

Multi-Terabyte EIDE Disk Arrays running Linux RAID5

bv

University of Mississippi: David A. Sanders, Lucien M. Cremaldi, Vance Eschenburg, Romulus Godang, Michael D. Joy and Donald J. Summers and Fermilab: Donald L. Petravick Presented at Computing in High Energy Physics 2004 (CHEP04) 27th September - 1st October, 2004, Congress Centre, Interlaken, Switzerland

Introduction

- \$2000 per Terabyte Storage is Available
- 18 times ceaper than Sun StorEdge 6120
- Scalable for use at both Small and Large Institutions — From 2 TB to 250 TB, the same as a \$ Million tape silo.
- 250 TB is 1 month of LHC data
- Redundant RAID5
- Commodity Hardware

Hardware — Base System

- System Disk 120 GB Western Digital
- 24" EIDE Cables
- CPU Dual 2 GHz AMD Athlon
- Motherboard MSI K7D Master MPX
- 1024 MB DDR memory
- Second Power Supply (15A at 12V)
- Gigabit Ethernet

RAID5 Test Box

Results — Software RAID5

- Base write speed 29 MB/s
- Speed of 24 MB/s for 2 concurrent writes (17 % overhead)
- 37 MB/s read (using cp to system disk)
- 33 MB/s write (using cp from system disk)
- 10-15% CPU-overhead but on other CPU.

High Energy Physics Data Analysis Strategy

- Use Parallel Processing
- Split data and store on many RAID5 PCs
- Analysis for a subset of data takes place locally on the PC where the data resides
- Network is only used to combine results
- Or use NFS to mount RAID5 array on many PCs (Less efficient due to network overhead)

Definitions

- RAID Redundant Array of Inexpensive Disks
- RAID level 0 Concatenation
- RAID level 1 Mirroring
- RAID level 4 Parity
- RAID level 5 Striped-Parity
- EIDE Enhanced Integrated Drive Electronics

Additional Hardware

Software RAID5

- Eight 250 GB Western Digital disks or eight 300 GB Maxtor disks
- 2 Promise Ultra133 PCI cards

Hardware RAID5

- Twelve 250 GB Western Digital disks
- 3ware 12 disk RAID controller 7506-12

RAID5 Boxes for CERN and SLAC

Results — Hardware RAID5

- With 9 250 GB disks RAID5 (2 TB Array)
- Base write speed 41 MB/s
- With RAID0 of two 1.2 TB RAID5 arrays (2.4 TB Array)
- Base write speed 29 MB/s
 Speed of 25 MB/s for 2 concurrent writes
- (14 % overhead)
 With two 1.2 TB RAID5 arrays
- 33 MB/s write (using cp from system disk)
- 37 MB/s write (using cp from system disk)
 37 MB/s write (using cp from array1 to array2)
- 1-5% CPU-overhead (Journaling).

High Energy Physics Cluster

Why Use Commodity Hardware?

"Frankly sir, we're tired of being on the cutting edge of technology."

Disks

 Disk
 RPM
 \$/GB
 GB/platter
 Amps@12V
 Warranty

 300 GB Maxtor Maxline II (2MB Cache)
 5400
 0.75
 75
 0.59
 3 Yrs.

 250 GB Western Digital (8MB cache)
 7200
 0.61
 80
 0.43
 3 Yrs.

 250 GB Maxtor Maxline Plus II
 7200
 0.69
 80
 0.92
 3 Yrs.

 300 GB Maxtor Maxline III SATA
 7200
 0.77
 100
 0.63
 3 Yrs.

 200 GB Seagate Barracuda SATA
 7200
 0.63
 100
 1.13
 5 Yrs.

Problems and Solutions

Problems

Not enough power with stock power supply
Could only use 2 Promise EIDE controller cards. (Not enough PIRQs)

3ware 7506-12 controller has 2 TB limit
Used combination of software RAID-0 of 2 Hardware RAID5 sets

2 TB size limit for 2.4 kernel
Used 2.6 kernel or only 8 disks

Used Round EIDE cables

Results — Gigabit Network

- Base internal write speed 29 MB/s
- NFS
 13 MB/s write (synchronous mount)
- 18 MB/s write (synchronous mount)
- 23 MB/s write (using cp over asynchronous mount)
- 23-38% overhead NFS+network
- 22 MB/s
- 24% network overhead

Grid Disk Cache

Caching avoids Grid-Lock

Data Storage Cake

Tests

- Measured speed and CPU-overhead of Software RAID5
- Measured speed and CPU-overhead of Hardware RAID5
- Measured speed of network file transfers
- Tested journaling file systems: ext3 and ReiserFS

Future Recommendations

Hardware:Use SATA Disks

Software:

- Use SATA DISKS
 Use 3ware Escalade 9500S-12 (or 9500S-12MI) SATA card
- Use Hot-Swappable drives
- CPU 2.0 GHz AMD Athlon (or better)
 Gigabit Ethernet Card/built-in
- Fiber Channel Arbitrated Loop (FCAL)
 Second Power Supply (15A at 12V)
- Use Linux Kernel 2.6Use ReiserFS Journaling File system

Commercial Systems

Capacity Size Price* Price/GB

Apple Xserve RAID 3.5 TB 3U \$10,999 \$3.14

Dell EMC CX200 2.1 TB 3U \$18,999 \$9.05

HP StorageWorks 1000 2.1 TB 3U \$23,925 \$11.39

IBM FASt200 3542-1R 2.1 TB 3U \$51,895 \$24.71

Sun StorEdge 6120 2.04 TB Two 3U \$74,600 \$36.57

*Based on suggested retail prices on December 10, 2003
From Apple document L301297A_XserveRAID_TO.pdf

Summary

- \$2000 per Terabyte RAID5 arrays of EIDE Drives tested,
- without tape backup.

Uses Commodity Hardware.

Tested Gigabit networking

- They are Scalable —Cost less/TB than a tape silo, but scalable down to 2 TB.
- Tested Hardware and Software RAID with 250 and 300 GB hard disks

Supported by the U.S. Department of Energy under

DE-FG05-91ER40622 and DE-AC02-76CH03000.

