
Discovering New Physics 
with Early LHC Data

Greg Landsberg

OleMiss Physics Colloquium

April 8, 2008



Spring 2008 Physics Colloquium Greg Landsberg, Searches for New Physics with Early LHC Data 2

Outline
• Astro-Particle Physics

• The Standard Model

• Beyond the Standard Model

• The Machine, the Detectors 

• Searches for New Physics with early LHC Data*

• Conclusions

*) Chose to focus on a few characteristic examples, rather than being too inclusive
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• Last decade emphasized remarkable connection between the 
astrophysics and particle physics:

– Searches for dark matter

– QFT connections to early universe and inflation

– Black hole thermodynamics

– The “landscape” of string theory

• The more we study these seemingly different subjects, the 
more connections we discover

– Physics at the very large distances may be inherently 
connected to the physics at the shortest ones

• More similarities:

– Microscopes vs. telescopes

– Large international collaborations

– Complicated detectors

• We are (hopefully!) doing the things via two complementary 
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r ~ 1/E

 = 1.22 /D
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Quantum vacuum texture

Hubble Deep Field Survey
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Unification
• Physics is about unification of seemingly different 

phenomena:

– XVIIth century – Newton: Force that makes an apple to fall 
from the tree is the same force that keeps the Moon 
orbiting around the Earth

– XIXth century – Faraday & Maxwell: Electricity and 
Magnetism are two manifestations of the common 
electromagnetic (EM) force

– XXth century – Glashow, Salam, Weinberg: EM and weak 
force are two manifestations of the common electroweak 
force

– XXIth century – Grand Unification of all Forces?

• Unification is the key to the scientific method –
reductionism
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The Standard Model
• 1960-ies: Glashow, Salam, Weinberg, t’Hooft, …

– EM interactions (Faraday, Maxwell, Feynman, …)

– Weak interactions (Fermi, Cabibbo, …)

– Unified electroweak interaction: SU(2)L U(1)EM

– Symmetry is spontaneously broken to give mass to W/Z and leave 
photons massless

– Particles acquire masses by interacting with the Higgs field

;
Hv
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v  vev = 246 GeV

4 degrees of freedom  W±, Z0, h0

Electroweak Symmetry
Breaking
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The Higgs Mechanism
A particle acquiring mass:

[After D. Miller]
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The Higgs Mechanism
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Standard Model Components
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Left-handed fields 
are SU(2) doublets; 
right-handed fields 
are SU(2) singlets.
Hence: C, P violation

Standard Model Parameters:

Fine structure constant  = e2/4  = 1/137.03599911(46) [QHE]
(at Z-pole   1/128 and depends on the renormalization scheme)

Fermi constant GF = 1.16637(1) 10-5 GeV-2 [muon lifetime]

MZ = 91.1876(21) GeV [LEP 1 Z line-shape measurements]
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We Live in Precision Times...

12

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

Δαhad(mZ)Δα(5) 0.02758 ± 0.00035 0.02768

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1875

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957

σhad [nb]σ0 41.540 ± 0.037 41.477

RlRl 20.767 ± 0.025 20.744

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21586

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.398 ± 0.025 80.374

ΓW [GeV]ΓW [GeV] 2.140 ± 0.060 2.091

mt [GeV]mt [GeV] 170.9 ± 1.8 171.3
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We Still Have Things to Do...

13
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The only Higgs 
observed in Nature
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We Still Have Things to Do...

13

The only Higgs 
observed in Nature

The only stop decay 
observed in Nature

The only dark matter 
observed in Nature

A lot of dark energy...
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Puzzle: Where is the Higgs?

At the 95% CL:
MH < 160 GeV

(EW fit)
MH > 114.4 GeV

(direct searches)

Most likely mass
is just above the
direct exclusion!
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Puzzle: Mass and Gravity
• Isaac Newton: the force that makes the apple 

fall is the same force that keeps the moon 
going around the Earth!

2N
R

Mm
GF =

mM

R

F

• Charles Coulomb: opposite electric charges 
attract!

+Q q
F

2C
R

Qq
GF =

R

• Mass is analogous to electric charge?!

• But gravity is 1038=100,000,000,000,000,000,000,000,000,000,000,000,000
(hundred trillion trillion trillions!) times WEAKER than electricity! The hierarchy/

naturallness problem: MPl = GN
-  = 1016 TeV  MEW ~ 1 TeV ~ 1000 Mp

Isaac Newton

Charles Coulomb
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Standard Model: Beauty & the Beast

Beauty…
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Standard Model: Beauty & the Beast
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Standard Model: Beauty & the Beast

Beauty…

Physics beyond the SM may get rid of the beast while preserving 
SM’s natural beauty!
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• Higgs mass receives corrections 
from fermion loops:

• The size of corrections is ~ to the 
UV cutoff ( ) squared:

• In order for the Higgs mass to be 
finite, a fine tuning (cancellation) of 
various loops is required to a 
precision ~(MH/ )2 ~ 10-34 for  ~ MPl

• Higgs mass can’t be too light or the 

potential won’t have a Mexican hat 

shape and will turn negative at large 

values

• For the SM to be valid up to Planck 

scale, MH > 135 GeV

17

Naturalness and Triviality
• Triviality: if the Higgs mass is too large, 

the Higgs self-coupling drives the 
mass to infinity above certain scale

• If one wants the SM to be correct all 
the way up to Planck scale, 135 < MH 

< 175 GeV is required

Direct

MH < 160 GeV @ 95% CL

(Combined EW fit)
MH > 114.4 GeV @ 95% CL

(LEP2, up to s = 209 GeV) 
ΔM2

H =
λ2

f

4π2
(Λ2 + M2

H) + ...
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Large Hierarchies Tend to Collapse...

18
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More Large Hierarchies

Collapse of the Soviet Union

The nineties…
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Gravitational Hierarchy Collapse

With thanks to Chris Quigg and the 
B44 restaurant in San Francisco

• Human Castles in Catalonia
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And Keep in Mind…
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And Keep in Mind…
• Fine tuning (required to keep a large hierarchy 

stable) exists in Nature:
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And Keep in Mind…
• Fine tuning (required to keep a large hierarchy 

stable) exists in Nature:
– Solar eclipse: angular size of the sun is the same as the 

angular size of the moon within 2.5% (pure coincidence!)

– Politics: Florida recount, 2,913,321/2,913,144 = 

      1.000061 (!!)

– Numerology: 987654321/123456789 = 

                                                                  8.000000073 (!!!)

(Food for thought: is it really numerology?)

• Alternative: the anthropic principle
– Properties of the universe are so special because we 

happen to exist and be able to ask these very questions

– Is it time to give up science for philosophy? – So far 
reductionist method worked very well!



Spring 2008 Physics Colloquium Greg Landsberg, Searches for New Physics with Early LHC Data 23

Beyond the Standard Model
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Beyond the Standard Model
•Apart from the hierarchy problem:

–Standard Model accommodates, but does not explain:

• EWSB

• CP-violation

• Fermion masses

–It doesn’t provide natural explanation of the:

• Neutrino masses

• Cold Dark Matter
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Beyond the Standard Model
•Apart from the hierarchy problem:

–Standard Model accommodates, but does not explain:

• EWSB

• CP-violation

• Fermion masses

–It doesn’t provide natural explanation of the:

• Neutrino masses

• Cold Dark Matter

•Logical conclusion:

–Standard model is an effective theory – a low-energy approximation of 
a more complete theory, which ultimately explains the above phenomena

–This new theory must take off at a scale of ~1 TeV to avoid significant 
amount of fine tuning

–Three classes of solutions:

•Ensure automatic cancellation of divergencies (SUSY/Little Higgs)

•Eliminate fundamental scalar and/or introduce intermediate scale  ~ 1 TeV 

(Technicolor/Higgsless models)

•Reduce the highest physics scale to ~1 TeV (Extra Dimensions)
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SuperSymmetry (SUSY)
• Observation: loop corrections change sign when a fermion is replaced with 

a boson
– Solution to the hierarchy problem: for each fermion, introduce a boson with the 

same Yukawa coupling to the Higgs field and vice versa!
– Loops cancel and thus quadratic divergencies are (nearly) cured:

– High price to pay: double the number of known particles

– SUSY is clearly broken; masses of superpartners can’t be more than ~ 1 TeV
– Also need more than one Higgs doublet to cancel anomalies
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SUSY: Gauge Sector
• Higgses: two complex doublets (8 

d.o.f.)

– One gives masses to down-type, and 
another one – to up-type quarks

– Ratio of vacuum expectation values is 
conventionally called tan

– 3 d.o.f. are “eaten” by massive Z, W±

– 5 remaining d.o.f. become physical 
states: h0, H0, H±, A0

– MH > Mh by definition; Mh < 135 GeV

– A is a CP-odd Higgs

– Supersymmetric partners of the two 
Higgs doublets mix with the partners 
of SM EWK gauge bosons to give four 
neutral (neutralinos) and two pairs of 
charged (charginos) gauginos

– Gluino remains unmixed ±±

21
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SUSY: Even More Complex
• To describe SUSY breaking, explicit (“soft”) terms are added 

to the Lagrangian: >100 parameters!
• Typically, reduce number of parameters by introducing 

phenomenological constraints (e.g., no FCNC) and often 
requiring R-parity conservation

• B, L – baryon and lepton numbers; S – spin

• Rp-conservation implies that SUSY particles are produced in 
pairs

• Consequently, the LSP is stable and serves as an excellent 
dark matter candidate (and also escapes at colliders)

• Cosmology: LSP is neutral and weakly interacting

( ) S2LB3

p 1R
++

= Originated in footnote±
7 of classical 

Farrar-Fayet paper [PL 76B (1978) 575]

Rp

“Ordinary”
 particles

SUSY
 particles

+1 -1

P-parity? - Was taken!; Q-parity? - Pardon my French!; hence - R-parity
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• Gravity is fundamentally strong force, 
but we do not feel that as it is diluted 
by the large volume of the bulk space
                            = 1/MD

2;  MD  1 TeV

• More precisely, from Gauss’s law:

• Amazing as it is, but as of 1998 no one 
has tested Newton’s law to distances 
less than  1mm!

• Thus, the fundamental Planck scale 
could be as low as 1 TeV for n > 1

• But: what if there is no other scale, and 
SM model is correct up to MPl?

– Give up naturalness: inevitably leads to 
anthropic reasoning

– Radically new approach – Arkani-
Hamed, Dimopoulos, Dvali (ADD, 
1998): maybe the fundamental Planck 
scale is only  1 TeV?!! 

• Gravity is made strong at a TeV scale 
due to existence of large (r ~ 1mm – 
1fm) extra spatial dimensions:

–SM particles are confined to a 3D “brane”

–Gravity is the only force that permeates 
“bulk” space

• What about Newton’s law?

• Ruled out for infinite ED, but does not 
apply for compact ones:

27

Large Extra Dimensions

G′
N = 1/(M [3+n]

Pl )2

V (ρ) =
1
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ρn+1
→ 1(
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M

[3+n]
Pl

)n+2

m1m2

rnρ
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Mn+2
D ∼ M2

Pl/rn

r =
1√

4πMD
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)2/n

∼

⎧⎪⎪⎨
⎪⎪⎩

8 × 1012m, n = 1
0.7mm, n = 2
3nm, n = 3
6 × 10−12m, n = 4
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TeV-1 Extra Dimensions

MZ MGUT

MPl
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• Simultaneously, another idea 
has appeared:

– Explore modification of force 
behavior in (3+n)-dimensions to 
achieve low-energy grand 
unification: Dienes, Dudas, 
Gherghetta [PL B436,  55 
(1998)]

– To achieve that, allow other 
force carriers (g, , W, and Z) to 
propagate in an extra 

dimension, which is 
“longitudinal” to the SM brane 

and compactified on a “natural” 
EW scale: 

• r ~ 1 TeV-1 ~ 10-19 m



Spring 2008 Physics Colloquium Greg Landsberg, Searches for New Physics with Early LHC Data 29

Randall-Sundrum Model

G

Planck brane

AdS

• Randall-Sundrum (RS) model [PRL 83, 
3370 (1999); PRL 83, 4690 (1999)]

–One + brane – no low energy effects

–Two + and – branes – TeV Kaluza-Klein 
modes of graviton

–Low energy effects on SM brane are 
given by ; for kr ~ 10,  ~ 1 TeV and 

the hierarchy problem is solved naturally
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SM brane

Randall-Sundrum Model

G

Planck brane

AdS

• Randall-Sundrum (RS) model [PRL 83, 
3370 (1999); PRL 83, 4690 (1999)]

–One + brane – no low energy effects

–Two + and – branes – TeV Kaluza-Klein 
modes of graviton

–Low energy effects on SM brane are 
given by ; for kr ~ 10,  ~ 1 TeV and 

the hierarchy problem is solved naturally

r

Planck brane 
(  = 0)

SM brane
(  = )

AdS5

k – AdS curvature

Reduced Planck mass:

Anti-deSitter space-time metric:

ds2 = e−2kr|φ|ημνdxμdxν − r2dφ2

Λπ = MPle
−krπ

MPl ≡ MPl/
√

8π



The Machine
The LHC
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The LHC - Aerial View

31

CMS

CERN Site

ATLAS

GVA
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The LHC

Will focus primarily on CMS in this talk
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LHC: facts
• Energy: 7 x 7 TeV (will start at 5 x 5 TeV), i.e. 7 times more powerful than the 

existing machines

• Circumference: 26.7 km

• Number of proton bunches: 2808 x 2808

• Number of protons per bunch: 1.15 x 1011

• Magnetic field: 8.3 T

• Luminosity: 1034 cm-2s-1 = 10-2 pb-1s-1 = 7 top pairs/s = 100 W(e )/s

• Energy stored in magnets: 10 GJ = A380 at a cruise speed of 700 km/s. Can heat 
and melt 12 tons of copper!

• Energy stored in a single beam: 360MJ = 90 kg of TNT = 8 liters of gas = 15 kg of 
chocolate

33
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LHC: Niagara worth of Data!

34

 ATLAS will produce 320 MB/s

 CMS will produce 220 MB/s

 LHCb will produce 50 MB/s

 ALICE will produce 100 MB/s

Concorde
(15 km)

Mont-Blanc
(4.8 km)

CD stack with
1 year LHC data!

(~ 20 Km)

Sounding balloon
(30 km)
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Cooldown Status
• http://lhc.web.cern.ch/lhc

35
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Cooldown Schedule
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The LHC Operation Stages
• First 14 TeV Collisions: ~Summer/Fall 2008

• Effective ATLAS/CMS running time/year: ~1000 hours ~ 4 x 106 s ~ 
4 x 1039 cm-2 = 4 x 1015 b-1 = 4 fb-1 @ 1033 cm-2s-1

• Expected luminosity: ~10-100 pb-1  in 2008 (@10 TeV); a few fb-1 in 2009

L ~ 1-5 x 1032 cm-2s-1

L ~ 1-? x 1033cm-2s-1



The Detectors
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ATLAS Now

39
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CMS - 2006
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CMS in December, 2007

41
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CMS in January

42
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CMS in January

42

220 m2 of Silicon!
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CMS Explained A 100 MP digital camera,
which takes 40 million frames/sec!
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Detector Concept
• Nearly 4 , hermetic, redundant, Russian-doll design

44

And Missing Transverse Energy (MET) for anything, 
which does not interact or interacts weakly
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Why MET is Tough?

• Raw MET spectrum at the Tevatron 
and that after thorough clean-up

• Fake MET appears naturally in multijet 
events, which have enormous rate at 
the LHC

• Jets tend to fluctuate wildly:

– Large shower fluctuation

– Fluctuations in the e/h energy ratio

– Non-linear calorimeter response

– Non-compensation (i.e., e/h  1)

• Instrumental effects:

– Dead or “hot” calorimeter cells

– Cosmic ray bremsstrahlung

– Poorly instrumented area of the 
detector

• Consequently, it will be a challenge to 
use in early LHC running

• Nevertheless, MET is one of the most 
prominent signatures for new physics 
and thus must be pursued



Trigger
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Triggering at Hadron Colliders
• e+e- colliders: low total cross section, 

low rates
– Trigger pretty much on everything, 

perhaps with the exception of very 
forward processes (low-angle 
Bhabha)

• Hadron colliders: enormous cross 
section, unattainable rates
– Trigger is very selective

– Only small fraction of collisions is 
written to tape

– Additional complications due to pile-
up

• LHC: 

–  
tot = 110 mb, in ~ 70 mb

– L = 1034 cm-2s-1 = 10 nb-1s-1

– 25 ns bunch crossing

– Total rate: ~109 s-1 or ~20/crossing

• Tevatron:
– 1.5 smaller cross section; 50 times 

lower luminosity; 16 times longer 
crossing time: ~4/crossing

[Block, Halzen, hep-ph/0510238 ]

LHC: tot = 107.3 ± 1.2 mb

[PDG]
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More Trigger Challenges
•LHC Physics Demands

–EWSB in SM (Higgs, W, Z)
•Lepton/photons ET ~ 50 GeV

•High rate (10 Hz of top events and 
200 Hz of W(l ) events!)

–TeV scale supersymmetry, UED
•Multiple leptons, jets and LSPs 
(missing ET), ET < 100 GeV

•QCD Background
–Jet ET ~ 250 GeV, rate ~ 1 kHz

–Jet fluctuations  electron BG

–Decays of p, K, B  muon BG

•Technical challenges
–40 MHz input  fast processing

–100 Hz output  physics selection

–109 events per year  102 Higgs 
events

•Benchmark:  = 100 pb  1 Hz
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Trigger Architecture
• Must reduce 2.5-40 MHz of input interactions to 50-100 Hz

– Do it in steps/successive approximations: “Trigger Levels”

Front  end pipelines

Readout buffers

Processor farms

Switching network

Detectors

Lvl-1

HLT

Lvl-1

Lvl-2

Lvl-3

Front end pipelines

Readout buffers

Processor farms

Switching network

Detectors

“Traditional”: 3 physical levels, ATLAS CMS: 2 physical levels

x400 rejection

x1000 rejection



Example 1: SUSY in Jets + MET
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Strong Production, Complicated Events

51
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Possibility for an Early Discovery
• Even with a handful of statistics the reach will be 

expanded dramatically compared to the Tevatron 
limits

52
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SUSY Event Selection
• Focus on low-mass SUSY points

• Jets and MET always present; no 

hit for leptonic branching fraction

53

MET > 200 GeV
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A Typical SUSY Event

54



Spring 2008 Physics Colloquium Greg Landsberg, Searches for New Physics with Early LHC Data

QCD Background Rejection
• The dominant background is QCD multijet production with fake 

MET

• Can be effectively reduced by requiring the minimum angular 
separation between the MET vector and the direction of jet 1 
(leading) or jet 2 (subleading)

• Use extrapolation from low MET region to estimate residual 
background (a la DØ)

55

90% efficient 15% efficient
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Z( ) + Jets: Estimate from Data
• Use Z(ee) and Z(μμ) + jets for normalization; 

acceptance corrections via MC

• Necessary since the signal and background shapes 
are similar

56
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Reach
• Significant reach with as low as ~100 pb-1

57
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Reach
• Significant reach with as low as ~100 pb-1

57

100 pb-1
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Other SUSY Channels
• Clearly, a number of channels will be investigated in parallel, including 

lepton+jets, like- and opposite-sign dileptons, channels with tau’s, and 
MSSM Higgs searches

• Sensitivity in all these channels is being reevaluated using most 
realistic simulation available

• Previous studies suggest that the best reach is achieved in inclusive 
channels

58



(More) Exotic Models



Example 2:
Extra Dimensions in Space
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Extra Dimensions: a Brief Summary
TeV-1 Scenario:
• Pro: Lowers GUT 

scale by changing the 
running of couplings

• Only gauge bosons  
(g/ /W/Z) “live” in ED’s

• Size of ED’s ~1 TeV-1 
or ~10-19 m – i.e., 
natural EWSB size

• Con: Gravity is not in 
the picture

RS Model:
• Pro: A rigorous solution 

to the hierarchy 
problem via localization 
of gravity

• Gravitons (and possibly 
other particles) 
propagate in a single 
ED, with special metric

• Black holes at the LHC 
and in UHE cosmic rays 

• Con: Somewhat 
disfavored by precision 
EW fits

G

   P
lanck 

brane
SM 

brane

ADD Paradigm:
• Pro: “Eliminates” the 

hierarchy problem by 
stating that physics 
ends at a TeV scale

• Only gravity lives in 
the “bulk” space

• Size of ED’s (n=2-7) 
between ~100 μm 
and ~1 fm

• Black holes at the 
LHC and in the UHE 
cosmic rays

• Con: Doesn’t explain 
why ED are so large
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ED: Kaluza-Klein Spectrum
TeV-1 Scenario:
• Winding modes with 

nearly equal energy 
spacing ~1/r, i.e. ~ 1 
TeV

• Can excite individual 
modes at colliders or 
look for indirect effects

• Coupling: ~gw per mode

RS Model:
• “Particle in a box” with 

special AdS metric

• Energy eigenvalues are 
given by the zeroes of 
Bessel function J1

• Light modes might be 
accessible at colliders

• Coupling: GN for the zero 

mode; 1/ 2 for the others

~1 TeV

E

~MGUT

E

…

M0

Mi

~MPl

E

…

M1

Mi

ADD Paradigm:
• Winding modes with 

energy spacing ~1/r, i.e. 
1 meV – 100 MeV

• Experimentally can’t 
resolve these modes – 
they appear as 
continuous spectrum

• Coupling: GN per mode; 

compensated by large 
number of modes

Mi =
√

M2
0 + i2/r2

M0 = 0; Mi = M1
xi

x1

≈
M1, 1.83M1, 2.66M1, 3.48M1, ...



Spring 2008 Physics Colloquium Greg Landsberg, Searches for New Physics with Early LHC Data 63

Collider Signatures for Large ED
Real Graviton Emission

Monojets at hadron colliders

GKK

gq

q
GKK

gg

g

• Kaluza-Klein gravitons couple to 
the energy-momentum tensor, and 
therefore contribute to most of the 
SM processes

• For Feynman rules for GKK see:

– Han, Lykken, Zhang [PRD 59, 
105006 (1999)]

– Giudice, Rattazzi, Wells [NP 
B544, 3 (1999)]

• Graviton emission: direct 
sensitivity to the fundamental 
Planck scale MD

• Virtual effects: sensitive to the 
ultraviolet cutoff MS, expected to 

be ~MD (and likely < MD)

• The two processes are 
complementary
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Collider Signatures for Large ED
Real Graviton Emission

Monojets at hadron colliders

GKK

gq

q
GKK

gg

g

Single VB at hadron or e+e- colliders

GKK

GKK

GKK

GKK

V

V
V V

  Virtual Graviton Effects  
Fermion or VB pairs at hadron or e+e- colliders

V

V

GKKGKK

f

ff

f

• Kaluza-Klein gravitons couple to 
the energy-momentum tensor, and 
therefore contribute to most of the 
SM processes

• For Feynman rules for GKK see:

– Han, Lykken, Zhang [PRD 59, 
105006 (1999)]

– Giudice, Rattazzi, Wells [NP 
B544, 3 (1999)]

• Graviton emission: direct 
sensitivity to the fundamental 
Planck scale MD

• Virtual effects: sensitive to the 
ultraviolet cutoff MS, expected to 

be ~MD (and likely < MD)

• The two processes are 
complementary



Spring 2008 Physics Colloquium Greg Landsberg, Searches for New Physics with Early LHC Data 64

Looking for ED at Colliders

[© 2000, Ferminews]
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Looking for ED at Colliders

[© 2000, Ferminews]

M.Spiropulu
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Looking for ED at Colliders

[© 2000, Ferminews]
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Monojets: Tainted History

[PL, 139B, 115 (1984)]
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Monojets: Tainted History

[PL, 139B, 115 (1984)]
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Monojets: Tainted History

[PL, 139B, 115 (1984)]
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Monojets: Tainted History

•These monojets turned out to be due to 
unaccounted background

•The signature was deemed doomed and 
nearly forgotten

•It took many years for successful monojet 
analyses at a hadron collider to be 
completed (CDF/DØ)

[PL, 139B, 115 (1984)]
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Expectations at the LHC
•Monojets are tough; what 
about monophotons?

–CMS simulations only done for 
30 fb-1 so far, but the luminosity 
dependence is weak (~L1/4)

30 fb-1

• Virtual graviton exchange offers 
clean signature, with a huge 
potential of a quick discovery in 
dimuon, dielectron, and diphoton 
channels:
– Factor of ~3 gain over the Tevatron/

Cosmic Ray limits in just 100 pb-1

– Will also probe compositeness 
models with similar increase in 
sensitivity compared to the existing 
limits

Dimuon channel
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Black Holes at the LHC?
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Black Holes on Demand

NYT, 9/11/01
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Black Hole Events

Simulated black hole event in the 
ATLAS detector, from ATLAS-Japan Group Simulated black hole event in the CMS 

detector, A. de Roeck & S. Wynhoff

• Detailed studies already started in ATLAS and CMS
– ATLAS –CHARYBDIS (HERWIG-based generator with an  

elaborated decay model by Harris/Richardson/Webber)
– CMS – TRUENOIR, GL/CHARYBDIS/CATFISH (OleMiss)

• The hunt is going on!



Example 3: Kaluza-Klein 
Resonances/Z’
Found in RS, TeV-1 models and 

in various Z’ models
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• Need only two parameters to 
define the model: k and r

• Equivalent set of parameters: 

–The mass of the first KK mode, M1  

–Dimensionless coupling           , 
which determines the graviton width

71

Randall-Sundrum Model Observables

Drell-Yan at the LHC

M1

Davoudiasl, Hewett, Rizzo [PRD 63, 075004 (2001)]

• To avoid fine-tuning and non-
perturbative regime, coupling 
can’t be too large or too small

• 0.01            0.10 is the 
expected range

• Gravitons are narrow

• Similar observables for ZKK/gKK in 

TeV-1 models

k/M  Pl

k/MPl

k/MPl



Spring 2008 Physics Colloquium Greg Landsberg, Searches for New Physics with Early LHC Data 72

Dielectrons: Discovery Channel
• Excellent resolution 5-10%/sqrt(E, GeV) (calorimeter based) 

and detection efficiency

• Low background above ~1 TeV

CMS, 30 fb-1

ZKK production
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• Generally worse rapidity coverage, detection efficiency

• Significantly worse momentum resolution than for electrons

• Nevertheless: generally lower instrumental background may make 
dimuons a discovery channel along with dielectrons

73

Dimuons: Confirmation Channel?

Mass resolution
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Randall-Sundrum Graviton Reach
L
u
m

in
o
si

ty
, 
fb

-1

e+e-

μ+μ-
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KK Excitations of the Z Boson
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KK Reach
• Dramatic reach even with ~1 fb-1



The race of two machines

Example 4: The Higgs
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Tevatron Search Strategy
• Low mass Higgs (MH < 135 GeV):

– bb decay channel

– Associated WH/ZH production to keep 
backgrounds under control

– Final states: l bb, llbb, bb or l bb

• High mass Higgs (MH > 135 GeV):

– WW(*) decay channel

– Production via gluon fusion to maximize 
cross section

– Final states: ll’ ’

• Backgrounds:

– W/Z + (heavy quark) jets, dibosons

– Single and pair top production

– QCD multijets

• Analyses:

– l bb: 1.9 fb-1 CDF + 1.7 fb-1 DØ

– llbb: 1.0 fb-1 CDF + 1.1 fb-1 DØ

– bb: 1.7 fb-1 CDF + 0.9 fb-1 DØ
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Tevatron Results
• For MH = 115 GeV, 95/ SM = 5.1 (3.3) observed 

(expected)

79
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The Race is On!
• Challenge: commissioning 

detectors simultaneously with 
search for Higgs

• Early running: gluon fusion 

production; , WW(*)  ll’ ’, 

ZZ  lll’l’

• Discovery possible with ~ 5fb-1 
of well understood data: 2009?

80

2009 ?
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Challenges
There will be surprises on the 
way!
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Before One Can Succeed in Searches
• Proper detector calibration, alignment, and detailed simulation is required

• Taunting task, which easily takes several years

• Searches typically look for one event in a million; that means that the 
detector often has to be understood to the 10-6 level!

• Use calibration samples of well understood nature:

– Test beams (initial calibration)

– Cosmic runs (alignment, efficiency)

– Minbias data (channel-by-channel calibration)

– “Standard candles” – Z, W, top (efficiency, non-Gaussian tails in resolution, b-
tagging)

– Z(ee) and  + jets (jet energy calibration and resolution)

– High-pT dijets (saturation, MET resolution and tails)

• Easily a subject for several dedicated lectures; not covered here in detail:

– See 2006, 2007 Hadron Collider Physics Summer School proceedings for 
dedicated talks

• Note: while a few spectacular discoveries may happen as early as 2008, 
most would require two-three years of accelerator running and operating 
the detectors!

– Gear up for a long(er) ride!



Spring 2008 Physics Colloquium Greg Landsberg, Searches for New Physics with Early LHC Data

Early Discovery Menu from Chez LHC

83
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Early Discovery Menu from Chez LHC

83

Model Mass reach Luminosity (fb-1) Early Systematic Challenges

Contact Interaction  < 2.8 TeV 0.01 Jet Eff., Energy Scale

Z’

ALRM

SSM

LRM

E6, SO(10)

M ~ 1 TeV

M ~ 1 TeV

M ~ 1 TeV

M ~ 1 TeV

0.01

0.02

0.03

0.03 – 0.1

Alignment

Excited Quark M ~0.7 – 3.6 TeV 0.1 Jet Energy Scale

Axigluon or Colouron M ~0.7 – 3.5 TeV 0.1 Jet Energy Scale

E6 diquarks M ~0.7 – 4.0 TeV 0.1 Jet Energy Scale

Technirho M ~0.7 – 2.4 TeV 0.1 Jet Energy Scale

ADD Virtual GKK MD~  4.3 - 3 TeV,  n = 3-6

MD~ 5 - 4 TeV,   n = 3-6

0.1

1

Alignment

ADD Direct GKK MD~ 1.5-1.0 TeV, n = 3-6 0.1 MET, Jet/photon Scale

SUSY

Jet+MET+0 lepton

Jet+MET+1 lepton

Jet+MET+2 leptons

M ~1.5 – 1.8 TeV

M ~0.5 TeV

M ~0.5 TeV

M ~0.5 TeV

1

0.01

0.1

0.1

MET, Jet Energy Scale, 
Multi-Jet backgrounds, 

Standard Model 
backgrounds

mUED M ~0.3 TeV

M ~ 0.6 TeV

0.01

1

ibid

TeV-1 (ZKK
(1)) Mz1 < 5 TeV 1

RS1

di-jets

di-muons

MG1~0.7- 0.8 TeV,     c=0.1

MG1~0.8- 2.3 TeV,     c=0.01-0.1

0.1

1

Jet Energy Scale

Alignment
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LHC Discovery Roadmap
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Conclusions
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It’s Fun to be a Theorist Today
• Enormous landscape of models

– Peaks, deserts, valleys, some of which may be hidden!

• Emerging connection of physics at the smallest and largest 
distances

• Wild West of models; some are pretty imaginative

– New particles

– New dimensions

– New geometries and topologies

• State of the art high-precision calculations at NLO and NNLO

• Improved QCD calculation precision:

– Important insights from string theory methods (twistor space, AdS/CFT)

– Greatly improved lattice QCD

• Very powerful MC generators

• Good understanding of PDF and uncertainties

• Interesting attempts to reverse-engineer experimental data
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• We have several imminent missions to accomplish: the LHC, 
the next generation of neutrino experiments, space 
laboratories, perhaps the ILC, and other future colliders

• We have great mysteries to solve: the origin of mass, the 
matter-antimatter asymmetry of the universe, the nature of 
dark matter and dark energy

• We have detailed maps - theoretical guidance - but let’s not 
forget that we may be in the uncharted waters

• The future is bright; no bumps on the road would stop us

• We are destined to find unknown, perhaps of a much more 
puzzling type than any of us could now imagine!
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If History is a Guide...
• Let’s recall a tale of a great discovery of five centuries 

ago: the discovery of the Americas
• Christopher Columbus was an ideal experimenter:

– He raised funding
– He ignored theoretical prejudice
– He was lucky
– As a result, he has discovered a WHOLE NEW WORLD!

• We have a thing or two to learn from him...
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  ¡Prospero 
Año Nuevo 

2008: 
el año de 

LHC!


