The BABAR Electromagnetic Calorimeter: Status and Performance Improvements

Johannes Bauer

University of Mississippi

for the EMC Group of the BABAR Collaboration

IEEE Nuclear Science Symposium 2005 Puerto Rico October 26, 2005

Outline:

- 1. Introduction to Experiment
- 2. Performance of Hardware
- 3. Calibrations of Individual Crystals
- 4. Cluster Calibrations
- 5. Recent Improvements in Software
- 6. Additional Studies and Future Goals
- 7. Conclusion

Introduction to Experiment

SLAC *B*-Factory

- Asymmetric energy: 9.0 GeV e⁻ 3.1 GeV e⁺
- Total energy: 10.58 GeV \equiv $\Upsilon(4S)$ resonance
- B⁺B⁻ and B⁰B
 ⁰
 pairs to study
 CP violation
 and many other
 things

BABAR Detector

SLAC-PUB-8569, NIM A479, 1 (2002)

BABAR Detector Muon/Hadron Detector Magnet Coil Electron/Photon Detector Cherenkov Detector Tracking Chamber Support Tube **Vertex Detector** e

J M Bauer, p. 3

Electromagnetic Calorimeter (EMC)

- 16 to 17.5 radiation lengths
- 6580 crystals pointing close to interaction point
- Photo diodes and pre-amplifier attached to back of crystal $(\sim 7,300 \text{ photo-}e^-/\text{ MeV})$

- 10-bit ADC + two range bits \implies 18-bit dynamic range
- Measuring photons from 20 MeV to 8 GeV

•
$$\sigma_E/E = 2.3\%/\sqrt[4]{E(\text{GeV})} \oplus 1.35\%$$

 $\sigma_\theta = \sigma\phi = 4.16 \text{ mrad}/\sqrt{E(\text{GeV})}$

SLAC-PUB-10170

Crystals combined into 7×3 (or 6×3) modules

Final barrel \rightarrow

Performance of Hardware

- Quite stable operation:
 - out of 6580 crystals, only one crystal completely dead currently four more dead, but might be recovered
 - \circ 14 more crystals use only one of two diodes
 - $\circ\,$ some more crystals bad in one energy range, e.g. at low energy
 - from time to time ADC board noisy:
 in worst case masking out until next access
- Electronics regularly calibrated:
 - measuring pedestals
 - known charge injected into pre-amplifiers and read out to measure gain and linearity

Calibrations of Individual Crystals

Basics

- Crystals have individual response to energy deposit (overall light yield differences and non-uniformities)
- Light yield decreases due to radiation damage
- Two absolute energy calibrations:
 - $\circ~$ liquid source calibration at low energy
 - $\circ~$ Bhabha calibration at high energy
- At intermediate energies interpolation linear in $\log E$

Liquid Source System

- Neutron generator surrounded by Fluorinert (FC77)
- 19 F + n \rightarrow 16 N + α 16 N ($T_{1/2}$ =7 seconds) decays to 16 O + 6.13 MeV γ
- Pipe system transports radioactive liquid past front of crystals
- Detection of γ with regular DAQ system

- Calibration \sim once a month to $\leq 0.5\%$ (syst. uncertainty 0.1%)
- Stable turn-key operation

SLAC-PUB-10289, IEEE Trans. Nucl. Sci., 51, 1596 (2004)

Bhabha Calibration

- Absolute energy calibration with $e^+e^- \rightarrow e^+e^-$ at crystal energies of 2.5 to 8 GeV (depending on polar angle due to boost)
- Requiring most crystals to have > 200 direct hits $\implies 0.35\%$ statistical error for each crystal systematic error < 1%
- Run off-line up to once a month
- Calibration will soon be automated
- Change in constants similar as change in source calibration constants

Cluster Calibrations

Necessary since not all energy captured inside crystals

Cluster Calibration with π^0 (up to 2 GeV)

- Correct to photon energies based on π^0 mass peak
- Corrections typically 6 to 8%
- Currently testing an improved version

Cluster Calibration above 2 GeV

- Finding factors for calibration to single-photon Monte Carlo
- Applying same correction factors to data
- Soon using $e^+e^- \rightarrow \mu\mu\gamma$ events for calibration

Recent Improvements in Software

Position of Cluster Inside Crystals

• Depth of cluster inside crystal at 12.5 cm before: cluster center projected to front of crystal

⇒ improvement in matching clusters and tracks

Edge Correction

- If photon hits close to edge between two crystals, up to ~3% of energy is lost in gaps
- Dependence on θ position of crystal
- Module symmetry in φ: φ-dependence folded to just three "crystals"

Additional Studies and Future Goals

- Many modes to study performance of EMC, *e.g.*,
 - $\circ e^+e^- \rightarrow \mu\mu\gamma$ events
 - $\circ~$ radiative Bhabhas $e^+e^- \rightarrow e^+e^-\gamma$

$$\circ e^+e^- \rightarrow \gamma\gamma$$

- $\circ D^{*0} \rightarrow D^0 \gamma: E_{\gamma} \sim 100 400 \,\mathrm{MeV}$
- $\circ \ \varSigma_0 \to A\gamma: \ E_\gamma \sim 50-250 \, {\rm MeV}$
- New cluster calibration will soon be implemented
- Bhabha calibration will soon be automated

Conclusion

- BABAR EMC operation stable, performance very good
- Radiation damage measured and calibrated out
- Enhancements made to reconstruction code
- Tweaking calibrations to improve analyses

