The BABAR Electromagnetic Calorimeter: Status and Performance Improvements

Johannes Bauer
University of Mississippi
for the EMC Group of the BABAR Collaboration

IEEE Nuclear Science Symposium 2005 Puerto Rico
October 26, 2005

Outline:
1. Introduction to Experiment
2. Performance of Hardware
3. Calibrations of Individual Crystals
4. Cluster Calibrations
5. Recent Improvements in Software
6. Additional Studies and Future Goals
7. Conclusion
Introduction to Experiment

SLAC B-Factory

- Asymmetric energy:
 9.0 GeV e^-
 3.1 GeV e^+

- Total energy:
 10.58 GeV $\equiv\gamma(4S)$ resonance

- B^+B^- and $B^0\bar{B}^0$ pairs to study CP violation and many other things

Electromagnetic Calorimeter (EMC)

- CsI(Tl) crystals
 - high light yield (50,000γ/MeV)
 - long decay time (940 ns)
- 16 to 17.5 radiation lengths
- 6580 crystals pointing close to interaction point
- Photo diodes and pre-amplifier attached to back of crystal (∼7,300 photo-e⁻/MeV)
- 10-bit ADC + two range bits → 18-bit dynamic range
- Measuring photons from 20 MeV to 8 GeV
- \(\frac{\sigma_E}{E} = 2.3\% / \sqrt[4]{E(\text{GeV})} \oplus 1.35\% \)
 \(\sigma_\theta = \sigma_\phi = 4.16 \text{ mrad} / \sqrt{E(\text{GeV})} \)

SLAC-PUB-10170
Crystal arrangement (barrel & endcap)

Inside barrel

Crystals combined into 7×3 (or 6×3) modules

Final barrel

J M Bauer, p. 5

October 26, 2005
Performance of Hardware

- Quite stable operation:
 - out of 6580 crystals, only one crystal completely dead
 currently four more dead, but might be recovered
 - 14 more crystals use only one of two diodes
 - some more crystals bad in one energy range, e.g. at low energy
 - from time to time ADC board noisy:
 in worst case masking out until next access

- Electronics regularly calibrated:
 - measuring pedestals
 - known charge injected into pre-amplifiers and read out
 to measure gain and linearity
Calibrations of Individual Crystals

Basics

- Crystals have individual response to energy deposit (overall light yield differences and non-uniformities)
- Light yield decreases due to radiation damage
- Two absolute energy calibrations:
 - liquid source calibration at low energy
 - Bhabha calibration at high energy
- At intermediate energies interpolation linear in $\log E$

Liquid Source System

- Neutron generator surrounded by Fluorinert (FC77)
- $^{19}\text{F} + n \rightarrow ^{16}\text{N} + \alpha$
 $^{16}\text{N} \ (T_{1/2}=7 \text{ seconds})$ decays to $^{16}\text{O} + 6.13 \text{ MeV } \gamma$
- Pipe system transports radioactive liquid past front of crystals
- Detection of γ with regular DAQ system
Relative drop in light yield versus time

- Calibration \sim once a month to $\leq 0.5\%$ (syst. uncertainty 0.1%)
- Stable turn-key operation

Bhabha Calibration

- Absolute energy calibration with $e^+e^- \rightarrow e^+e^-$ at crystal energies of 2.5 to 8 GeV (depending on polar angle due to boost)
- Requiring most crystals to have > 200 direct hits $\implies 0.35\%$ statistical error for each crystal
 systematic error $< 1\%$
- Run off-line up to once a month
- Calibration will soon be automated
- Change in constants similar as change in source calibration constants

![Graph showing time evolution of Bhabha constants](image_url)

- endcap
- forward barrel
- backward barrel
- all

Jan 1, 2003 Jul 1, 2003 Jan 1, 2004 Jul 1, 2004
Cluster Calibrations

Necessary since not all energy captured inside crystals

Cluster Calibration with π^0 (up to 2 GeV)

- Correct to photon energies based on π^0 mass peak
- Corrections typically 6 to 8%
- Currently testing an improved version

Cluster Calibration above 2 GeV

- Finding factors for calibration to single-photon Monte Carlo
- Applying same correction factors to data
- Soon using $e^+e^- \rightarrow \mu\mu\gamma$ events for calibration
Recent Improvements in Software

Position of Cluster Inside Crystals

- Depth of cluster inside crystal at 12.5 cm before: cluster center projected to front of crystal
 → improvement in matching clusters and tracks

\[\Delta \phi = \text{difference in } \phi \text{ angle of cluster position and point where track intersects with calorimeter} \]

\[\Delta \phi \text{ in rad} = \text{difference in } \phi \text{ angle of cluster position and point where track intersects with calorimeter} \]
Edge Correction

- If photon hits close to edge between two crystals, up to $\sim 3\%$ of energy is lost in gaps
- Dependence on θ position of crystal
- Module symmetry in ϕ: ϕ-dependence folded to just three “crystals”

ΔE (= measured B energy minus known beam energy)

Monte Carlo $B^+ \rightarrow K^{*+} \gamma$:

- $\text{FWHM}/2.36 = (45.1 \pm 0.7) \text{ MeV}$ w/out edge corr.
- $\text{FWHM}/2.36 = (42.0 \pm 0.6) \text{ MeV}$ with edge corr.

$\Rightarrow \Delta E$ resolution improved by 7% in this case
Additional Studies and Future Goals

- Many modes to study performance of EMC, e.g.,
 - $e^+e^- \rightarrow \mu\mu\gamma$ events
 - radiative Bhabhas $e^+e^- \rightarrow e^+e^-\gamma$
 - $e^+e^- \rightarrow \gamma\gamma$
 - $D^*^0 \rightarrow D^0\gamma$: $E_\gamma \sim 100 - 400$ MeV
 - $\Sigma_0 \rightarrow \Lambda\gamma$: $E_\gamma \sim 50 - 250$ MeV
- New cluster calibration will soon be implemented
- Bhabha calibration will soon be automated

Conclusion

- BABAR EMC operation stable, performance very good
- Radiation damage measured and calibrated out
- Enhancements made to reconstruction code
- Tweaking calibrations to improve analyses