Measurements of $|V_{cb}|$ and $|V_{ub}|$ at BABAR

Romulus Godang (representing the BABAR Collaboration)

Department of Physics and Astronomy, University of Mississippi-Oxford, University, MS 38677 USA

Abstract

We report on new measurements of the Cabibbo-Kobayashi-Maskawa matrix elements $|V_{cb}|$ and $|V_{ub}|$ with inclusive and exclusive semileptonic B decays, highlighting the recent precision measurements with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC.

Contributed to the Proceedings of Particles and Nuclei International Conference, PANIC05, October 24 - 28, 2005, Santa Fe, NM USA

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Work supported in part by Department of Energy contract DE-AC03-76SF00515.

1 Introduction

The stringent tests of the Standard Model are currently not limited by the measurements of the CP-Violation parameter sin 2β [1] but by the measured ratio of the CKM matrix elements $|V_{ub}|/|V_{cb}|$, which determines the length of the left side of the Unitary Triangle.

The semileptonic B meson decays to charm and charmless mesons are the primary tool for measuring the CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$ because of their simple theoretical description at the parton level. Their relatively large decay rates are proportional to $|V_{cb}|^2$ or $|V_{ub}|^2$, depend on the quark masses m_b and m_c , and allow us to probe the impact of strong interactions on the bound quark.

The semileptonic B meson decays can also be used to achieve a precision measurement of $f_{00} \equiv \mathcal{B}(\Upsilon(4S) \to B^0\overline{B}^0)$, which allows to reduce systematic uncertainty on many analyses. We measured f_{00} using a novel method, which does not require the knowledge of $\tau(B^+)/\tau(B^0)$ nor rely on isospin symmetry [2]. The f_{00} value is important for measuring absolute $\Upsilon(4S)$ branching fractions and for measuring $|V_{cb}|$. Experimental studies of the semileptonic B meson decays can be broadly categorized into inclusive and exclusive measurements.

$2 |V_{cb}|$ Measurements

The CKM matrix element $|V_{cb}|$ can be extracted from the semileptonic B decay rate by correcting the strong interaction effects in the parton-level calculations. The semileptonic B decay rate is determined from its semileptonic branching fraction and the average B lifetime measurements. The perturbative and non-perturbative QCD corrections and their uncertainties can be calculated in the Heavy Quark Expansion (HQE) [3]. In the kinetic-mass scheme, these expansions in $1/m_b$ and $\alpha_s(m_b)$ have six parameters to order $\mathcal{O}(1/m_b^3)$: the two running kinetic masses of b and c quarks, $m_b(\mu)$ and $m_c(\mu)$, and four non-perturbative parameters: $\mu_\pi^2(\mu)$, $\mu_G^2(\mu)$, $\rho_D^3(\mu)$, and $\rho_{LS}^3(\mu)$, the expectation value of kinetic, chromomagnetic, Darwin, and spin-orbit operators, respectively. All these parameters depend on the scale μ separating short-distance from long-distance QCD effects; the calculations are performed for $\mu = 1$ GeV [4].

We measured the inclusive $B \to X_c \ell \nu$ branching fraction and the six heavy quark parameters from a fit to the moments of the hadronic mass and electron energy distribution in semileptonic B decays, obtaining $|V_{cb}| = (41.4 \pm 0.4 \pm 0.4 \pm 0.4 \pm 0.6) \times 10^{-3}$, $\mathcal{B}(B \to X_c e \nu) = (10.61 \pm 0.16 \pm 0.06)\%$, $m_c = (1.18 \pm 0.07 \pm 0.06 \pm 0.02)$ GeV, $m_b = (4.61 \pm 0.05 \pm 0.04 \pm 0.02)$ GeV, $\mu_\pi^2 = (0.45 \pm 0.04 \pm 0.04 \pm 0.04)$ GeV³, and $\rho_{LS}^3 = (-0.09 \pm 0.04 \pm 0.07 \pm 0.04)$ GeV³, where the errors refer to contributions from the experimental errors on the moment measurements and the HQE, and other theoretical uncertainties derived from Refs. [6]. The fit results are fully compatible with independent estimates of $\mu_G^2 = (0.35 \pm 0.07)$ GeV², based on the $B^* - B$ mass splitting [6], and of $\rho_{LS}^3 = (-0.15 \pm 0.10)$ GeV³, from the heavy-quark sum rules [7]. This is to date the most precise measurement of both $|V_{cb}|$ and the b-quark mass.

The CKM matrix elements $|V_{cb}|$ can also be extracted from the exclusive semileptonic $\overline{B}^0 \to D^{*+}\ell^-\overline{\nu}_\ell$ as a function of w, where w is the product of the four velocities of the \overline{B}^0 and D^{*+} , and corresponds to the relativistic boost γ of the D^{*+} in the \overline{B}^0 rest frame. By extrapolating the differential decay rate of $\overline{B}^0 \to D^{*+}\ell^-\overline{\nu}_\ell$ to the kinematic limit $w \to 1$, we extract the product of $|V_{cb}|$ and the axial form factor $\mathcal{A}_1(w=1)$. We combined this measurement with a lattice QCD calculation [8] of $\mathcal{A}_1(1) = \mathcal{F}(1) = 0.919^{+0.030}_{-0.035}$ to determine $|V_{cb}| = (38.7 \pm 0.3 \pm 1.7^{+1.5}_{-1.3}) \times 10^{-3}$ [9],

where the errors represents the statistical, the systematic, and the uncertainty in $A_1(1)$, respectively.

$3 |V_{ub}|$ Measurements

The inclusive decay rate $B \to X_u \ell \nu$ is directly proportional to $|V_{ub}|^2$ and can be calculated using HQE; however, the extraction of $|V_{ub}|$ is a challenging task due to a large background from $B \to X_c \ell \nu$ decays.

We have extracted $|V_{ub}|$ using the following techniques: a) the measurement of the lepton spectrum above 2.0 GeV/c, i.e. near the kinematic endpoint for $B \to X_c \ell \nu$ decays [10], resulting in $|V_{ub}| = (4.44 \pm 0.25^{+0.42}_{-0.38} \pm 0.22) \times 10^{-3}$; b) the measurement of the lepton spectrum combined with q^2 , the momentum transfer squared [11], resulting in $|V_{ub}| = (3.95 \pm 0.26^{+0.58}_{-0.42} \pm 0.25) \times 10^{-3}$; c) the measurement of the hadron mass distribution below 1.7 GeV/ c^2 and $q^2 > 8$ GeV²/ c^4 in events tagged by the full reconstruction of a hadronic decay on the second B meson [12], resulting in $|V_{ub}| = (4.65 \pm 0.34^{+0.46}_{-0.38} \pm 0.23) \times 10^{-3}$. In all of the above measurements, the errors are due to experimental, shape function, and theoretical uncertainties.

We have also measured $|V_{ub}|$ in the exclusive semileptonic $B \to \pi \ell \nu$ decays based on three different methods: a) in untagged events, in which the neutrino momentum is inferred from the missing momentum, i.e. the four-momentum is inferred from the difference between the four-momentum of the colliding-beam particles and sum of the four-momenta of all detected particles in the event. This measurement is performed separately in five intervals of q^2 and leads to an independent measurement of the shape of the form factor. The results agree well with predictions from lattice QCD and light-cone sum rules [13], resulting in $|V_{ub}| = (3.82 \pm 0.14 \pm 0.22 \pm 0.11 ^{+0.88}_{-0.55}) \times 10^{-3}$ from $B \to \pi \ell \nu$, where the errors are statistical, systematic, the form factor shape, and the form factor normalization; b) measurement of $B^0 \to \pi^- \ell^+ \nu$ decays uses events in which the signal B meson recoils against a B meson that has been reconstructed in a semileptonic decay $\overline{B}^0 \to D^{(*)+}\ell^- \overline{\nu}_\ell$ [14], resulting in $|V_{ub}| = (3.3 \pm 0.4 \pm 0.2 ^{+0.8}_{-0.4}) \times 10^{-3}$; c) measurements of $B^0 \to \pi^- \ell^+ \nu$ and $B^+ \to \pi^0 \ell^+ \nu$ decays in $\Upsilon(4S) \to B\overline{B}$ events tagged by a fully reconstructed hadronic B decay in three regions of q^2 [15], resulting in $|V_{ub}| = (3.7 \pm 0.3 \pm 0.2 ^{+0.8}_{-0.5}) \times 10^{-3}$, where the errors of the last two results are statistical, systematic, and the form factor normalization uncertainties, respectively.

4 Conclusion

Precision measurements of the CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$ would significantly improve the constraints on the Standard Model. The current experimental precision of $|V_{cb}|$ is about 2% and the precision of $|V_{ub}|$ is about 8%, which is dominated by theory uncertainties.

In the next few years, much larger $B\overline{B}$ data sample will become available from the B Factories [16], PEP-II [17], and KEKB [18]. We can expect significant improvements in statistics, in our understanding of the experimental and theoretical uncertainties, leading to higher precision of $|V_{cb}|$ and $|V_{ub}|$.

I would like to thank all members of the BABAR Collaboration. This work was supported by the U.S. Department of Energy grant DE-FG02-91ER40622.

References

- [1] Particle Data Group, S. Eidelman *et al.*, Phys. Lett. B **592**, 1 (2004); http://pdg.lbl.gov (2005).
- [2] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 95, 042001 (2005).
- [3] M. Voloshin and M. Shifman, Sov. J. Nucl. Phys. 41, 120 (1985);
 J. Chay, H. Georgi, and B. Grinstein, Phys. Lett. B 247, 399 (1990);
 I. I. Bigi and N. Uraltsev, Phys. Lett. B 280, 271 (1992).
- [4] I. I. Bigi, M. Shifman, N. Uraltsev, and A. Vainshtein, Phys. Rev. D 56, 4017 (1997).
- [5] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 011803 (2004).
- [6] P. Gambino and N. Uraltsev, Eur. Phys. J. C 34, 181 (2004);
 D. Benson, I. I. Bigi, T. Mannel, and N. Uraltsev, Nucl. Phys. B 665, 367 (2003);
 N. Uraltsev, Int. J. Mod. Phys. A 20, 2099 (2005).
- [7] I. I. Bigi, M. Shifman, and N. Uraltsev, Annu. Rev. Nucl. Part. Sci. 47, 591 (1997).
- [8] S. Hashimoto, Phys. Rev. D **66**, 014503 (2002).
- [9] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 71, 051502 (2005).
- [10] BABAR Collaboration, B. Aubert et al., hep-ex/0509040, accepted by Phys. Rev. D.
- [11] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 95, 111801 (2005).
- [12] BABAR Collaboration, B. Aubert *et al.*, hep-ex/0507017 (2005).
- [13] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 72, 051102 (2005).
- [14] BABAR Collaboration, B. Aubert *et al.*, hep-ex/0506064 (2005).
- [15] BABAR Collaboration, B. Aubert *et al.*, hep-ex/0507085 (2005).
- [16] P. Oddone, UCLA Collider Workshop, eConf C870126, 423 (1987);
 UA1 Collaboration, C. Albajar et al., Phys. Lett. B 186, 247 (1987).
- [17] BABAR Collaboration, B. Aubert et al., Nucl. Instr. Methods Phys. Res., Sect. A 479, 1 (2002).
- [18] Belle Collaboration, A. Abashian *et al.*, Nucl. Instr. Methods Phys. Res., Sect. A **479**, 117 (2002).