
MUC-NOTE-COOL_THEORY-271 

 
 

Magnetic Field Maps for the RFOFO 
Muon Cooling Ring 

 
Steve Bracker  

s_bracker@hotmail.com 
 

University of Mississippi 
 

March 27, 2003 
 

MuCool Note #271 
 
 
 
 

Generating magnetic field maps for the RFOFO Muon cooling ring has proven 
challenging.  The problem is divided into several parts: (1) The primary field generator 
which starts with the coil geometry and computes B(X) for an arbitrary point in the 
muon-accessible volume of the ring from basic physical principles, (2) A field map 
builder which uses the primary field generator to compute the field on a lattice of points, 
stored on disk for later use, and (3) a secondary field generator which loads the field-on-
a-lattice into memory and interpolates in the field map to deliver B(X) to simulation 
programs as quickly as possible. Extensive tests must be performed to validate the results 
at every stage; these validations took far more time to program and run than did the field 
generators being checked. The current release of the field map and the software to access 
it is believed to be correct to about a part in ten thousand. 
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General Statement of the Problem 
 
The RFOFO Cooling ring [1,2,3]  is a design (actually an ensemble of closely related 
designs) for an apparatus which receives intense pulses of muons from an upstream 
generator, reduces the emittance of the muon ensemble by absorption cooling and 
concurrent reacceleration, and emits the cooled muon ensemble into downstream 
consumers. While traveling around the cooling ring, the muon trajectories are steered by 
vertical dipole-like fields which provide the "bend" and solenoidal fields that provide 
focusing and confinement. In the present design, both fields are generated by the same 
coils -- short large-aperture solenoids which are slightly tilted about a horizontal axis to 
provide the bending field.  
 
The RFOFO ring is divided into twelve identical 30-degree cells. Each cell has two 
solenoids symmetrically placed around the cell center. The two coils of each cell are 
tilted in opposite directions, and the current flows through them in opposite directions.  
 
There are some complexities in generating the fields for small rings which are much less 
important for straight cooling channels. The coils being used in this design are large-
diameter, short, and carry high-current; the maximum field is several tesla. The ring is 
small, a little over 5 meters in radius. From every point in the active (muon-accessible) 
region of the ring, a particle is significantly affected by the field generated by all the 
coils, even the ones on the other side of the ring.  Hence one must develop a single global 
field map rather than assuming that a particle sees field components only from the closest 
coils.  
 
It has not proven easy to get a clear statement from ring designers regarding how 
accurately the field must be known. This is hardly surprising; the mechanisms of cooling 
are complex and still being intensively studied. For now, if cooling performance claims 
are to have credibility, it is important to know the field to high accuracy, so that even 
rough qualitative arguments will suffice to show that it is good enough. Our goal has 
been to know the components of B(X) to 1 gauss averaged over the active volume, and 
no worse than 3 gauss at any point in the active volume. Given the fact that the maximum 
field strength is several tesla and the field gradients are very steep, this is a challenging 
requirement. 
 
 
 
Phase 1 -- The Original Field Discrepancy Problem and its Resolution 
 
Upon arriving at the University of Mississippi in October 2002, I learned that there was a 
discrepancy between two magnetic field generation programs, both attempting to model 
the magnetic field in the active (muon-accessible) region of the RFOFO cooling ring. 
There were some odd aspects to the discrepancy. In transport coordinates, both the 
longitudinal component of the field Bs' and the horizontal transverse component Bx' 
agreed very closely, better than 1%. This offered some assurance that the simulations 
were not attacking completely different problems. 
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However, there was a very large discrepancy in the Y' (vertical transverse) component of 
the field. Plots of the two By' fields for points along the nominal beam trajectory are 
shown for one 30-degree cell of the ring; the other eleven cells have identical fields. The 
BNL field (left, Oct. 16, 2002) and the Cremaldi field (right, mid-October, 2002) are 
plotted at roughly the same scale. 
 

By in RFOFO Ring -- 24 coils on
Rmin = 77.5 cm   Coils in nominal locations

-0.2

-0.19

-0.18

-0.17

-0.16

-0.15

-0.14

-0.13

-0.12

-0.11

-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0 0.5 1 1.5 2 2.5 3

S (meters)

B
y 

(t
es

la
)

 
Each cell contains two coils, equidistant from the cell midpoint, having opposite polarity 
and X' tilt. The coil centers are at about S' = 0.55 and 2.20 meters.  It is the tilt about the 
X' axis that produces the bending field which orbits the muons around the ring. It is 
important that the around-the-ring average By' have the correct value (about 0.125 tesla) 
to produce stable orbits for 0.200 GeV/c muons. As plotted above, the BNL field, with 
coils tilted 27 milliradians, satisfies this requirement. The Cremaldi field By' does not 
reach 0.125 tesla anywhere, and the average By' is much less. If the Cremaldi field shape 
were correct, then the coils would need to be tilted far more than 27 milliradians to 
produce the necessary bending field. One could not rule out the possibility that a tilt this 
large would have serious repercussions on the cooling performance of the ring. 
 
Both simulators agree that By is a minimum at the cell midpoint and increases 
symmetrically about the midpoint as one approaches the coils. However, the BNL field 
continued to increase as the observation point passes from the cell midpoint through the 
coils and approaches the cell boundaries, whereas the Cremaldi field reached a maximum 
near the coil centers and then began to fall again approaching the cell boundaries.  
 
It is easy to make a first-order argument that the Cremaldi field is the more plausible of 
the two. Suppose that you "straightened the ring" by placing the coils along a single 
straight axis, and then shifted the coils along this axis so that they were spaced at equal 
intervals. In this case, symmetry arguments lead one to believe that By' should be rather 
like a sine wave, with nearly equal maxima at the coil centers and nearly equal minima at 
points midway between coils. 
 

 4



If every other coil is now shifted along the axis, so that inter-coil gaps alternate large, 
small, large, small . . ., then By' in the small gaps should become more like the field in 
the coil centers, while By' in the large gaps should approach zero more closely. This is 
exactly what the Cremaldi field does. In contrast, the BNL By' becomes very strong in 
the cell-boundary inter-coil gaps, even though the inter-coil spacing there is only a little 
smaller than the intercoil spacing between the two coils of a single cell. The shape of the 
field-strength plot should not change radically if the coil placement axis is bent into a 
circle, as long as the radius of the circle is large compared to the inter-coil separation.   
 
Of course it is easy to mislead oneself with this sort of first-order argument. I was surely 
not confident enough in either field to go forward with simulations based upon it. 
Therefore, I decided to write a third field generator, independent of the other two, that 
would not only provide a "tie-breaker vote", but embody visualization tools and 
consistency checks that would hopefully settle the matter to everyone's satisfaction. So it 
came to pass that there were three more-or-less independent field generators -- BNL, 
Cremaldi and Bracker.  
 
 
First Steps -- Biot-Savart Fields for Various Coil Configurations 
 
Whenever there is uncertainty about the validity of a complex system, my approach is to 
begin work with a "strategic withdrawal" back to a simple system which can be well 
described analytically, often employing symmetry arguments. First the approximation 
methods needed for the complex system are made to work well on the simple symmetric 
systems; then the symmetries are broken and the complexities added back in slowly, 
checking along the way that to ensure that changes are thoroughly understood. 
 
(1)  The Biot-Savart field generator was first checked by computing the axial field of a 
single-turn circular coil and comparing the generated field to the well-known analytic 
solution. Even with this greatly simplified configuration, it is possible to start studying 
issues such as "Is 32-bit arithmetic likely to suffice for the complete problem?" and "How 
many segments must each turn be divided into in order to achieve acceptable accuracy?"  
In this case, I decided that single-precision arithmetic was probably not going to suffice, 
and that the 100 segments per turn previously used at Ole Miss would probably be too 
coarse-grained. It is always well to address these matters as early as possible. 
 
(2)  The slightly-off-axis behavior of the field generator was explored. There are analytic 
approximations and of course obvious symmetry arguments that can be employed. Once 
again, I tried to ensure that everything was working extremely well on this simple task 
before moving on. 
 
(3)  The "real coils" were built up by superimposing multiple radial layers and 
longitudinal layers of turns. Since these coils are simply superpositions of single-turn 
coils, they are analytically solvable to the same degree as is a single-turn coil. As a 
preliminary solution, each coil was composed of 50 longitudinal layers and 11 radial 
layers of turns -- a total of 550 turns, each 1 cm x 1 cm in cross-section. (All the current 
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in the turn is assumed to flow at the center of the turn.) Each turn was divided into 360 
(1-degree) straight segments. Initially the current segments had their end-points on the 
winding center, so a turn consisted of a 360-sided polygon inscribed within the circular 
winding. It proved to be important, even with 360 segments per winding, to use a 
polygon midway between the inscribed and circumscribed polygons. 
 
(4)  I placed two of these 550-turn coils on a single axis, separated by a specified 
longitudinal distance, and computed the field along the axis. The coils had opposite 
polarity, so that the longitudinal component of the field was zero midway between the 
two coils. The axial field can still be computed analytically at this point, though this is the 
last configuration for which it can be done simply. From this point on, one must proceed 
not knowing the "right answer" exactly, though there are still continuity and symmetry 
arguments that can increase one's confidence that the results are correct. 
 
(5)  I started tilting the coils about a horizontal axis, one clockwise and the other counter-
clockwise, so as to simulate the tilting done to produce the ring's bending field. (Note that 
the rotations around a vertical axis, needed to position the coils around the ring, have not 
yet been made.)  Special attention was devoted to the behavior of the Y (vertical) 
component of the field as the tilt angle, starting at 0, was increased. It was discrepancies 
in By, after all, that had prompted this whole effort. 
 
(6)  I put three magnets (alternating polarity and tilt) at equal intervals along a straight 
axis and studied the near-axis behavior to ensure that the expected symmetries were 
produced.  Then I slowly moved the center magnet axially to the left, so that the nearest-
neighbor magnet spacings were no longer the same. Next, I slowly shifted the magnets 
and tilted them about a vertical axis to place them on a coil-placement circle of the proper 
radius. At every step, coarse field maps were generated and plotted until I felt that I had a 
good semi-quantitative understanding of the field's behavior as the coil placements were 
slowly varied. Finally, all of the remaining 21 coils in the ring were placed and turned on 
to ensure that they did not produce first-order changes in the By components being 
examined. 
 
Upon completion of this program, the field map I generated agreed very closely (better 
than 1%) with the Biot-Savart field produced by Lucien Cremaldi and disagreed very 
substantially with the field map generated at BNL. As a final check, I generated the field 
for a ring similar to the nominal ring, but with the coils equally spaced around the ring at 
15 degree intervals. As expected, the axial By became very like a sine wave, distorted 
(but not severely) as the coils were pushed back to their proper positions around the ring.  
Hence we concluded that the Cremaldi field was likely to be nearly correct and the BNL 
field incorrect, and in the end this proved to be the case. Errors were found in the BNL 
field generator, and calculations done at BNL quickly concluded that the tilt angles must 
be increased to about 53 milliradians to produce the bending field required.  This 
reconciliation of the three field generators (BNL, Cremaldi, Bracker), at least to the 1% 
level, marked the end of the first phase of work. 
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 Cremaldi Field -- 53 mr
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Bracker Field -- 53 mr
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Upper left: New BNL Field (Y' component) with 53 milliradian tilts 
Upper right:  Cremaldi Biot-Savart field with new (53 milliradian) tilt angle 
Lower: Bracker Biot-Savart field with new (53 milliradian) tilt angle 
 
 
 
 
 
 
 

 7



A Comparison of Field Map Generating Techniques 
 
The BNL field was generated using BSHEET / ELLTHREE / RC -- a well-tested package 
deployed in ICOOL and elsewhere. In this approach, a coil is represented by a small 
ensemble of coaxial cylindrical current sheets.  The field at an observation point is 
computed by summing field contributions from each current sheet. The field contribution 
from a current sheet is (insofar as I understand it) calculated by the iterative solution of a 
small system of coupled equations involving elliptic integrals. 
 
The Cremaldi and Bracker fields were generated using independent implementations of a 
Biot-Savart summation technique. A coil is represented by a large number (typically 550) 
of circular turns; the turns are divided into a large number (typically 360) of straight 
segments. The field at an observation point is computed by summing field contributions 
from each segment. The field contribution from a segment is computed using the Biot-
Savart law. 
 
In both cases, computing the field for the entire ring requires that the coils be placed at 
prescribed positions around a coil placement circle, typically a circle concentric with the 
nominal beam trajectory and ~10 cm larger in radius.  Then the coils must be rotated and 
tilted appropriately. The whole-ring field at some observation point within the active 
(muon-accessible) volume of the ring is computed by summing field contributions from 
each of the 24 tilted coils in the ring.   
 
For all the field generators, one provides a method for computing the field from a single 
coil, and another method for combining the single-coil fields into the 24-coil field for the 
ring as a whole. In summary: 
 
 
To find the total 24-coil field for any observation point in the ring: 
 
Zero the total field accumulator 
Position the coils around the ring 
For all coils in the ring . . . 
  Compute the field contribution from one coil 
  Add the coil's contribution into the total field accumulator 
 
 
To find the field due to a single coil (Biot-Savart) 
 
Zero the coil's total field accumulator 
For all turns in the coil . . . 
  For all segments in the turn . . . 
    Compute the field contribution from one segment 
    Add the segment's contribution into the coil's total field accumulator 
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To find the field due to a single coil (BSHEET) 
 
Zero the coil's total field accumulator 
For all current sheets in the coil . . . 
  Compute the field contribution from one sheet 
  Add the sheet's contribution into the coil's total field accumulator 
 
 
The position of turns, segments and sheets within each coil is specified in a coordinate 
system fixed in the coil. One axis of the coil coordinate system is the axis of the 
cylindrical coil.  To get to a coordinate system that encompasses the entire ring -- the ring 
cartesian coordinate system for GEANT, the transport coordinate system for ICOOL -- 
you must position each coil around the coil placement circle and rotate it around two 
axes. The transforms involved are straightforward translations and rotation matrices, but 
like all such transforms, there are myriad opportunities for dropped terms, sign errors, 
etc.  
 
For the Biot-Savart coordinate transforms,  I made no effort to calculate an overall 
transform matrix combining all the simple rotations and translations. Instead, I performed 
the elementary transforms one at a time, and stored vector components for all the 
intermediate coordinate systems.  This made it possible to use Excel dynamic scatterplots 
to exercise and graphically validate each simple rotation and translation to ensure that it 
was working as expected. No coordinate transform was installed in the field generation 
program until it was rigorously checked in this manner. 
 

 
 

 

Biot-Savart Field Generation -- A Brief Summary 
 
The RFOFO ring has 12 pie-slice cells.  Each cell has two coils.  Each coil 
consists of (typically) 550 turns (11 radial layers, 50 longitudinal layers). 
Each turn consists of (typically) 360 straight current segments.  Each 
segment vector has a head, a tail, and a midpoint.  
 
The segment's head, tail and midpoint coordinates are transformed from the 
tilted-coil frame to the untilted-coil frame to the ring frame.  An 
observation point is specified in the ring frame. The  magnetic field at the 
observation point due to each current segment is computed using the Biot 
Savart law. The field vector contributions from all current segments are 
summed to produce the magnetic field at the observation point in the ring 
frame. If it is necessary to express the field in transport coordinates, then the 
field vector is rotated as needed. 
 
Typically, we need to know the magnetic field at an ensemble of observation 
points. The procedure outlined above is simply repeated for each observation 
point in turn. 
9



Pros and Cons of the Two Primary Field Generation Methods 
 
It might be well to digress briefly to spell out explicitly the advantages and disadvantages 
of these two primary field generation methods. The Biot-Savart field generator is much 
easier to understand; anyone with a passing acquaintance with Halliday & Resnick knows 
exactly how to employ the method to generate a field given a large ensemble of current 
segments whose currents, positions and directions are known.  The BNL sum-of-sheets 
method is considerably more complex. As we shall see, there are some "gotchas" 
associated with the algorithm that one must be careful to take into account. Hence from 
the standpoint of simplicity -- very important in the early development of a simulation 
algorithm -- the Biot-Savart summation method is the clear winner. 
 
However, Biot-Savart summation does have one major drawback; it is excruciatingly 
slow -- probably about 100 times slower than the sum-of-sheets method computed to 
equivalent accuracy.  It quickly became clear that the Biot-Savart summation algorithm's 
role would become that of a "gold standard" against which to check other primary field 
generators over a limited ensemble of test points; it would not be used for production of a 
full-blown field grid, for example.  Therefore, as soon as the Phase 1 difficulties were 
resolved, we kept a parallel software development track going, which began with sum-of-
sheets software provided by Rick Fernow and involved various local tunings, tweakings 
and wrappings of that software. 
 
Both field generation methods are approximations. A real coil is not a small set 
(traditionally three) of current sheets, nor is it a set of polygonal windings with current 
concentrated in the winding center. Neither Biot-Savart summation nor solving the sum-
over-sheet equations is an exact algorithm. Whenever approximate methods must be 
used, one must always question whether the scale of the approximation is adequate to the 
task. Is the sum-of-sheets method using enough sheets to represent a coil? Is the 
algorithm's iteration procedure converging to sufficient accuracy?  Is the Biot-Savart 
model using enough windings, and dividing the windings into enough segments? Are 
both algorithms working to sufficient numeric precision?  I found it much easier to think 
about and test these questions using the Biot-Savart field generator, but opinions may 
vary.   
 
Finally, a word about coordinate systems. The work being done at Ole Miss was aimed 
toward providing a field map for GEANT-based simulations of the ring. The GEANT 
simulation envelopes the entire detector in one large cartesian coordinate system with its 
origin at the center of the ring. Both positions X and the field components of B are 
represented in these coordinates.  The sum-of-sheets work was being done mostly in 
support of ICOOL simulations, and ICOOL uses "transport coordinates", a coordinate 
system whose origin translates and axes rotate relative to the cartesian frame. Transport 
coordinates are not cartesian. It isn't hard to write the transforms between the two 
systems, but in order to compare results from the two field generators, one must do the 
transformations exactly correctly. Symmetries that are obvious and helpful in 
understanding results in one coordinate frame don't work at all in another, which can 
sometimes lead to confusion. 
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The Many Tasks that Phase 1 Left Undone 
 
The completion of phase 1 left us feeling satisfied that we had a way (indeed two quite 
different ways) of calculating a field for the RFOFO ring, and that there were no major 
outstanding disagreements about the shape of the field. However, agreement at that level 
is no more than a ledge to rest on before resuming the climb, and much work remained to 
be done. 
 
What didn't we have?  First, we had compared the various fields for only a small 
ensemble of test points, and those test points were distributed at equal intervals along the 
nominal beam trajectory. Even with that limited check, the agreement between the 
various methods was only about the 0.1% to 1.0% level (depending on the field 
component). Clearly the field maps needed to be compared to a much higher level of 
accuracy, and over a large randomly-selected ensemble of test points within the ring's 
active volume. 
 
Second, we had not made even the most rudimentary tests to see whether the field obeyed 
the most basic physical requirement -- that it obeyed Maxwell's Equations. The current 
density is 0 throughout the active (muon-accessible) volume of the ring, so both the 
divergence and curl of the B field should be zero everywhere. One must of course 
recognize that there many Maxwellian fields, and that only a very small subset of these 
can be generated by the coils we are using in their assigned positions.  Obviously one 
should have more confidence in a field which obeys Maxwell's Equations than in one that 
does not, but there are many other checks, many already made in Phase 1, to satisfy 
oneself that ours is the One True Maxwellian Field generated by our coil configuration. 
 
Third, in the Biot Savart field generator, we did not have a method that would generate a 
fine-grained field map in finite time.  Even during Phase 1, I started developing a 
BSHEET-based field generator, using slightly modified BNL-provided code and our own 
coordinate transform algorithms, to complement the Biot-Savart "gold standard".  More 
work remained to be done, but already by the end of Phase 1 we had written a field 
generator in which either the Biot-Savart method or the BSHEET method could be 
switched on, while the remaining code (e.g. coordinate transforms) was largely common 
to both methods. 
 
Fourth, we had no secondary field generator at all -- a method fast enough to be usable 
within a simulation environment without slowing the simulation down to a quite 
unacceptable degree. The Biot-Savart method was hopeless in this capacity, but even the 
BSHEET-based primary generator was many times too slow. I intended to precompute 
the field on a rectangular lattice of points, download this field map into the simulator, and 
supply software that would accept an observation point from the simulator and interpolate 
in the field map grid to find the field at that point. That this scheme would deliver the 
kind of accuracy we required with a lattice small enough to fit in computer memory was 
far from clear. However, there were other options -- e.g. expressing the field in 
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orthogonal functions of some sort, and then writing a routine to quickly calculate the field 
at any given point using stored coefficients. 
 
Finally, with the completion of Phase 1 we bid farewell to the Cremaldi field. I therefore 
broke my longstanding ban on reading the code, and concluded that although the details 
of our implementation were different, and there were some very minor problems with the 
coil geometry, the Cremaldi field and the Bracker field should be extremely similar, as 
indeed they are. 
 
 
Phase 2 -- Mostly Curls and Divergences 
 
Rick Fernow emphasized that it would be wise to check all of our fields against 
Maxwell's Equations.  To begin our effort, I modified our field generator to compute the 
field at a somewhat complicated set of observation points. There were primary 
observation points, selected (at first) as before at points along the nominal beam 
trajectory. Around each primary point were six secondary observation points, at a 
distance ±dxyz from the primary point along the X, Y and Z axes. The secondary 
observation points made it possible to compute the partial derivatives needed to compute 
the curl and divergence of B at the primary observation point. 
 
I started work on a curl-divergence checking program, went home for the evening, and 
read my email the next morning, only to find  (in addition to the usual offers to refinance 
my mortgage, grant me a diploma, enlarge various body parts, and view pictures of others 
who had already done so) a note from BNL, reporting that the curls and divergences of 
the current BNL field -- a field which I believed to be nearly identical to our own -- were 
not even close to zero. Arghhhh!!! 
 
I rushed my own curl/div checker to completion and ran it for a small ensemble of points 
along the nominal beam trajectory.  The curls and divergences, while not precisely equal 
to zero, seemed very low -- a part in 105 below the derivatives comprising them. (To 
those of us not jaded by too much experience in such matters, the disappearance of the 
curl components and the divergence seems almost magical, especially given the fact that 
in many cases the near-zero value is produced from the difference between two very large 
numbers.) 
 
The next couple of days were very confusing. Eventually it transpired that there was a 
problem with the BNL method for computing curls and divergences. (It should be noted 
that calculating the curl/div in transport coordinates is considerably harder than our 
calculation, which is done in cartesian ring coordinates.)  Once the error was fixed, then 
all methods for doing curl/div checks, on all fields, in all states, yielded satisfactory 
results for small ensembles of points along the nominal beam trajectory. 
 
At this point -- having computed and checked the curls and divs for a few dozen points 
along the nominal beam trajectory -- I decided to let the matter rest. This turned out to be 
a mistake. A few days later, BNL reported that although the curls and divs were indeed 
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zero along the nominal beam trajectory, they were not zero for points (for example) along 
the coil placement circle.  Having been a bit lazy about making a thorough test myself, I 
was in no position to refute this claim immediately.  Once again the curl/div checker was 
unlimbered. This time I did what I should have done right at the outset, and generated the 
field for a huge ensemble of primary points randomly distributed within the ring's active 
volume, and their associated secondary points.  The results: both good and bad. Good 
because the curls and divergences were very close to zero almost everywhere. Bad, 
because they were not close to zero absolutely everywhere, and the points at which they 
were bad seemed not to be systematic in any recognizable way. Usually when problems 
of this kind arise, there is a region around the really troublesome points in which behavior 
gets worse and worse as you sneak up on the troublesome point.  This seemed not to be 
the case, and that was extremely troubling.  
 
At least we could report that the curls and divs were zero almost everywhere. It didn't 
take BNL long to find another problem with their curl/div calculator, once again due to 
the non-cartesian transport coordinate system, and soon everyone was satisfied that the 
curls and divergences were close enough to zero in all coordinate systems and on both 
sides of the Mason-Dixon line.  
 
However, I decided not to ignore the few troubling points at which the curls and 
divergences were bad (different from zero by a part in a thousand relative to the local 
field gradient). Often enough I have found that pursuing this sort of anomaly, even if it 
has no significant effect on the results being sought (which is, after all, the propagation of 
particles, not the perfection of fields),  leads to a better understanding of problems that 
are of significance. So it proved in this case. 
 
By this time, the local field generator was readily switchable between sum-of-sheets 
(BSHEET) mode and the Biot-Savart mode. Because the sum-of-sheets field generator is 
so much faster, and because it had been compared reasonably carefully with the "gold 
standard" Biot-Savart field generator, I used it whenever possible. The fields for the large 
curl/div test were generated using the sum-of-sheets method.  However, when I switched 
to the Biot-Savart field generator, the anomalous seriously-nonzero divs and curls went 
completely away.  Hmmm.... 
 
A day or two of investigation followed. Finally, I found that the test points with 
anomalous divs and curls shared one common feature: they lie very close to a projection 
of a current-sheet cylinder into the active volume of the ring. 
 
It is hardly surprising that a semi-analytical method for finding a magnetic field doesn't 
behave very well when working very close to a current-carrying sheet. Because the model 
current sheets are infinitely thin, the fields and field gradients get very extreme when you 
are close to the cylindrical sheet. However, it seems that the BSHEET routine is not only 
unhappy when generating the field near a sheet; it also behaves badly when the test point 
is anywhere on the longitudinal projection of the cylindrical current sheet, even meters 
away from the sheet itself.  In a straight beamline, this would be of no concern.  In a ring, 
and especially in a ring with tilted coils, the projections of the coils' current sheets do 
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enter the active volume. If a test point happens to be very close to a projected current 
sheet, the calculated field becomes very inaccurate.  
 
Finally understanding what was special about the bad points, and knowing that the Biot-
Savart method indicated that  bad behavior was not inherent in the physics itself, I was 
able to explore the behavior of the sum-of-sheets algorithm in the immediate vicinity of 
the troublesome areas. I found that if you examine the field generator's performance 
approaching trouble points with a powerful enough microscope, you do see progressive 
deterioration of the field accuracy as measured by curls and divergences or by 
comparison with the Biot-Savart field. 
 
Changing the sum-of-sheets routines to double precision reduced the volume of space 
seriously affected but made the problem even more striking within the reduced volume 
that remained. Changing the convergence criteria within the algorithms reduced but did 
not eliminate the problem. Finally, I decided that rather than monkey with an algorithm I 
didn't fully understand, I would simply sidestep the problem. I expanded the wrapper 
routine already surrounding BSHEET (mostly to center coordinates on the coil center) to 
recognize observation points too close to the current sheet projections, calculate the field 
at two nearby points on opposite sides of the sheet projection, and average them. I 
compared this solution to results from the Biot-Savart field generator, and examined the 
curls and divergences of formerly troublesome points. All seemed well, and this work-
around is still in use today. 
 
The milestones that marked the end of Phase 2 were (1) providing two field generators 
that agreed with each other (for a large ensemble of randomly-selected points within the 
ring's active volume) to about a part in 1000,  (2) writing and employing curl/div 
checking software to ensure that the curls and divergences nearly vanish (again for a 
large ensemble of randomly-selected points) and (3) circumventing the bad behavior of 
the sum-of-sheets field generator at test points near the projection of a current sheet. 
 
 
The Tasks that Phase 2 Left Undone 
 
There was still work to be done:   
 
1. Agreement between the fields at a part per thousand was deemed insufficient. Errors of 
that magnitude might not impact cooling simulations in significant measure, but it was 
hard to be sure. The goal was to achieve fields whose RMS accuracy (over the entire 
active volume of the ring) was a part in ten thousand. 
 
2. There was still no secondary field generator fast enough to be incorporated into a 
simulation program.  
 
3. There was still no local study showing that this field would even orbit particles, let 
alone a demonstration that plausible uncertainties in the field would not compromise 
measures of a ring's cooling performance. 
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Example:  Curl components and divergence for the G field (11-sheet double-precision 
BSHEET-derived)  Note that the fields are a few tesla, whereas the vertical scale of the 
plots is microtesla/meter.  
 

 

Div B -- Standard Run G

-20

-15

-10

-5

0

5

10

15

0 5 10 15 20 25 30 35

S (meters)

di
v 

B
 (m

ic
ro

te
sl

a/
m

et
er

)

Curl B x -- Standard Run G

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35

S (meters)

C
ur

lB
x 

(m
ic

ro
te

sl
a/

m
et

er
)

CurlBy -- Standard Run G

-6

-4

-2

0

2

4

6

0 5 10 15 20 25 30 35

S (meters)

C
ur

lB
y 

(m
ic

ro
te

sl
a/

m
et

er
)

CurlBz -- Standard Run G

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35

S (meters)

C
ur

lB
z 

(m
ic

ro
te

sl
a/

m
et

er
)

 
 
 
 
 

 15



Phase 3 -- The Secondary Field Generator 
 
The work of phases 3 and 4 partially overlapped each other in time, but it is convenient to 
divide them into distinct tasks here. 
 
By now I had enough confidence in the field map to want to try it out in a real simulation. 
Romulus Godang had written a partial implementation of the ring in Geant 3, and had 
orbited particles in a small region of phase space near the nominal reference particle -- a 
200 MeV/c muon with initial transverse position = 0 and transverse momentum = 0 in 
transport coordinates -- using a constant By field. I decided that it was time to incorporate 
our field map in this simulation and study its behavior.  
 
As noted above, neither primary field generator (sum-of-sheets and Biot-Savart) was 
nearly fast enough to support a simulator.  Therefore I decided to use a field-on-a-lattice 
approach. First, I would define a cubic lattice within the active volume of one cell of the 
ring. Second, I would use the sum-of-sheets field generator to generate a field map at 
each point on the lattice.  Third, I would produce code, to be linked into the simulator, 
which would read the field map into memory at the start of the job and interpolate to find 
the field at an arbitrary point in the active volume of the cell whenever the simulator 
required it. Fourth, if needed, I would provide additional routines to propagate the field 
from one cell of the ring to the entire ring. (There was a belief abroad at the time that 
Geant would handle this for us; this turned out not to be right.) 
 
I had serious misgivings as to whether this approach would work. The active volume of 
the ring is quite large (owing to the need to handle beam of high initial emittance), and 
one could easily imagine that a lattice fine-grained enough to provide a field of the 
required accuracy would be require more memory than could be provided, even in today's 
world of cheap memory. Nonetheless, I decided to begin with a 1 cm cubic lattice and 
study the matter. 
 
In the ring coordinate frame used by Geant, even listing the lattice points in the active 
volume is not entirely trivial. (This is a much easier problem in transport coordinates, but 
if you use transport coordinates, then you are faced with interpolating in a non-cartesian 
grid; I decided to deny myself that pleasure.)  In the end I used a brute-force approach. I 
enclosed the active volume of the cell in a large box, plenty large to enclose the active 
volume and some extra volume around the edges. For every lattice point in the box, I 
tested to see whether the point was close enough to the nominal beam trajectory to be 
included in the active volume.  I simply wrote a list of the hundreds of thousands of 
points at which the field would be calculated. (Calculating the field at every point in the 
box would have taken several times longer.) 
 
Excel plots were used to convince myself that the active volume of the cell (plus some 
extra volume around the edges) was adequately covered with lattice points.  Then a job 
was set up to read the lattice file, compute the field at each lattice point, and store the 
position and field value in a huge text file. Using the sum-of-sheets field generator, this 
took an overnight run.  
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The monstrous formatted text file was converted to an unformatted (binary) file to save 
both space and field-loading time.  Since unformatted files are not platform-independent, 
I wrote a platform-independent fortran routine to do this conversion. To produce the 
unformatted field file on a new platform, you transfer the formatted file and the 
conversion routine source code to the new platform, compile and link the conversion 
program, and run it to produce the binary file in a locally-acceptable format.  
 
For incorporation into the simulation program, there is LoadField which reads the 
unformatted field map file into a large array, FindField which interpolates within the 
array to deliver the (approximate) field for any point in the active volume of the cell, and 
FindFieldAnywhere to deliver the (approximate) field for any point in the active volume 
of the entire ring. Normally, the simulator calls LoadField once near the beginning of the 
simulation (before any particle tracking is undertaken) and uses FindFieldAnywhere to 
deliver the field at any point required by the simulator. In Geant, routine GUFLD delivers 
field values to the particle propagation routines; GUFLD calls FindFieldAnywhere and 
does some unit conversions (centimeters to meters, tesla to kilogauss). Note carefully that 
FindFieldAnywhere expects test points to be specified in units of meters (Geant uses 
centimeters) and returns field components in tesla (Geant expects kilogauss).   
 
In due course, this software was incorporated (with much assistance from Romulus 
Godang) into the partially-completed Geant simulation, and particles were orbited 
successfully. Romulus then undertook some studies to determine how far (in position-
momentum phase space) a particle could depart from the nominal reference particle and 
still remain confined in the field; he has reported those results elsewhere. 
 
Interpolation in the field lattice is done using CERNLIB routine FINT, which is a multi-
dimensional linear interpolator. I had grave misgivings as to whether a linear interpolator 
would be sufficient. Clearly there is no point in honing a primary field generator to very 
high precision, only to have the precision squandered by an inadequate secondary field 
generator. So once again, the large ensemble of randomly-selected points within the 
active volume of the ring was dusted off, and a large-scale comparison was made 
between the field as computed by the primary generator and the interpolated (secondary) 
field. The results were encouraging; the RMS discrepancies between the primary field 
and the interpolated field were very low, even with a 1 cm lattice and a linear 
interpolator. (See appendix for details.) 
 
It should be noted that FINT does have one drawback. It expects that the input lattice be 
organized into a cubic array, which means that all of the points in the box circumscribing 
the cell's active volume, not only the points in the active volume, must be present. This 
makes for very large field arrays. It probably would not take too much effort to rid FINT 
of this requirement, but I haven't done so. The lattice points at which the field has not 
been calculated, all outside the proper range of muons, have field components of -9999.  
If muons accidentally transgress outside the proper active volume, they are flung out of 
the ring in a spectacular fashion. 
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Before incorporating the field into the Geant package, I incorporated it (for testing 
purposes) into a crude little particle propagator that we jokingly called CremaldiCool, 
and used the package to orbit particles. This proved to be an instructive exercise, and I 
only abandoned CremaldiCool when I realized that in order to make more progress, I was 
going to have to rewrite large parts of Geant (or at least ICOOL), which seemed 
pointless. Suffice it to say that CremaldiCool provided additional confidence that if you 
deliberately distort the field map to a degree comparable to the uncertainty in the field 
map, particle trajectories are not greatly altered. Quite obviously this does not 
demonstrate that the cooling performance of a real simulation is not significantly altered 
by similar changes to the field map. CremaldiCool has now been abandoned. 
 
 

CremaldiCool Orbits within the 53 milliradian field: 
Left:  Full ring, about 4.3 orbits 
Right: Left edge of ring magnified; changes in the magnetic field comparable to the 
uncertainty in the field (not shown here) seem not to change the trajectories 
significantly. 
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X' and Y' as a function of S'; CremaldiCool orbits with 53 milliradian field. 
The results from Geant simulations are very similar. One turn is 33 meters of S' 
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T
to the Geant simulation running under Linux, (2) orbit-stability tests of the secondary 
field generator using CremaldiCool, and (3) primary-to-secondary field comparisons th
show that linear interpolation within an only moderately fine grained field lattice are 
almost certainly sufficiently accurate. 
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The Tasks that Phase 3 Left Undone 
 
1. Agreement between the fields at 0.001 tesla was still deemed insufficient. Errors of 
that magnitude might not impact cooling simulations in significant measure, but it is hard 
to be sure. The goal was to achieve fields whose RMS accuracy (over the entire active 
volume of the ring) was about 1 gauss 
 
2. There was still no convincing proof that the remaining uncertainties in the field were 
small enough to ensure that they would not corrupt cooling performance measures. 
 
 
Phase 4 -- The Pursuit of the Last Factor of Ten in Accuracy 
 
There were still discrepancies at the level of a few gauss between the two primary field 
generators.  These discrepancies were not random noise; they were systematic, and plots 
of the field discrepancies often had about the same shape (only a thousand times smaller) 
as the fields themselves. This strongly suggested that the discrepancies related in some 
way to the adequacy of the coil models.   
 
An enormous number of possible causes were explored. Very few made any significant 
difference. A couple that did make a noticeable difference were a bit embarrassing, for 
example a place in the code where the radius of the nominal beam trajectory was defined 
to inadequate precision.   
 
I went through all the software and carefully parameterized all of the ring geometry, so 
that (for example) the ring radius and the ring circumference would be self-consistent to 
ten significant figures. No routine was allowed to have its own ring geometry or numeric 
constants. 
 
The most important changes were simply increasing the number of current sheets, turns 
and segments in each coil.  Three current sheets were not enough; we now use eleven. 
360 segments per turn were not enough; we decided to use 1000.  At each improvement, 
the curls and divergences got closer and closer to zero, and the discrepancies between the 
two primary field generators became smaller and smaller, leading to increased confidence 
that the changes being made were sensible. 
 
In comparing two fields at the 1-gauss level, I found it helpful to permit field scaling -- 
multiplying all the components of one of the fields by a constant close to 1. This is 
legitimate because it the shape of the field that we care about at the 1 gauss level, not the 
overall magnitude. If we built a set of coils and found that the magnetic field had the 
correct shape but was 0.01% too high everywhere, in all components -- and this mattered 
to cooling performance -- we would simply turn the coil currents down by 0.01% and 
carry on. The scale factors were chosen, to yield the best-looking difference plot. The 
scale factors used were all very close to 1, typically 0.9999 or 1.0001 or closer. 
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Finally, enough was enough. I convinced myself that RMS errors in the primary fields 
were probably below 1 gauss and that the primary-to-secondary discrepancies were of 
about equal size. Assuming they are uncorrelated, the two errors add in quadrature to 
produce a final field error (RMS over the whole active ring volume) of about 1.4 gauss, 
not quite the 1 gauss precision we had as a goal, but almost surely adequate to the task at 
hand. I ran a few tests with very fine-grained approximations of the coils (22 current 
sheets, 5000 segments per turn, etc.) to convince myself that there was no need to go 
further down this road. 
 
A final version of the field map (field3) was produced, and that is still the field map we 
use today. 
 
 
 

Example -- For a large ensemble of random points in the active area, the Bx difference 
between two sum-of-sheet fields with different numbers of current sheets. 
 
Left:  Difference between a 3-sheet coil and an 11-sheet coil 
Right:  Difference between an 11-sheet coil and a 22-sheet coil 
 
The results suggest that a 3-sheet approximation is not adequate, but an 11-sheet 
approximation almost certainly is.  See appendix for details. 
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field map is still untested in support of a complete simulation with RF and wedges. When 
and if the day comes that the test can be performed, the most important task will be to do 
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sensitivity studies. If one perturbs the magnetic field slightly, how significantly does 
cooling performance vary?  
 
Presumably the trajectories of particles are not strongly affected by small-spatial-scale 
noise in the magnetic field. The extra bump that a muon receives in one step will be 
counteracted by another bump in the other direction in the next few steps. But field 
perturbations that are systematic over long spatial scales are another matter. Especially 
since the particles go through the field again and again (12 cells, ~20 turns),  small 
anomalous kicks can build up until they really do have the potential to disrupt cooling 
behavior.  It is very important to test the sensitivity of cooling performance measures to 
the worst plausible kinds of magnetic field errors, both because it provides a means to 
assess the ability of the field map to support reliable assessment of simulated cooling 
performance, and because it allows one to estimate how sensitive a real ring might be to 
manufacturing errors, survey errors, etc.  Of course one must always avoid the temptation 
to use good cooling behavior to instill confidence in the adequacy of the field map. 
 
The latest word I've heard (indirectly) from BNL is that their magnetic field yields good 
cooling when served to the simulator via a secondary field generator based on multi-pole 
expansion, but that cooling is much reduced or non-existent if the same primary field is 
served to the simulator through a secondary field generator based on interpolation within 
a grid. I had hoped to apply the same field-checking measures I have used here to the 
BNL field maps, but I've run out of time. I think it would be extremely useful to compare 
our primary field to the BNL primary field and the BNL primary field to both BNL 
secondary field generators (multipole expansion, grid interpolation) over a large 
ensemble of randomly chosen points in the active volume of the ring. It is not impossible 
that I could set up and run some field comparisons from British Columbia should it prove 
useful. 
 
 
What Lessons Might be Drawn? 
 
A few observations regarding software development efforts of this kind: 
 
Do not begrudge the time to make careful, exhaustive checks at every step of 
development, starting from simple easily-verified configurations. It should not be 
surprising if writing and using verification software takes three or five or ten times longer 
than writing the software being checked. It's still cheap compared to building a cooling 
ring that doesn't work. 
 
Whenever possible, use the simplest possible coordinate system -- e.g. a stationary 
cartesian reference frame -- for finding curls and divergences, interpolating, etc. If 
necessary, transform from your local coordinates into a cartesian frame, do your 
calculating, and then transform back to your local coordinates. It may take longer to run, 
but it's much easier to code. 
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Adopt one standard set of routines for moving between the cartesian frame and any other 
coordinate system you need, check them exhaustively, and always use them. 
 
Coordinate transforms are "simple" but also easy to do wrong. Visualization tools that 
allow you to plausibility-check coordinate transforms after each simple translation or 
rotation are extremely valuable if systematically employed. 
 
Parameterize the configuration  geometry into the smallest possible set of constants, from 
which all others are derived. Exhaustively comment them. Include them in all the code. 
 
If in doubt, go to double precision at the outset and build high precision into the code 
every step of the way. 
 
Don't leave anything to chance in handling possible arithmetic faults, e.g. dividing by 
zero or taking square roots of negative numbers. Modern computers are so fast that any 
arithmetic problem that can arise will arise. Unless an operation is metaphysically certain 
to be safe, protect it. 
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Appendix:  Verifying the RFOFO Ring Field At Randomly Distributed Points 
Steve Bracker 
December 12, 2002 
RFOFO Field Map 27.doc 
 
As part of our ongoing effort to assess the quality of our RFOFO field map, I have 
generated an ensemble of 10000 points pseudo-randomly distributed within the active 
(accessible to muons) volume of the RFOFO ring. For these purposes, the active volume 
consists of the Nominal Beam Trajectory (a circle 33 meters in circumference) and all 
points in space within 25 cm of the NBT. 
 
The 10000 points are uniformly distributed in S (or equivalently, position angle b) and in 
X' and Y'; see the drawing below. Hence the points are almost (but not quite) uniformly 
distributed within the active volume. Plots showing the point distributions are below. I've 
made a file listing the test point positions, one line of text per point. The listed quantities 
are: 
  X, Y, Z -- position of the point in cartesian ring coordinates 
  S, b, X', Y' -- position of the point in accelerator coordinates (S and b redundant) 
 
Our various field generating programs can read this file, generate the field at each test 
point, and output a line for each point specifying the position (from the input file) and the 
field components. Our field components are in cartesian ring coordinates, but these are 
easily converted back and forth to accelerator coordinates. 
 
To date we have run three field generators against the first 5000 points of the 10000-point 
file of standard test points: 
 
A -- The Biot-Savart field (24 coils, 50 x 11 turns per coil, 300 segments per turn) that 
remains our reference field. It exhibits very low divergences and curls, and the program 
that generates it is very simple and easily understood. It is very slow. 
 
B -- Our standard BSHEET-based field (24 coils, 11 sheets per coil). This field is rapidly 
approaching the quality of Field A as we refine the algorithm and our use of it. It is very 
much faster than the Biot-Savart generator. For example, it can generate a full field map 
for 1 cell of the RFOFO ring on a 1 cm lattice in about ten hours of running on a single 
PC.  
 
C -- A field generated by interpolating from a field map grid, which in turn was generated 
by a procedure that is a slight variant of the present Field B generator. As one would 
expect, this generator runs much faster than the Field B generator, but since the lattice 
spacing is fairly wide (1 cm in all three directions) there is naturally concern that it might 
be too coarse-grained to yield accurate field values. 
 
When we compare field maps, it is consistent field shape that we are after. There are 
various reasons that a field generator may deliver a field that has the right shape but not 
quite the correct scale. This is of no consequence in an operating ring, since errors of 
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scale can be mitigated by adjusting the coil currents. It turns out that the scale factors that 
must be applied to maximize agreement between the various fields is extremely low; the 
largest scale factor being used is 1.00011.  I am not quite ready to report final results yet, 
but the preliminary analysis is extremely encouraging. The field discrepancies seem to be 
at the part per ten-thousand level everywhere within the active volume of the ring.  
 
I have a set of programs and Excel templates for making the field comparisons and 
presenting the results. They will be ready for routine use within 2-3 days. I am hoping 
that all fields being used for RFOFO simulations -- both the original field generators that 
go into making grids or computing coefficients for parameterized fields, and the field 
finders that couple directly to the simulation packages -- will be run on the file of 
standard test points. I am willing to do the comparisons that will assure us that the 
various simulation efforts are seeing the same field throughout the ring's active volume. 
 
I am about to generate a second file of standard test points. This file presents 1000 
randomly distributed primary test points and for each primary, 6 secondary test points 
located half a millimeter from the primary. The secondaries are used for computing curls 
and divergences at the primary points. It will be very reassuring to know that fields we 
use have nearly-zero curls and divergences for randomly chosen points throughout the 
entire active area of the ring. Again I have a set of programs that input the field files, 
calculate the curls and divergences, and present the results. Again these are almost but 
not quite ready for routine use.  
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Distributions of test points around the RFOFO Ring; the first 1000 points are plotted. The 
(barely visible) magenta line in the left plot is the Nominal Beam Trajectory. 
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s = Rnbt b 
H = Rnbt + x' = sqrt(X2 + Z2) 
 
X = (Rnbt + x') cos b 
Y = y' 
Z = (Rnbt + x') sin b 
 
b = atan2 (Z, X) 
y' = Y 
x' = H - Rnbt = sqrt(X2 + Z2) - 
Rnbt 
 
Unit Vectors: 
eb --  parallel to tangent to NBT 
ey' -- vertically downward 
ex' -- radially outward 
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Appendix:  Three-Way RFOFO Ring Field Comparison  
Steve Bracker 
December 14, 2002 
RFOFO Field Map 28.doc 
 
 
In this writeup I compare six field maps for the RFOFO Cooling Ring. For all six field 
maps, the following ring configuration parameters remain the same: 
  24 solenoids centered on the Coil Placement Circle, +-6 degrees from cell boundaries 
  Solenoid length = 0.5 meters 
  Solenoid inner radius = 0.77 meters 
  Solenoid outer radius = 0.88 meters 
  Solenoid current-turns = 5239850 amp-turns 
  Solenoid tilt angle = 53 milliradians 
  Coil Placement Circle 0.10 meters larger in radius than Nominal Beam Trajectory 
  Circumference of the Nominal Beam Trajectory = 33.0 meters 
 
All six fields are generated for the same pseudo-random distribution of 5000 test points 
within the active area of the RFOFO ring, which for these purposes is defined to be all 
points within 0.25 meters of the Nominal Beam Trajectory. The location of the test points 
are recorded in a disk file; see RFOFO Field Map 27.doc for details. 
 
The differences: 
 
Field Map A:  Generated with the Ole Miss Biot-Savart field generator. Each coil has 50 
x 11 = 550 1 cm x 1 cm turns. Radial layers of turns are centered at R = 0.775, 0.785 ... 
0.875 meters from the coil axis. 300 current segments per turn. The Biot-Savart field is 
relatively straightforward to code; only location points must be transformed from tilted 
coil coordinates to ring coordinates. The fields appear directly in ring coordinates (which 
is the form our GEANT simulation wants them), and inasmuch as the ring coordinate 
system is cartesian, it is straightforward to compute curls and divergences for ensuring 
that the field conforms to Maxwell's Equations. The primary disadvantage of the Biot-
Savart field generator is that is slow. It would takes weeks of computing time to generate 
an adequately fine-grained field map grid, for example. However, it is perfectly practical 
to apply it to small ensembles (thousands) of points, and to check the performance of 
other field map generators against it. 
 
Field Map B: Generated with the Ole Miss coordinate rotations, but finding the field for 
each coil using 11 current sheets (radii as above) and a local version of BSHEET / 
ELLTHREE / RC modified from one provided to us by Rick Fernow. BSHEET is a much 
more difficult routine to understand; there are behaviors around certain "magic regions" 
in a coil that have to be handled with some care. (Magic regions include the sheet center 
and any point on the axial extension of the sheet cylinder, even well beyond the sheet 
itself.)  There are fairly complex issues of numeric precision and convergence criteria that 
must be looked after. Assessing the accuracy of the field calculated is not entirely 
straightforward. However, BSHEET is very much faster than the Biot-Savart field 
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generator; it can compute an eleven-sheets-per-coil field grid for a cell (1 cm lattice) in 
just a few hours. That fact has made the 11-sheet BSHEET field our standard 
"workhorse" field generator. A field map grid based on it is used in our GEANT 
simulations, and it is the generator of choice whenever more than a few thousand field 
points must be calculated. By comparing Field Map B with Field Map A, we can 
determine whether the "tuning" of BSHEET to the task at hand has been successful. 
 
Field Map C: Generated by interpolation within a 1 cm x 1 cm x 1 cm grid of points, 
where the field at each grid point was computed a version of BSHEET very similar (but 
not quite identical) to that used to generate Field Map B. Now mostly of historical 
interest, this field map is included here only because it remains the field map used by 
GEANT, but will be replaced within a few days by . . . 
 
Field Map D: Generated by interpolation within a 1 cm x 1 cm x 1 cm grid of points, as 
in Field Map C. However in this case the version of BSHEET used to generate the fields 
at the grid points is exactly the same as that used in Field Map B. The field at an arbitrary 
point is interpolated using multi-dimensional linear interpolator FINT.  In GEANT, the 
field grid for one cell (1/12 of the ring) is loaded into memory from a binary disk file by 
routine LoadField (in a few seconds). As particles are stepped around the ring, the 
needed field values are computed by routine FindFieldAnywhere, which rotates the 
particle location into an equivalent position in Cell 1, calls FindField to compute the 
field there, and then rotates the field components back to the cell where the particle 
actually is.  FindFieldAnywhere is very fast, about 30 times faster than calling BSHEET 
directly, but since the grid is fairly coarse and the interpolator is only linear, the question 
naturally arises as to whether Field Map D is sufficiently accurate. By comparing Field 
Map B with Field Map D at a suitable sample of test points, we can answer that question. 
 
Field Map E: Identical to Field Map B except that each coil is represented by only three 
current sheets instead of the eleven used in Field Map B.  By comparing Field Maps B 
and E and their respective discrepancies from Field Map A (Biot-Savart) we can assess 
whether it is appropriate to save some execution time, when generating large field grids, 
by reducing the number of sheets per coil. 
 
Field Map F:  Identical to Field Map B (and E) except that each coil is represented by 22 
current sheets instead of the eleven used in Field Map B. It is appropriate to wonder 
whether the field map is actually converging as the sheet count goes up. Comparing Field 
Maps B, E and F helps answer that question.  
 
 
Scaling the Fields 
 
Each field may be viewed as a field shape times a field scale.  In a working ring, if the 
field scale were found to be slightly different than expectations, one would fix this by 
increasing or decreasing the coil currents. (Remember that there is no iron in this design.) 
Finding that the fields had a shape consequentially different from expectations might be 
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much harder to fix. It might require anything from realigning the coils to introducing 
correction elements to facing catastrophe.  
 
All field generating procedures discussed here are approximations. In the Biot-Savart 
generator, the simulated turns are larger than real turns, and the circular arcs of the coils 
are approximated by many short straight segments. In the BSHEET generator, there are 
fewer sheets per coil than there would be layers of winding, and the calculation of the 
elliptic integrals is done iteratively. Hence it should not be surprising that there are small 
differences between the fields generated by the two methods and their variants. To the 
degree that these differences are only small differences of field scale, they may be 
ignored. To the degree that they are differences of field shape, they are potentially more 
serious. 
 
In the comparisons that follow, I have not hesitated to apply a scaling correction 
whenever it is helpful to minimizing the discrepancy between two field maps. What 
remains is the field shape discrepancy, which is what we care about. However, I 
emphasize that the scaling corrections applied are very small; the largest one used below 
is 1.00015. It is a measure of the substantial consilience of the various field generating 
methods that adjustments this small remove discrepancies that otherwise would 
completely dominate those relating to field shape. 
 
If a field is scaled, then all three components must be scaled by the same amount. 
 
How Good is Good Enough? 
 
To what accuracy must the fields be known?  At this point, the quick answer is "well 
enough so that remaining errors in the field map do not materially affect the performance 
measures of competing ring designs".  Yes, but what does that mean in terms of actual 
errors in the field? Is "no more than a 1% error at 95% of the points and no more than 3% 
error at any point" good enough? Should we strive for errors ten times smaller? One 
hundred times smaller?   
 
At some point in time, if a cooling ring is ever built, there will have to be field sensitivity 
studies done. Magnet builders cannot wind coils or position coils to perfect accuracy, and 
if the cooling ability of the ring is jeopardized by minute variations in the coils, 
comparable to those expected from imperfect winding technology, surveying errors or 
temperature fluctuations, then the ring is too fragile to be built, regardless of its 
performance in an ideal world. The same kind of sensitivity studies will shed light on the 
accuracy required of the simulation. But at the moment, they do not exist, as far as I 
know. Hence for now it is reasonable to hold the simulated fields to a high standard, 
something like "accurate enough so that, lacking sensitivity studies, there seems to be a 
vanishingly small likelihood that field map errors will be a major contributor to 
uncertainties in the assessment of the ring's performance."  I have somewhat arbitrarily 
taken this point to be per-field-component standard deviation of 0.0001 tesla (1 gauss) for 
a sample of points randomly distributed over the active (particle-accessible) volume of 
the ring.   
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I am willing to be argued with about this; I imagine (perhaps wrongly) that most people 
will consider this too stringent a requirement, and its pursuit a waste of time. However, as 
we shall see below, we are probably already at or near that level, without having done 
anything terribly heroic. In any case, if the project (as we hope) moves from conceptual 
design toward engineering, we shall have to place this matter on firmer footing than 
considered opinion, even the opinions of those who have considered such matters for a 
lot longer than I have. 
 
Inputs and Outputs of the Comparison Process 
 
All code is written in Fortran and is located in C:\Magnet and its subdirectories. All data 
are written in C:\Magnets and its subdirectories.  Most data are in the form of "vanilla 
text files" but field grids are converted to binary files.   
 
Project DefineTestPoints generates a data file of standard test points. The standard test 
point file is C:/Magnets/StandardTestPoints/StdTestPoints1.txt containing locations of 
10,000 test points. The first 5000 test points are used in the comparisons that follow. For 
each point, the location of the point is given in Ring (cartesian) coordinates X, Y, Z, and 
in Accelerator coordinates S, b, X' and Y'. (S and b are redundant but it's convenient to 
have both.) There is one line of text per test point. 
 
All field-generating program read the standard test point file, compute the field at each 
point, append the field components to the input line, and write it to an output file. At Ole 
Miss the fields are in Ring Coordinates and units of tesla, but other coordinates and scales 
may also be used; the field components are converted to Ring Coordinates before being 
submitted to the comparison program. 
 
The results of test runs of lasting interest are given a letter (as in A-F above) and stored in 
C:/Magnets/StandardTestPoints/TestFieldReportA.txt etc. In some cases there is an 
accompanying TestFieldDiagA.txt with certain diagnostic information pertinent to the 
reported results. 
 
The comparison program is run on pairs of results files. The output of the comparison file 
is a report which contains histograms of unscaled field component discrepancies and a 
diagnostic file containing point-by-point location / field value / field differences, one line 
for each point. The diagnostic file (which has proven to be the more useful of the two) is 
imported into a standard Excel worksheet, where interactive scaling is performed if 
needed, discrepancy scatterplots are produced, and a few basic statistics are computed. 
 
I have found it most useful to characterize the discrepancies component-by-component in 
the form of scatterplots, such as BX difference vs BX. This makes it easy to distinguish 
scale-dependent discrepancies (BXdif correlated with BX) from others, and to ferret out 
any "magic regions" in which the discrepancies are unusually high.  As the overall 
measure of discrepancy I use the standard deviation of BXdif for the whole ensemble of 
test points.  
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The Biot-Savart Field A vs the Eleven-Sheet BSHEET Field B 
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The scaling factor is 1.00011.  There is some remaining structure to the field differences, 
but the discrepancies are very low -- these two very different methods of generating the 
field for points around the entire ring, neither exact, nonetheless give highly consistent 
results. 
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The Eleven-Sheet BSHEET Field B vs the Interpolated Field D 
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How does the field interpolated from the BSHEET-derived grid compare to the BSHEET 
field itself? Again, the results are very encouraging; very little accuracy is lost by 
resorting to the (much faster) interpolation-in-grid.  The memory required to hold the grid 
is substantial, however. 
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The Three-sheet BSHEET Field vs the Eleven-sheet BSHEET Field 
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If we assume that the 11-sheet field is a lot closer to the real field than is the 3-sheet field, 
then the 3-sheet field is not really an acceptable approximation (given the criteria for 
acceptability stated above). In our case, generating a grid with an 11-sheet approximation 
takes only about 2 hours longer than generating with a 3-sheet approximation. For this 
comparison the scaling factor is 1.00015.   
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The Eleven-sheet BSHEET Field vs a Twenty-two Sheet Field 
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A
we are even converging to the Truth. The scale factor here is 0.999990.   
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Next Steps 
 
A second dataset is being prepared which has 1000 primary test points scattered around 
the ring, and for each primary, six nearby secondaries which enable the taking of 
derivatives that go into calculating the curls and divergence of the field. A very similar 
test has already been done to our fields A and B, but the new scheme will formalize the 
process in a way that makes it easy to check other fields as well. 
 
Perhaps the most important thing to do is to perform the same tests, using the same 
ensemble of test points, on fields generated elsewhere, e.g. BNL. This is a very powerful 
consistency check, especially because BNL and Ole Miss have developed the transforms 
used to place and rotate coils almost completely independently That is one area where 
mistakes have been found in the past and problems could still be lurking. Such 
consistency checks as we have performed have been done mostly for small ensembles of 
points taken along the Nominal Beam Trajectory or the Coil Placement Circle. The tests 
being reported here are far more rigorous.  
 
I understand from Rick that he is reworking a parameterization of his field map, an 
alternative method to interpolating within a field map grid. When that task has been 
completed, I would welcome the opportunity to plug that field into the comparison 
process as well. We are of course happy to participate in comparison processes that other 
devise, or to code and carry out comparison protocols suggested by others. 
 
How sensitive is a ring's cooling performance to details of the magnetic field map?  It is 
important to answer that question eventually, and perhaps not premature to start doing 
some serious work on it now. As soon as we have identified the parameters of a 
satisfactory (not necessarily optimal) cooling ring, it is fairly straightforward to alter the 
coil configurations and corresponding field maps and test the impact on the cooling 
effectiveness. What kind of alterations to the field are important to make? Presumably not 
random fluctuations on a point-by-point basis; these will be mostly averaged out as the 
particle passes thousands of field points. It is larger-scale alterations -- changes analogous 
to moving a coil or changing a current -- that are of the most interest. 
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