$\Delta m = m_{rec} - m_{\tau}$$

$$\Delta E = E_{rec} - E_{beam}$$

Smeared by resolution and radiative effects

Count events in signal box

4/15/2008

Looking for new physics

...unambiguous signature of new physics!

4/15/2008

$\tau \rightarrow l^+l^+$: results

376 fb-1

observed data in Δm - ΔE plane

- ✓ sígnal effícíencíes :
 (5.5 ÷ 12.4)%
- ✓ total expected background (combining 6 channels)
 (4.2 ± 0.8) events
- ✓ observed 6 events

 \rightarrow no evidence for signal

Mode	Eff. [%]	$N_{ m bgd}$	$N_{\rm obs}$	$\mathrm{UL}_{90}^{\mathrm{obs}}$
$e^-e^+e^-$	8.9 ± 0.2	1.33 ± 0.25	1	4.3
$\mu^-e^+e^-$	8.3 ± 0.6	0.89 ± 0.27	2	8.0
$\mu^+e^-e^-$	12.4 ± 0.8	0.30 ± 0.55	2	5.8
$e^+\mu^-\mu^-$	8.8 ± 0.8	0.54 ± 0.21	1	5.6
$e^-\mu^+\mu^-$	6.2 ± 0.5	0.81 ± 0.31	0	3.7
$\mu^-\mu^+\mu^-$	5.5 ± 0.7	0.33 ± 0.19	0	5.3

LFV in Ihh

Future of Lepton Flavor Violation in τ Decays

4/15/2008

Anomalous magnetic moment of muon

Magnetic Moments, g-Factors, etc. $\vec{\mu}_s = g_s(\frac{e}{2m})\vec{s}$

 $\vec{\mu}$ - magnetic moment; g - gyromagnetic ratio \vec{s} is the spin.

- Dirac Equation Predicts $g \equiv 2$
- In nature radiative corrections make $g \neq 2$. $\gamma \neq g = 2 + \frac{\alpha}{\pi} + \cdots$ Dirac Kusch and Foley, Schwinger, 1947

Measurements of a_{μ}

a_µ

The Standard Model prediction of a_{μ} is decomposed in its main contributions:

$$a_{\mu}^{SM} \equiv \left(rac{g-2}{2}
ight)_{\mu} = a_{\mu}^{QED} + a_{\mu}^{had} + a_{\mu}^{weak}$$

of which the hadronic contribution has the largest uncertainty

4/15/2008

Component of a_{μ}

Conserved Vector Current

Because 73% of $a_{\mu}^{had,LO}$ is covered by 2π final state which is dominated by the $\rho(770)$ final state, let's deal with it.

$$\sigma(e^+e^- \to \pi^+\pi^-) = \frac{4\pi\alpha_0^2}{s} v_0(s)$$

In the limit of isospin invariance, Conserved Vector Current (CVC) predict :

4/15/2008

The Problem

Relative difference between τ and e^+e^- data (form factors)

Lowest order in hadronic

the main error contributor to the a_{μ} theoretical prediction.

As QCD is a non-Abelian theory with massless gauge bosons, its perturbative expansion at low energies is not well behaved, so experimental results are needed to complete the theory

4/15/2008

Tau Physics@BaBar

 $\{\gamma\}$

Signal

The signal consists of π^- and π^0 (reconstructed from 2 photons)

Systematic ; we are varying every input which goes into rho mass by uncertainties derived from independent data-MC control samples.

Invariant $\pi^-\pi^0$ Mass Spectrum

π⁻π⁰ Mass

Comparison between Data and MonteCarlo, shows good agreement, except about p"(1.7 GeV).

BABAR will be able to confirm p"(1.7 GeV)

Plot after Montecarlo samples are normalized to Data Luminosity

After Background subtracted, we can use Gounaris-Sakurai function to study its properties

4/15/2008

What will we measure?

- $M\rho,\Gamma\rho$ (Mass and width of ρ)
- $M\rho', \Gamma\rho'$ (Mass and width of ρ')
- $M\rho",\Gamma\rho"$ (Mass and width of ρ ")
- β , ϕ_{β} (contribution of ρ ' and its phase)
- γ , ϕ_{γ} (contribution of ρ " and its phase)
- $a_{\mu}^{\pi\pi}(\pi\pi)$ part of muon anomalous magnetic moment and the most interesting part)

The free parameters are $M_{\rho}, M_{\rho'}, M_{\rho''}, \Gamma_{\rho}, \Gamma_{\rho'}, \Gamma_{\rho''}, \beta, \gamma, \phi_{\beta}, \phi_{\gamma}$

4/15/2008

Fitting parameters

BaBar P	eliminary-	BaBar	Belle	$ALEPH(\tau)$	$CMD-2(e^+e^-)$
$M \rho(GeV)$	0.7745 :	± 0.0006	0.7735 ± 0.0002	0.7755 ± 0.0007	0.7733 ± 0.0006
$\Gamma \rho$ (GeV)	0.1493 =	± 0.0013	0.1492 ± 0.0004	0.1490 ± 0.0012	0.1452 ± 0.0013
M $\rho'(\text{GeV})$	1.2993 :	± 0.0034	1.4530 ± 0.0070	1.3280 ± 0.0150	1.3370 ± 0.0350
$\Gamma \rho'(\text{GeV})$	0.4990 :	± 0.0133	0.4376 ± 0.0199	0.4680 ± 0.0410	0.5690 ± 0.0810
$M \rho''(GeV)$	1.6614 :	± 0.0170	1.7300 ± 0.0220	1.7130(fixed)	1.7130 ± 0.0150
$\Gamma \rho''(\text{GeV})$	0.2433 =	± 0.0366	0.1379 ± 0.0500	0.2350(fixed)	0.2350(fixed)
β	0.090	± 0.013	0.167 ± 0.005	0.210 ± 0.008	0.123 ± 0.011
γ	0.060	± 0.009	0.031 ± 0.011	0.023 ± 0.008	0.048 ± 0.008
$ \phi_{eta} $	118	8.9 ± 8.3	210.3 ± 6.3	153.0 ± 7.0	139.4 ± 6.5
$ \phi_{\gamma} $	59	9.4 ± 8.3	44.2 ± 17	0(fixed)	0(fixed)

Using the Gounaris-Sakurai function, we can extract some important parameters

Result

Using the spectral that we get from BABAR, we can calculate $a_{\mu}^{\pi\pi}$

PaRar Pre	liminary $a_{\mu}^{\pi\pi}(10^{-10})$
BaBar Davarre	458.45 ± 0.40 (stat) ± 0.76 (int sys) ± 2.70 (ext sys) $\pm 2.30_{SU(2)}$
Belle	$459.80 \pm 0.50(\text{stat}) \pm 1.00(\text{int sys}) \pm 3.00(\text{ext sys}) \pm 2.30_{SU(2)}$
$ALEPH(\tau)$	$464.0 \pm 3.2 \pm 2.3_{SU(2)}$
$CMD-2(e^+e^-)$	$450.2 \pm 4.9 \pm 1.6_{SU(2)}$

BABAR will publish the most precise of in $a_{\mu}^{\pi\pi}$ the world

Results: the Compilation (including newest data)

Contributions to $a_{\mu}^{\text{had,LO}}$ [in 10⁻¹⁰] from the different energy domains:

Modes	Energy [GeV]	e⁺e⁻	τ	
Low s expansion	$2m_{\pi} - 0.5$	$55.6 \pm 0.8 \pm 0.1_{rad}$	$56.0 \pm 1.6 \pm 0.3_{SU(2)}$	
π⁺π⁻ (+SND+CMD-2)	0.5 – 1.8	$449.0 \pm 3.0 \pm 0.9_{rad}$	$464.0 \pm 3.0 \pm 2.3_{SU(2)}$	BaBar Preliminary
$\pi^{+}\pi^{-}2\pi^{0}$	2 <i>m_x</i> -1.8	$16.8 \pm 1.3 \pm 0.2_{rad}$	$21.4 \pm 1.3 \pm 0.6_{SU(2)}$	
2 <i>π</i> ⁺2 <i>π</i> ⁻(+BABAR)	2 <i>m_x</i> -1.8	$13.1 \pm 0.4 \pm 0.0_{rad}$	$12.3 \pm 1.0 \pm 0.4_{SU(2)}$	
ω(782)	0.3 – 0.81	$38.0 \pm 1.0 \pm 0.3_{rad}$	-	
<i>ø</i> (1020)	1.0 – 1.055	$35.7 \pm 0.8 \pm 0.2_{rad}$	-	
Other excl. (+BABAR)	2 <i>m_x</i> -1.8	$24.3 \pm 1.3 \pm 0.2_{rad}$	-	
J/ψ, ψ(2S)	3.08 – 3.11	$7.4 \pm 0.4 \pm 0.0_{rad}$	-	
R [QCD]	1.8 – 3.7	$33.9 \pm 0.5_{\text{theo}}$	-	
R [data]	3.7 – 5.0	$7.2 \pm 0.3 \pm 0.0_{rad}$	-	
R [QCD]	5.0 – ∞	$9.9 \pm 0.2_{theo}$	-	
Sum (w/o KLOE)	$2m_{\pi}-\infty$	$690.8 \pm 3.9 \pm 1.9_{\rm rad} \pm 0.7_{\rm QCD}$	$710.1 \pm 5.0 \pm 0.7_{rad} \pm 2.8_{su(2)}$	2)
4/15/2008		Tau Physics@BaBa	r	33

Summary

- LFV results from τ Decays are very competitive
- BaBar will have the most precise calculation of ππ part of muon anomalous magnetic moment in the world BaBar Preliminary (prepared for ICHEP 2008)
- There is a lot of physics to be extracted from this huge data sample