2013 STAR Collaboration

October 14 -19

Lawrence Berkeley National Lab

Bldg 50 - Auditorium

http://star2013.lbl.gov

BERKELEY

Direct Photon Correlation Measurements

Ahmed M. Hamed University of Mississippi, Texas A&M University

Contents

- Motivation
- Theoretical Predictions
- STAR Techniques
- Previous Results
- Integrated and Projected Luminosity
- New Results
- **Summary**

Motivation: Parton Energy Loss

- Parton energy loss: parton initial energy, path length, color factor, quark flavor
- EM interacting particles sample uniform hard scattering vertex in the med.

<u>2-partciles correlations (\Delta \phi)</u>: FF of the recoiling parton from direct γ vs. π^0 :

Different path length "on average"
Different q/g compositions
Different parton initial energy $I_{AA}(\pi^0) < I_{AA}(\gamma)$ $I_{AA}(E_i)$

<u>Reaction plane (\Delta \phi)</u>: Azimuthal anisotropy of π^0 vs. γ (reference $v_2(\gamma) = 0$) \triangleright path length dependence of ΔE

Theoretical Predictions- I_{AA}

Theoretical Predictions- v₂

- v₂ at high pt seems to be too large for a pure "jet quenching". Phys. Rev. C 66, 027902(200)
- EM interacting particles of high-pt are expected to have no preferred direction w.r.t to the reaction plane, i.e. v₂=0:

STAR Techniques -I_{AA}

- EM neutral cluster identifications (clustering Algo., etc.)
- EM transverse shower profile + Z_{γγ}:
 EM neutral energy = π⁰ + other sources of EM neutral energy + γ-rich sample

Imposing direct photon definitions: have no NS yields:

$$Y^{\gamma_{dir}+h} = \frac{\left(Y^{\gamma_{rich}+h} - \mathcal{R}Y^{bgd+h}\right)}{1-\mathcal{R}} \mathcal{R} \equiv \frac{Y^{\gamma_{rich}+h}_{NS}}{Y^{bgd+h}_{NS}} = \frac{N^{bgd}}{N^{\gamma_{rich}}}$$
$$Y^{\gamma_{dir}+h} = \frac{\left(Y^{\gamma_{rich}+h} - \mathcal{R}Y^{\pi^{0}+h}\right)}{1-\mathcal{R}} \mathcal{R} \simeq \frac{N^{\pi^{0}}}{N^{\gamma_{rich}}} = \frac{Y^{\gamma_{rich}+h}_{NS}}{Y^{\pi^{0}+h}_{NS}}$$
$$\checkmark \pi^{0} \text{ purity, Bg assumption justifications}$$

STAR Techniques –v₂

$$v_{2}^{\gamma_{rich}} N^{\gamma_{rich}} = v_{2}^{bg} N^{bg} + v_{2}^{\gamma_{dir}} N^{\gamma_{dir}}$$
$$\mathcal{R} = \frac{N^{bg}}{N^{\gamma_{rich}}} \simeq \frac{N^{\pi^{0}}}{N^{\gamma_{rich}}}$$
$$v_{2}^{\gamma_{direct}} = \frac{v_{2}^{\gamma_{rich}} - v_{2}^{bg} \mathcal{R}}{1 - \mathcal{R}}$$
$$v_{2}^{\gamma_{direct}} = \frac{v_{2}^{\gamma_{rich}} - v_{2}^{\pi^{0}} \mathcal{R}}{1 - \mathcal{R}}$$

Previous Results- I_{AA}

Similar levels and patterns of I_{AA} for π^0 and direct γ as "all" models expected, need to probe low z_T

Previous Results- v₂

 \succ v₂ of direct photons at high-pt is not zero within the statistical errs

> Not all the measured v_2 of pions (π^0) at high p_t are due to the L dependence of ΔE

Event-plane reconstruction biases "non-flow"?

Fragmentation photons contributions?

 \Box More forward detectors: 1.0 < $|\eta|$ for TPC and 2.5 < $|\eta|$ < 4.0 for FTPC

Integrated and Projected Luminosity

$\sqrt{s}=200$ GeV for different consistent systems				
Run	System	Integrated Luminosity	Projected Luminosity	pp-equivalent
6	p+p	9 pb^{-1}		9 pb^{-1}
7	Au+Au	$0.50 \ {\rm nb^{-1}}$	—	20 pb^{-1}
8	d+Au	34 nb^{-1}	_	$13 { m pb}^{-1}$
9	p+p	$23 { m pb}^{-1}$	—	23 pb^{-1}
10	Au+Au	$2.0 {\rm ~nb^{-1}}$		80 pb^{-1}
11	Au+Au	$1.5 { m ~nb^{-1}}$	_	$60 { m pb}^{-1}$
12	p+p	$25 { m pb^{-1}}$		25 pb^{-1}
	U+U	$0.26 \ {\rm nb^{-1}}$		
	Cu+Au	10 nb^{-1}	_	
13	Au+Au	0		
	p+p	0		
14	Au+Au	_	9 nb^{-1}	360 pb^{-1}
	p+p	—	40 pb^{-1}	$40 {\rm \ pb^{-1}}$
15	p+p	—	$40 {\rm \ pb^{-1}}$	$40 {\rm \ pb^{-1}}$
16	Au+Au	—	11 nb^{-1}	440 pb^{-1}

Integrated and projected luminosity for γ_{dir} -triggered at

Table 1:

0000 JU fam different and it.

Current reconstructed data is sufficient to rule out "few" models and to reduce the v_2 "statistical" uncertainties by factor of 4.

New Results I: toward I_{AA}

→ The NS and AS conditional yields per π^0 from different data sets (pp2006, dAu2008, and pp2009) agree over the entire explored z_T -range (0 - 2.0).

New Results I: toward I_{AA}

$$Y^{\gamma_{dir}+h} = \frac{\left(Y^{\gamma_{rich}+h} - \mathcal{R}Y^{\pi^0+h}\right)}{1 - \mathcal{R}}$$

> The AS conditional yields per direct γ from different data sets (pp2006, dAu2008, and pp2009) agree at low z_T

New Results II: v_2 (EM neutral clusters) to $v_2(\pi^0)$ and $v_2(\gamma$ -rich) [AuAu2011]

New Results II: $v_2(\pi^0)$ and $v_2(\gamma^{rich})$ to $v_2(\gamma^{dir})$

- Exploring the soft sector of the FF is necessary for the models discriminations
- The current integrated luminosity is sufficient to probe the low z_T region
- The conditional yields associated with p0 and direct photons from different data sets (pp2006, dAu2008, pp2009) are consistent
- Studying the $D(z_T)$ at the low z_T regions in AuAu 2011+AuAu2007
- Studying the systematic errs of I_{AA} and move toward publications.

Summary - II

- The pseudorapidity gap reduces the bias in the reaction plane determination and accordingly to the measured azimuthal anisotropy w.r.t reaction plane.
- First statistically significant measurements of direct photons v₂ up to 20 GeV in the field of heavy ion collisions.
- The STAR results of direct photons v₂ using the FTPC indicate the negligible remaining bias in event-plane reconstruction.
- Negligible contribution of the fragmentation photons for the direct photons.
- The v_2 of neutral pions using the FTPC is apparently due to the path length dependence of energy loss.
- Studying the systematic errs and move toward publications.

Backup Slides

EM Transverse Shower Profile

Previous Results-STAR vs. PHENIX

• STAR and PHENIX have similar results using different techniques

The Ratio R

