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ABSTRACT
In the last few years before merger, supermassive black hole binaries will rapidly inspiral and

precess in a magnetic field imposed by a surrounding circumbinary disk. Multiple simulations suggest
this relative motion will convert some of the local energy to a Poynting-dominated outflow, with a
luminosity ∼ 1043 erg s−1 (B/104G)2(M/108M⊙)2(v/0.4c)2, some of which may emerge as synchrotron
emission at frequencies near 1 GHz where current and planned wide-field radio surveys will operate.
On top of a secular increase in power (and v) on the gravitational wave inspiral timescale, orbital
motion will produce significant, detectable modulations, both on orbital periods and (if black hole spins
are not aligned with the binary’s total angular momenta) spin-orbit precession timescales. Because
the gravitational wave merger time increases rapidly with separation, we find vast numbers of these
transients are ubiquitously predicted, unless explicitly ruled out (by low efficiency �) or obscured (by
accretion geometry fgeo). If the fraction of Poynting flux converted to radio emission times the fraction
of lines of sight accessible fgeo is sufficiently large (fgeo� > 2 × 10−4 for a 1 year orbital period), at
least one event is accessible to future blind surveys at a nominal 104 deg2 with 0.5 mJy sensitivity. Our
procedure generalizes to other flux-limited surveys designed to investigate EM signatures associated
with many modulations produced by merging SMBH binaries.
Subject headings: black hole physics—cosmology: observations—radio continuum: general—surveys

1. INTRODUCTION

Merging supermassive black hole binaries should nat-
urally possess a circumbinary accretion disk whose MRI-
driven turbulence generates and imposes a substan-
tial external magnetic field. Recent simulations sug-
gest that supermassive black holes (SMBHs) moving
through an imposed magnetic field should produce a
Poynting-dominated outflow, consisting of a jet Palen-
zuela et al. (2010a) and diffuse emission Moesta et al.
(2011). Thus, even in the absence of accretion, dur-
ing their last years before merger, SMBH binaries should
generally have faint emission, modulated by their orbital
motion. Though the outflow (henceforth “jet”) power
increases during the inspiral, ending in a bright flare, as
discussed in Kaplan et al. (2011), such flares are too faint
or too rare to easily detect, unless almost all the Poynt-
ing flux is efficiently converted to low-frequency radia-
tion. On the other hand, because SMBH binaries spiral
in very slowly through gravitational wave emission, each
merger flare is preceded by a long phase during which the
jet is modulated and growing, at only slightly reduced ef-
ficiency. These modulations should be easily accessible
to future radio surveys.

In this paper we calculate how frequently modulations

Electronic address: oshaughn@gravity.phys.uwm.edu

Electronic address: kaplan@uwm.edu

Electronic address: alberto.sesana@aei.mpg.de

will occur and how often they can be detected. Our
paper adopts and extends the assumptions used in Ka-
plan et al. (2011) for the jet power versus binary masses
and for fiducial SMBH binary merger rates. In §2 we
sum over all SMBH binaries, to determine the number
of binaries on our past light cone with detectable mod-
ulation. In §3 we describe how long, how frequent, and
how bright modulations from each SMBH binary should
be. Finally, §4 we discuss, in order to detect the signa-
ture presented here, targeted EM and GW surveys must
overcome limitations of intrinsic AGN variability or small
limiting distances, respectively. We also briefly explain
how the many distinctive variations in the predicted light
curve will distinguish this source from other candidate
modulation.

To date, most 1 GHz radio transient surveys have sur-
veyed at most a few thousand square degrees with rms
sensitivities of ∼ mJy (Ofek et al. 2011), with many
having smaller area, less sensitivity, and sporadic sam-
pling. Upcoming surveys will be larger, more regular,
and more sensitive. In particular, the VAST (Variables
and Slow Transients; Murphy et al. (2011)) project us-
ing the Australian Square Kilometer Array Pathfinder
(ASKAP; Johnston et al. (2007)) will survey roughly
104 deg2 daily down to a nominal sensitivity of 0.5 mJy.
We adopt these parameters to motivate our discussion,
keeping in mind that survey plans often change and
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The problem of reconstructing the sky position of compact binary coalescences detected via gravi-
tational waves is a central one for future observations with the ground-based network of gravitational-
wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different techniques for
sky localisation have been independently developed. They can be divided in two broad categories:
fully coherent Bayesian techniques, which are high-latency and aimed at in-depth studies of all the
parameters of a source, including sky position, and “triangulation-based” techniques, which exploit
the data products from the search stage of the analysis to provide an almost real-time approxi-
mation of the posterior probability density function of the sky location of a detection candidate.
These techniques have previously been applied to data collected during the last science runs of
gravitational-wave detectors operating in the so-called initial configuration.

Here, we develop and analyze methods for assessing the self-consistency of parameter estimation
methods and carrying out fair comparisons between different algorithms, addressing issues of ef-
ficiency and optimality. These methods are general, and can be applied to parameter estimation
problems other than sky localisation. We apply these methods to two existing sky localisation
techniques representing the two above-mentioned categories, using a set of simulated inspiral-only
signals from compact binary systems with total mass ≤ 20M⊙ and non-spinning components. We
compare the relative advantages and costs of the two techniques and show that sky location un-
certainties are on average a factor ≈ 20 smaller for fully coherent techniques than for the specific
variant of the “triangulation-based” technique used during the last science runs, at the expense of
a factor ≈ 1000 longer processing time.

PACS numbers:

I. INTRODUCTION

Ground-based gravitational-wave (GW) laser interfer-
ometers – LIGO [1], Virgo [2] and GEO-600 [3] – have
completed science observations in 2010 (S6/VSR2-3) [4]
in the so-called initial configuration, and are currently be-
ing upgraded with the plan to start running again from
2015 at a significantly improved sensitivity [5, 6]. No de-
tection was achieved during this initial period of obser-
vations; however, the expectations are that by the time
the instruments reach design “advanced” sensitivity they
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shall routinely detect gravitational-wave signals. One of
the most promising candidate sources for detection are
coalescing binary systems of compact objects containing
neutron stars and black holes [7].

One of the key pieces of information to extract is the
source location in the sky. Once a detection candidate
is identified by search pipelines, the location parameters
that describe the source are reconstructed using a num-
ber of techniques, both high and low-latency [8, 9]. In
contrast to traditional telescopes, gravitational-wave in-
struments are all-sky monitors and the source location in
the sky is reconstructed a posteriori. Information about
the source geometry is primarily encoded in the relative
time of arrival of GW radiation at the different detector
sites, together with the relative amplitude and phase of
the GWs as seen in different detectors. Constraining the
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M. Britzger2, A. F. Brooks29, D. A. Brown53, R. Budzyński45b, T. Bulik45cd, H. J. Bulten41ab, A. Buonanno67,
J. Burguet–Castell78, O. Burmeister2, D. Buskulic27, R. L. Byer52, L. Cadonati68, G. Cagnoli17a, E. Calloni19ab,

J. B. Camp39, E. Campagna17ab, P. Campsie66, J. Cannizzo39, K. C. Cannon29, B. Canuel13, J. Cao61, C. Capano53,
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I. INTRODUCTION

[EB: I leave this for Mike; stress the astrophysical scenar-
ios leading to resonant locking [3], and why it is crucial to
tell apart binaries in different resonant families in order to re-
construct their formation scenario - hence this paper. Stress
that: 1) we are not addressing the astrophysical likelihood
of observing resonant binaries; such a study will require in-
terfacing our work with population synthesis study, and we
plan to get back to it in the future; 2) we focus on the “pure
GW data analysis” question and we consider the worst-case
scenario by choosing Ĵ along n̂ - and therefore suppressing
the precessional modulations that make the two families dis-
tinguishable. Even in this pessimistic scenario the answer is
“yes, we can”, to quote that guy.]

[DG:

• Gravitational-wave (GW) detectors, matched filter-
ing, template

• Plausible rates

• previous works on non-spinning, aligned and single-
spin waveform modeling and detectability

• Astrophysical binaries: something on our previous
work

• really brief review on resonances.

]
Throughout the paper we use geometrical units G =

c = 1, and we use hats to identify unit vectors. So,
for example, the direction of the binary’s orbital angular
momentum will be denoted by L̂ = L/|L|.
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II. COMPARING WAVEFORMS FROM

RESONANT BINARIES

Our main goal in this paper is to compare sets of (sim-
ulated) source waveforms h0(t) against template wave-
forms h(t). In order to perform this comparison we in-
troduce the noise-weighted inner product [17]

(h0|h) ≡ 4 Re
� ∞

0

h̃0(f)h̃∗(f)
Sn(f)

df , (1)

where h̃(f) is the Fourier transform of h(t) and Sn(f)
is the noise power spectral density (PSD) for a given
detector/network. The signal-to-noise ratio (SNR) ρ of
the source is given by

ρ ≡ (h0|h0)1/2 . (2)

The key quantity to perform comparisons between the
source and template waveforms is the overlap O(h0, h),
defined as the normalized inner product defined above,
maximized over the arrival time tc and the phase at co-
alescence φc

O(h0, h) ≡ max
tc,φc

(h0|h)�
(h0|h0)(h|h)

. (3)

Physically, the overlap corresponds to the fraction of the
source SNR that can be recovered using the template
waveform h(t).

A. Binary parameters

The kinematics and GW signal from quasicircular spin-
ning BH binaries are described by a set of parameters
that are usually characterized as “intrinsic” when they
depend on physical properties of the source, and “extrin-
sic” when they depend on observer-dependent character-
istics of the detector.

Each of these parameters must be specified at some
point during the evolution of the binary, i.e. at some
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Precessing black hole-neutron star (BH-NS) binaries produce a rich gravitational wave signal,

encoding the binary’s nature and inspiral kinematics. Using the lalinference Markov-chain Monte

Carlo parameter estimation code, we use three fiducial examples to illustrate how the geometry and

kinematics are encoded into the modulated gravitational wave signal, using coordinates well-adapted

to precession. Extending previous work, we demonstrate the performance of detailed parameter

estimation studies can often be estimated by “effective” studies: comparisons of a prototype signal

with its nearest neighbors, adopting a fixed sky location and idealized two-detector network. As a

concrete example, we use detailed and effective approaches to show higher harmonics provide nonzero

but small local improvement when estimating the parameters of precessing BH-NS binaries. That

said, we show higher harmonics can improve parameter estimation accuracy for precessing binaries

globally, by break leading-order symmetries and thus ruling out approximately-degenerate source

orientations and sky locations. Combined with our previous study, our conclusions stand in stark

contrast to conventional wisdom: higher harmonics broke no astrophysically significant symmetries

for nonprecessing BH-NS binaries, but did break symmetries and improve parameter estimation for

precessing binaries. clean up this one As a second example, we illustrate how intrinsic (masses,

spins) and extrinsic (geometric) parameters separate: for our examples, no correlations exist between

the two classes of parameters. Likewise, for our examples, the accuracy to which we can measure the

binary masses and spin does not depend on the specific geometric parameters adopted. That said,

following [1], we have constructed one fine-tuned, high-symmetry case where mass measurement

accuracy depends on a seemingly-uncoupled geometric parameter: the orbital angular momentum’s

relative precession phase. In several extended technical appendices, we report on other things we

may finish or think worth adding

greater dependence on noise realization?

Suspicion: strong improvement and strong degeneracies when the precession cone on the sky

crosses itself, on symmetry reflection? Convert into explicit hypothesis and condition

PACS numbers:

ACTION ITEMS
* Discuss issue of m = 1 mode terminating in band
* figure 1 shows reversed x axis - figure not correct, x2

and N should have an angle less than 90 deg?
* “Effective” contour plots for these cases! Just use

match vs exact parameters?
* Confirm : PN orders/spin orders used consistent with

reported numbers in table (Evan)x
* For sky projected:
Use a set of vectors relative to a fixed L direction
* FOR SKY PROJECTED:
- add option to explicitly double the distribution for

vector plots (doublePsi)
TECHNICAL
* Highly nongaussian error ellipsoid, but understand-

able
- cone

∗Electronic address: oshaughn@gravity.phys.uwm.edu
†Electronic address: chunglee.kim@mail.wvu.edu

- precession number of cycles vs parameters
ASIDE ITEMS
* Topological clustering of posterior; relationship to

R1/R2/R3

I. INTRODUCTION

Ground based gravitational wave detector networks
(notably LIGO [2] and Virgo [? ]) are sensitive to the
relatively well understood signal from the lowest-mass
compact binaries M = m1 +m2 ≤ 16M⊙ [3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14]. Strong signals permit high-precision
constraints on binary parameters, particularly when the
binary precesses. Precession arises only from spin-orbit
misalignment; occurs on a distinctive timescale between
the inspiral and orbit; and produces distinctive polar-
ization and phase modulations. As a result, the com-
plicated gravitational wave signal from precessing bina-
ries is unusually rich, allowing high-precision constraints
on multiple parameters, notably the (misaligned) spin.
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Outline

• Why use gravitational waves for astronomy?

• Rich data, addressing previously inaccessible phenomena

• Gravitational wave astronomy 101

• Precise measurements, modulo systematics and degeneracies

• Robust constraints on astrophysics

• Gravitational waves astronomy with precessing binaries

• Richer signals, tracing different phenomena

• The future

• Look to the sky, to new scales and new phenomena
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Why study gravitational waves?

4

 EM waves

Source

• Any accelerating charge

• Screening limits signal

• Strong coupling

• Easy to make & detect

• Easy to obscure
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Gravitational waves and compact binaries exist

5

PSR B1913+16 

Weisberg &!
Taylor 03!

Hulse and Taylor
• Observed neutron star binary
• Measured orbit
• Energy losses in orbit consistent with GW emission 
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Some neutron star binaries will merge

6

• Example orbit:

• Are these known explosions seen throughout the universe?
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Many binary pulsars
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Estimate probability of finding binary pulsars
Infer formation rate

R � fbNseen/τ

fb =
4π

Ωvisible 100/MyrBINARY PULSAR BIRTHRATES WITH ρ(Ps) 9

�8 �7 �6 �5 �4 �3 �2
0.0

0.5

1.0

1.5

2.0

log R �yr�1�

dP
�dlog

R

Fig. 6.— Distributions P(logR) for the birthrate of tight PSR-NS binaries: PSRs B1913+16 (red), B1534+12 (blue), J0737-3039A
(green), J1756-2251 (orange), and J1906+0746 (black). The thick black curve indicates our best estimate for the overall Galactic birthrate
of tight PSR-NS binaries, assuming the reference pulsar population model in KKL06; the median value is � 89 Myr−1. The individual
colored curves indicate our best estimates for the birthrate of the individual binaries, based on Eq. (1) and incorporating fb,eff listed in
Table ??. For the two PSRs with 10 ms < Ps < 100 ms and without specified beam geometry (PSRs J0737A-3039 and J1756-2251), we
account for uncertainty in opening-angle modeling by allowing ln fb to be anywhere between our ‘conservative’ and ‘standard’ choices.

two alternate scenarios. In one, the pulse is interpreted as from a single highly aligned pole (α < 4
◦
). Because of

its tight alignment, in this model the beaming correction factor should be large: at least as large as those for binary

pulsars (fb � 6, assuming ρ ∼ 30
◦
, from ρ(Ps)), and potentially larger (fb � 30 assuming ρ = 10

◦
, based on observed

opening angles for PSRs B1913+16 and B1534+12). In the other scenario, favored by recent observations (?), the pulse

profile is interpreted as a double pole orthogonal rotator α � π/2 with a fairly wide beam (ρ ∼60
◦−90

◦
, consistent

with ρ(Ps)). This latter case is consistent with our canonical model and leads to a comparable fb. Comparing with the

assumptions presented earlier, so long as we ignore the possibility of tight alignment and narrow beams, our prefered

model and uncertainties for PSR J0737-3039A already roughly incorporate its most significant modeling uncertainties.

Considering that the contribution from PSR J1906+0746 is comparable with that of the PSR J0737-3039A, our best

estimate for the birthrate of merging PSR-NS binaries is not very sensitive to changes in a nearly orthogonal-rotator

geometry model for PSR J0737-3039A. However, because we cannot rule out the most extreme scenarios for PSR J0737-

3039A, for completeness we also describe implications of a unipolar model: the beam shape constraints summarized

by Fig. ?? translate to a prior on log fb that is roughly uniform between log 6 and log 30.

In Fig. ??, we show the probability distribution of PSR-NS merger rate with our best estimates for the beaming cor-

rection fb,eff , assuming the reference model of KKL06. P (R)’s follow from convolving together birthrate distributions

based on each individual pulsar binary, where those birthrate distributions are calculated as described in previous

sections. Including PSR J1906+0746, we found the median PSR-NS merger rate is � 89 Myr
−1

, which is smaller than

what we predicted in KKL06 ( ∼ 123 Myr
−1

, cf. their peak value is 118 Myr
−1

), assuming the same τage and τmrg
listed in Table ??, but used fb,J0737 = 5.9, due entirely to the smaller beaming correction factors for PSR J0737-3039A

allowed for in this work. Though our best estimate for the merger rate is slightly smaller than previous analyses,

the difference is comparable to the Poisson-limited birthrate uncertainty and much smaller than the luminosity model

uncertainty described in the appendix. Being nearly unchanged, our study has astrophysical implications in agreement

with prior work such as PSC and ?.

Although the merging timescale is relatively well-defined, we note that our estimate does not include O(30%)

uncertainties in the current binary age. In this work, for example, we fix the total age of PSR J0737-3039A to be

log (rate  (year)) ROS et al 2010 (ApJ 715 230)
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ABSTRACT
One ingredient in an empirical birthrate estimate for pulsar binaries is the fraction of sky subtended

by the pulsar beam: the pulsar beaming fraction. This fraction depends on both the pulsar’s opening
angle and the misalignment angle between its spin and magnetic axes. The current estimates for
pulsar binary birthrates are based on an average value of beaming fractions for only two pulsars, i.e.
PSRs B1913+16 and B1534+12. In this paper we revisit the observed pulsar binaries to examine the
sensitivity of birthrate predictions to different assumptions regarding opening angle and alignment.
Based on empirical estimates for the relative likelihood of different beam half-opening angles and mis-
alignment angles between the pulsar rotation and magnetic axes, we calculate an effective beaming
correction factor, fb,eff , whose reciprocal is equivalent to the average fraction of all randomly-selected
pulsars that point toward us. For those pulsars without any direct beam geometry constraints, we
find that fb,eff is likely to be smaller than 6, a canonically adopted value when calculating birthrates
of Galactic pulsar binaries. We calculate fb,eff for PSRs J0737-3039A and J1141-6545, applying the
currently available constraints for their beam geometry. As in previous estimates of the posterior
probability density function P(R) for pulsar binary birthrates R , PSRs J0737-3039A and J1141-6545
still significantly contribute to , if not dominate, the Galactic birthrate of tight pulsar-neutron star
(NS) and pulsar-white dwarf (WD) binaries, respectively. Our median posterior present-day birthrate
predictions for tight PSR-NS binaries, wide PSR-NS binaries , and tight PSR-WD binaries given a
preferred pulsar population model and beaming geometry are 89 Myr−1, 0.5 Myr−1, and 34 Myr−1,
respectively. For long-lived PSR-NS binaries, these estimates include a weak (×1.6) correction for
slowly decaying star formation in the galactic disk. For pulsars with spin period between 10 ms and
100 ms, where few measurements of misalignment and opening angle provide a sound basis for extrap-
olation, we marginalized our posterior birthrate distribution P(R) over a range of plausible beaming
correction factors. We explore several alternative beaming geometry distributions, demonstrating our
predictions are robust except in (untestable) scenarios with many highly aligned recycled pulsars.
Finally, in addition to exploring alternative beam geometries, we also briefly summarize how uncer-
tainties in each pulsar binary’s lifetime and in the pulsar luminosity distribution can be propagated
into P(R).
Subject headings: binaries: close–stars: neutron–white dwarfs–pulsars

1. INTRODUCTION
Using pulsar survey selection effects to extrapolate outward to the entire Milky Way, the observed sample of Milky

Way field binary pulsars constrains the present-day population and birthrate of these binaries, e.g., ?, ?, ?, ?, ?,
henceforth denoted KKL, and references therein. Along with the properties of the population, this empirical birthrate
informs models for their formation, e.g., ? (hereafter PSC), ?; detection rate estimates for gravitational-wave obser-
vatories like LIGO and VIRGO, e.g. Abbott et al. (2008); and even attempts to unify compact mergers with short
γ-ray bursts (?). Following KKL, a posterior prediction for the present-day birthrate (R) of pulsar binaries on similar
evolutionary tracks to a known pulsar binary can be expressed in terms of the pulsar’s beaming geometry (through the
effective beaming correction factor fb,eff), effective lifetime τeff , and the population distribution of individual pulsars
(in luminosity and galaxy position, via Npsr):

P(R) = (τeff/Npsrfb,eff)Re−(τeff/Npsrfb,eff)R ≡ CRe−CR (1)
Summing over the individual contributions Ri from each specific pulsar binary i, a posterior prediction for the overall
Galactic birthrate is

P(Rtot) =
�

Π dRiPi(Ri) δ(Rtot −
�

Ri) . (2)

As of 2009, the best constrained fb’s for binary pulsars are available for PSRs B1913+16 and B1534+12 (?). Previous
works taking an empirical approach relied on these two pulsars for the beaming correction to the rate estimates, e.g.
KKL, ?, ? (hereafter KKL06). The average value of fb ∼ 6 based on PSRs B1913+16 and B1534+12 was used as
‘canonical’ value in order to calculate the birthrate (or merger rate) of pulsar binaries and the inferred detection rates
for the gravitational-wave detectors.
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Countdown to detection
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Figure 5: The expected distribution of 90% confidence localization areas for a population of BNS

systems with advanced detector networks.

Run BNS range (Mpc) Number of Median % localized within

Epoch Duration LIGO Virgo Detections Area (deg
2
) 5 deg

2
20 deg

2

2015 3 months 60± 20 — 0.0004 - 3 2000 - -

2016–17 6 months 100± 20 40± 20 0.006 - 20 70 2 15

2017–18 6 months 140± 30 70± 15 0.02 - 70 84 1 12

2019+ (per year) 200 100± 15 0.2 - 200 31 5 37

2022+ (India) (per year) 200 130 0.4 - 400 11 19 73

Table 1: Summary of observing schedule, expected sensitivities, and source localization with the

advanced LIGO and Virgo detectors. Detection rates are computed assuming a false alarm rate of

10−2 y−1.
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GW detections by 2017-2018?
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Binary star evolution

Key fact: stars evolve and expand

Typical life of interacting binary system

• Star 1 ages, expands. Potential mass transfer 1->2

• Star 1 explodes

• Star 2 ages, expands. Potential mass transfer 2->1

• Star 2 explodes

• Compact binary left behind

• May merge via GW....

All ingredients are poorly modeled & measured

• Initial conditions

• Massive (rotating) star evolution

• Interactions

• Explosions

9
Thursday, February 27, 2014



Learning from nature: Binary pulsars in the galaxy

 Predictions vs observation         Consistent parameters
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Probe uncertain physics with masses

• Mass loss depends on composition 
(Z)

• Different SN mechanisms change 
mass promptly accreted onto core

Fryer et al 2012; see also Ott et al;Ugliano et al

11

Birth mass (solar masses)

R
em

na
nt

 m
as

s 
(s

ol
ar

 m
as

se
s)

Thursday, February 27, 2014

http://livepage.apple.com/
http://livepage.apple.com/


Masses of black holes

12

Kreidberg et al  ApJ 757 36 (2012)

14
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XTE J1859+226
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Fig. 7.— Kernel density estimates of the probability distributions for black hole mass implied by the system parameters in Table 2
(solid lines). The distributions implied by the system parameters used in Farr et al. (2011) are also shown (dashed lines). Each panel is
normalized so that the probability distributions integrate to 1.

considered in that work1. The power law model has

P (mBH| {Mmin,Mmax,α}) =
{

Amα
BH Mmin ≤ mBH ≤ Mmax

0 otherwise
, (11)

with parameters

θ = {Mmin,Mmax,α} . (12)

1 We have verified that the qualitative behavior of the mass
gap described in this section is present for the other models of the
LMXB mass distribution considered in Farr et al. (2011).

The normalization constant, A, is

A =
1 + α

M1+α
max −M1+α

min

. (13)

We use uniform priors on Mmin, Mmax > Mmin, and α
within broad ranges that allow for black hole masses up
to 40 M!:

P (θ) =
{

2 1
402

1
28 0 ≤ Mmin ≤ Mmax ≤ 40,−15 ≤ α ≤ 13

0 otherwise
.

(14)
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Masses of neutron stars

• One interpretation of data

13

J. Lattimer
http://www.stellarcollapse.org/nsmasses

Ozel et al ApJ 757 55 (2012)

18

Fig. 15.— The inferred mass distributions for the different populations of neutron stars (top) and black holes (bottom) discussed in
the text. The dashed lines correspond to the most likely values of the parameters. For the different neutron star populations these are:
M0 = 1.33M! and σ = 0.05M! for the double neutron stars, M0 = 1.28M! and σ = 0.24M! for the other neutron stars near their birth
masses, and M0 = 1.48M! and σ = 0.20M! for the recycled neutron stars. For the case of black holes, we used the exponential distribution
with a low mass cut-off at Mc = 6.32M! and a scale of Mscale = 1.61M! obtained in Özel et al. (2010a). The solid lines represent the
weighted mass distributions for each population, for which appropriate fitting formulae are given in the Appendix. The distributions for
the case of black holes have been scaled up by a factor of three for clarity.

neutron stars, M0 = 1.28M! and σ = 0.28M! for other neutron stars near their birth mass, and M0 = 1.48M! and
σ = 0.22M! for recycled neutron stars.
We also obtained a fitting formula for the normalized weighted mass distribution of black holes (solid line in the

bottom panel of Fig. 15) for MBH > 5M! that approximates the numerical result to within 3%:

P (MBH) =
{

A(MBH)
n +

[

B(MBH)
−n + C(MBH)

−n
]−1

}1/n
, (A1)

where

A(MBH)=4.367− 1.7294MBH + 0.1713M2
BH

B(MBH)=14.24 exp(−0.542MBH)

C(MBH)=3.322 exp(−0.386MBH)

n=−10.0 . (A2)

REFERENCES

Barziv, O., Kaper, L., Van Kerkwijk, M. H., Telting, J. H., & Van
Paradijs, J. 2001, A&A, 377, 925
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What are general relativity and gravitational waves?

h =
δL

L

L

δL

ψ4 = ∂2
t (h+ − ih×)

General relativity

• “Evolution” of distance (metric g)

• Linearize about “normal” space

Gravitational waves [this talk]

• Identify propagating functions, e.g.

• h is complex: 2 “polarizations” 

• Physics: “length changes”:

• and “acceleration”

Rab −
gab

2
R = ✘✘✘8πTab

∇2hab � 0

(−2)∇2h � 0

g = η + �h

h(ẑ) =
1
2
[hxx − hyy − 2ihxy]
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• Shrinking binary spirals in, “chirping”

Binary inspiral and merger

15

time

fre
qu

en
cy

3

Eq. (18) of Ref. [6]). The NQC coefficients are fixed by re-
quiring that the EOB (2,2) mode agrees with the NR input
values for |h22|, ∂t |h22|, ∂ 2

t |h22|, ∂tφ22 and ∂ 2
t φ22, evaluated

at the peak of |h22|. Using the 38 NR nonprecessing wave-
forms in the SXS catalog and Teukolsky waveforms com-
puted in the small-mass-ratio limit [21], we updated the fit-
ting formulas for the NR input values given in Table IV of
Ref. [6]. We use these to iteratively compute the NQC co-
efficients as described in Sect. IIB of Ref. [6]. While pre-
vious nonspinning EOB models [8] were calibrated without
enforcing any time delay between the peak in the (2,2) am-
plitude and in the orbital frequency, here, as in Refs. [5, 6],
we require a lag ∆t22

peak which varies with the physical param-
eters of the binary. The idea of introducing ∆t22

peak into the
model was inspired by studies in the small-mass-ratio limit,
where such time delay was first seen with EOB trajectories
sourcing Teukolsky waveforms [22] and accurately quantified
in Ref. [21]. Finally, the inspiral-plunge waveform is simply
defined as hinsp−plunge

22 ≡ N22hF
22, and hinsp−plunge

�m ≡ hF
�m when

(�,m) �= (2,2).

0 50 100 150 200
M / MSun

0.01%
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1%

F_
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FIG. 1. Unfaithfulness of (2,2) EOB waveforms for all the 38 non-
precessing BH binaries in the SXS catalog. Only a few selected cases
are labeled in the legend.

As usual, the EOB merger-ringdown (RD) waveform is
built as a linear combination of quasi normal-modes (QNMs)
of the remnant BH [4]

hmerger−RD
�m (t) =

N−1

∑
n=0

A�mn e−iσ�mn(t−t�mmatch) , (5)

where N is the number of overtones, t�mmatch is the time when
|hinsp−plunge

�m | peaks, A�mn is the complex amplitude of the n-
th overtone of the (�,m) mode, and σ�mn = ω�mn − i/τ�mn is
its complex frequency, having positive (real) frequency ω�mn
and decay time τ�mn. The frequencies σ�mn depend on the
mass Mf and spin a f of the final Kerr BH, and are tabulated
in Ref. [23]. To predict Mf we use the phenomenological for-
mula proposed by Ref. [24], but we replace its equal-mass
limit [Eq. (11) therein] with the highly accurate fit given in

Eq. (9) of Ref. [13]. To compute a f , we start from the for-
mula of Ref. [25] (which also predicts the direction of the
final spin for precessing binaries), and use the simulations
in the SXS calatog to refit its nonprecessing limit; the main
change we introduce are 4 new fitting coefficients designed
to improve the equal-mass, high-spin corner of the parameter
space, where the prediction of Ref. [25] has residuals exceed-
ing 5%. We improve the stability of the ringdown modeling
across the entire parameter space by (i) assuming a monotonic
behavior of a f with decreasing ν for extremal spins, and (ii)
replacing some of the higher physical overtones with pseudo-
QNMs that depend on the merger frequency, on σ220 and on
ν , and moderate the rise of the ringdown GW frequency [5, 6].

Finally, the complete inspiral-merger-ringdown waveform
is built as the smooth matching of hinsp−plunge

�m to hmerger−RD
�m at

t�mmatch, over an interval ∆t�mmatch, following the hybrid matching
procedure of Ref. [5] to fix the coefficients A�mn in Eq. (5).
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FIG. 2. NR and EOB (2,2) waveforms of the BH binary with q = 1
and χ1 = χ2 = 0.98. The two waveforms are aligned at their ampli-
tude peak (marked by a vertical dashed line). R is the distance to the
source.

Results and discussion. The SXS catalog includes 8 non-
spinning BH binaries with q = 1, 1.5, 2, 3, 4, 5, 6, 8, and
30 spinning, nonprecessing BH binaries with: q = 1 and
χ1 = χ2 = 0.98, 0.97, ±0.95, ±0.9, 0.85, ±0.8, ±0.6, ±0.44,
±0.2; q = 1, 1.5, 3, 5, 8, χ1 = ±0.5 and χ2 = 0; q = 1.5 and
χ1 = −χ2 = ±0.5; q = 2, χ1 = 0.6 and χ2 = 0; q = 3 and
χ1 = χ2 = ±0.5. We find that to accurately match all 38
nonprecessing waveforms, it is sufficient to calibrate the EOB
model to a much smaller subset of them. However, since our
goal is an accurate model for the entire parameter space, most
of which is not covered by the NR waveforms, we prefer to ex-
ploit all available non-degenerate NR information in the cali-
bration. In Fig. 1 we compare the EOB waveforms to all the
38 nonprecessing NR waveforms by computing their unfaith-
fulness

F̄ ≡ 1−max
t0,φ0

�hEOB
22 ,hNR

22 �
||hEOB

22 || ||hNR
22 ||

, (6)

Taracchini et al 2013 (1311.2544)
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FIG. 2: Coordinate trajectories of the centers of the apparent
horizons represented by the blue and red curves, up until the
formation of a common horizon. The closed curves show the
coordinate shapes of the corresponding apparent horizons.

spect to the excision boundaries that the excision bound-
aries fail to remain outflow surfaces and our excision al-
gorithm fails. For the non-spinning black hole binary in
Ref. [60], shape control was not necessary before merger.
To control the shape of black hole 1, we define the map
MAH1 : x′i → x̃i,

θ̃ = θ′, (13)

φ̃ = φ′, (14)

r̃ ≡ r′ − q1(r
′)

!max
∑

!=0

!
∑

m=−!

λ1
!m(t)Y!m(θ′, φ′), (15)

where

q1(r
′) = e−(r′

−r′

0
(t))3/σ3

q , (16)

and (r′, θ′, φ′) are spherical polar coordinates centered
at the (fixed) comoving-coordinate location of black hole
1. The function q1(r′) limits the action of the map to
the vicinity of hole 1. The constant σq is chosen to be
∼ 4.5M , and r′0(t) = r′0+ν1(t−tg)2.1 is a function of time
that approximately follows the radius of the black hole,
with constants r′0 ∼ 1.2M and ν1 ∼ 0.00046M . Similarly,
we define the map MAH2 for black hole 2. Then the full
map Mm : x′i → xi from the comoving coordinates x′i

to the inertial coordinates xi is given by

Mm := MI ◦MAH2 ◦MAH1. (17)

The functions λ1
!m(t) and λ2

!m(t) are determined by dy-
namical control systems as described in Refs. [60, 89],
so that the apparent horizons are driven to spheres (up

to spherical harmonic component l = lmax) in comoving
coordinates. Note that MAH1 : x′i → x̃i is essentially
the same map that we use to control the shape of the
merged horizon during ringdown, and the control system
for that map (and for the map MAH2) is the same as the
one described in Ref. [60] for controlling the shape of the
merged horizon.

In addition to the modifications to the gauge condi-
tions and coordinate map described above, the numer-
ical resolution is also increased slightly around the two
black holes during this more dynamical phase, and the
evolution is continued until time tm, shortly after the
formation of a common horizon. The coordinate trajec-
tories of the apparent horizon centers are shown in Fig. 2
up until tm, at which point the binary has gone through
10.6 orbits.

E. Ringdown

Our methods for continuing the evolution once a com-
mon horizon has formed are the same as in Ref. [60]. Af-
ter a common apparent horizon is found, all variables are
interpolated onto a new computational domain that has
only a single excised region. Then, a new comoving coor-
dinate system (and a corresponding mapping to inertial
coordinates) is chosen so that the new excision boundary
tracks the shape of the apparent horizon in the inertial
frame, and also ensures that the outer boundary behaves
smoothly in time. The gauge conditions are modified as
well: the shift vector is no longer driven to zero, so that
the solution can relax to a time-independent state. This
is done by allowing the gauge function g(x, t) that ap-
pears in Eq. (10) to gradually approach zero; the gauge
source function Ha still obeys Eqs. (8–10) as during the
plunge. Specifically, we change the functions f(x, t) and
g(x, t) from Eqs. (11) and (12) to

f(x, t) = (2 − e−(t−tg)/σ1)

× (1 − e−(t−tg)2/σ2

2 )e−r′′2/σ2

3 , (18)

g(x, t) = (1 − e−(t−tg)/σ4)

× (1 − e−(t−tg)2/σ2

5 )(t − tg)e
−r′′2/σ2

3

× e−(t−tm)/σ2

6 , (19)

where r′′ is the coordinate radius in the new comov-
ing coordinates, σ6 ∼ 3.1M , and tm (here m stands for
“merger”) is the time we transition to the new domain
decomposition.

IV. PROPERTIES OF THE NUMERICAL
SOLUTIONS

A. Constraints

We do not explicitly enforce either the Einstein con-
straints or the secondary constraints that arise from writ-

Chu et al 2009 (0909.1313)
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Inferring source parameters

•Evidence for signal

• Inputs: 
• Prior knowledge                                      about distribution of 
• Signal model
• Noise model
• Algorithm for integral/exploration in many dimensions

16

Z(d|H1) ≡ p({d}|H1)
p({d}|H0)

=
�

dλp(�λ|H1)
p({d}|�λ, H1)
p({d}|H0)

H1 : with signal
H0 : no signal

posterior distribution

p({d}|�λ, H1) = p({d− h(�λ)}|H0)
h(λ)
p({d}|H0)

p(λ|H1) λ
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Measuring gravitational waves

Detector

• Nearly gaussian, stationary

• Band limited

Signal

• More cycles at low frequency

• “Typical” merger physics not in band

• “Input” binary dominates

• Orbital phase: degenerate evolution

17

J. Read, KITP conference 2012

3

Eq. (18) of Ref. [6]). The NQC coefficients are fixed by re-
quiring that the EOB (2,2) mode agrees with the NR input
values for |h22|, ∂t |h22|, ∂ 2

t |h22|, ∂tφ22 and ∂ 2
t φ22, evaluated

at the peak of |h22|. Using the 38 NR nonprecessing wave-
forms in the SXS catalog and Teukolsky waveforms com-
puted in the small-mass-ratio limit [21], we updated the fit-
ting formulas for the NR input values given in Table IV of
Ref. [6]. We use these to iteratively compute the NQC co-
efficients as described in Sect. IIB of Ref. [6]. While pre-
vious nonspinning EOB models [8] were calibrated without
enforcing any time delay between the peak in the (2,2) am-
plitude and in the orbital frequency, here, as in Refs. [5, 6],
we require a lag ∆t22

peak which varies with the physical param-
eters of the binary. The idea of introducing ∆t22

peak into the
model was inspired by studies in the small-mass-ratio limit,
where such time delay was first seen with EOB trajectories
sourcing Teukolsky waveforms [22] and accurately quantified
in Ref. [21]. Finally, the inspiral-plunge waveform is simply
defined as hinsp−plunge

22 ≡ N22hF
22, and hinsp−plunge

�m ≡ hF
�m when

(�,m) �= (2,2).
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FIG. 1. Unfaithfulness of (2,2) EOB waveforms for all the 38 non-
precessing BH binaries in the SXS catalog. Only a few selected cases
are labeled in the legend.

As usual, the EOB merger-ringdown (RD) waveform is
built as a linear combination of quasi normal-modes (QNMs)
of the remnant BH [4]

hmerger−RD
�m (t) =

N−1

∑
n=0

A�mn e−iσ�mn(t−t�mmatch) , (5)

where N is the number of overtones, t�mmatch is the time when
|hinsp−plunge

�m | peaks, A�mn is the complex amplitude of the n-
th overtone of the (�,m) mode, and σ�mn = ω�mn − i/τ�mn is
its complex frequency, having positive (real) frequency ω�mn
and decay time τ�mn. The frequencies σ�mn depend on the
mass Mf and spin a f of the final Kerr BH, and are tabulated
in Ref. [23]. To predict Mf we use the phenomenological for-
mula proposed by Ref. [24], but we replace its equal-mass
limit [Eq. (11) therein] with the highly accurate fit given in

Eq. (9) of Ref. [13]. To compute a f , we start from the for-
mula of Ref. [25] (which also predicts the direction of the
final spin for precessing binaries), and use the simulations
in the SXS calatog to refit its nonprecessing limit; the main
change we introduce are 4 new fitting coefficients designed
to improve the equal-mass, high-spin corner of the parameter
space, where the prediction of Ref. [25] has residuals exceed-
ing 5%. We improve the stability of the ringdown modeling
across the entire parameter space by (i) assuming a monotonic
behavior of a f with decreasing ν for extremal spins, and (ii)
replacing some of the higher physical overtones with pseudo-
QNMs that depend on the merger frequency, on σ220 and on
ν , and moderate the rise of the ringdown GW frequency [5, 6].

Finally, the complete inspiral-merger-ringdown waveform
is built as the smooth matching of hinsp−plunge

�m to hmerger−RD
�m at

t�mmatch, over an interval ∆t�mmatch, following the hybrid matching
procedure of Ref. [5] to fix the coefficients A�mn in Eq. (5).
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FIG. 2. NR and EOB (2,2) waveforms of the BH binary with q = 1
and χ1 = χ2 = 0.98. The two waveforms are aligned at their ampli-
tude peak (marked by a vertical dashed line). R is the distance to the
source.

Results and discussion. The SXS catalog includes 8 non-
spinning BH binaries with q = 1, 1.5, 2, 3, 4, 5, 6, 8, and
30 spinning, nonprecessing BH binaries with: q = 1 and
χ1 = χ2 = 0.98, 0.97, ±0.95, ±0.9, 0.85, ±0.8, ±0.6, ±0.44,
±0.2; q = 1, 1.5, 3, 5, 8, χ1 = ±0.5 and χ2 = 0; q = 1.5 and
χ1 = −χ2 = ±0.5; q = 2, χ1 = 0.6 and χ2 = 0; q = 3 and
χ1 = χ2 = ±0.5. We find that to accurately match all 38
nonprecessing waveforms, it is sufficient to calibrate the EOB
model to a much smaller subset of them. However, since our
goal is an accurate model for the entire parameter space, most
of which is not covered by the NR waveforms, we prefer to ex-
ploit all available non-degenerate NR information in the cali-
bration. In Fig. 1 we compare the EOB waveforms to all the
38 nonprecessing NR waveforms by computing their unfaith-
fulness

F̄ ≡ 1−max
t0,φ0

�hEOB
22 ,hNR

22 �
||hEOB

22 || ||hNR
22 ||

, (6)

Taracchini et al 2013 (1311.2544)

�n∗(f)n(f)� =
1
2
Sh(|f |)δ(f − f �)

�a|b� ≡ 2
� ∞

−∞
df

a∗(f)b(f)
Sh(|f |)

p({d}|H0) ∝ exp−�d|d�
2

dd1dd2 . . . ddN
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• Shrinking binary “chirps”

• Chirp rate (df/dt) set by “chirp mass”

• “Exactly” measurable

• Fisher matrix

One thing we measure reliably: “Chirp” mass
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FIG. 1: Chirp mass and mass ratio 90% confidence in-
terval: Zero spin: Assuming our fiducial nonspinning sig-

nal is present in distinct realizations of Gaussian noise (colors,

described below), the contour shows the 90% confidence in-

tervals forMc, η derived from the half of our zero-spin calcu-

lations marked with “*”. Solid curves correspond to a signal

without higher harmonics; dashed curves include higher har-

monics; and colors denote specific noise realizations listed in

Table III, not all of which appear in this figure: zero noise

(black); 1234 (blue); and 56789 (red). [To better distinguish

between cases including higher harmonics, the zero noise case

is shown as a black dashed curve.] All posteriors have similar

shape; differences between the estimated posteriors are con-

sistent with finite sample and noise realization effects. Higher

harmonics do not improve our estimates of intrinsic parame-

ters in any noticeable way. For comparison, the thick black

solid and dotted curves are analytic estimates using the ef-

fective Fisher matrix normalized to ρ = 20, described in

greater detail in Section V. To help translate these results

to an astrophysically relevant scale, the two black points and

pairs indicate the chirp mass and mass ratios corresponding

to (m1/M⊙, m2/M⊙).

(Mc, η,χ) coordinates the error contours are both weakly
nonellipsoidal and have shape that weakly depends on
noise realization. As seen in the right panel of Figure 3,
however, alternative coordinates mitigate nongaussianity
and reduce noise-realization-dependent effects. This im-
provement persists for low signal amplitudes, which have
broader posteriors than shown here.

B. Marginal information from higher harmonics is
confined to source orientation

Using apples-to-apples comparisons of the same source
in the same data, we can explicitly confirm that higher

harmonics provide minimal new information about in-
trinsic parameters. In fact, the differences between the
zero-spin, zero-noise posterior in Mc, η calculated with
and without harmonics are at best comparable to the
fluctuations seen between different data realizations; see
Table IV for the one-dimensional measurement errors,
Table V for comparisons between simulations using DKL,
and Table III for a comparison using V/Vprior.

With aligned spin, higher harmonics seem to pro-
vide some additional information. For example, Fig-
ure 3 shows the two-dimensional posteriors inMc, η for
three starred data realizations (black, red, blue) both
with (dotted) and without (solid) higher harmonics; each
pair of contours differ slightly in direction and extent.
These distributions are manifestly similar: the presence
of higher have less of an effect than a change of noise re-
alization (e.g., a change in ρ of order unity). Physically,
though higher harmonics provide information, different
data realizations shift the error ellipsoids’ positions, ori-
entations, and scales so much that their marginal impact
cannot be easily isolated. In all cases, however, higher
harmonics seem to provide minimal additional informa-
tion about our two fiducial sources’ intrinsic parameters.

By contrast, as illustrated by Figure 4, higher har-
monics do provide geometric information, improving our
knowledge about the source position and orientation rel-
ative to the line of sight. Higher harmonics are known to
break almost-perfect degeneracies present in the leading-
order gravitational wave signal [33, 34, 35]. This signal
can be represented in a compact complex form as

h = h+ − ih× = −e−2iψ 8µv2

dL

�
π

5

×
�
e−2iΦorbY (−2)

22 (ι, 0) + e2iΦorbY (−2)
2−2 (ι, 0)

�
(35)

where Y (s)
lm are spin-weighted spherical harmonics and we

note that14:

Y (−2)
22 (ι, 0) =

1
2

�
5
π

cos4
� ι

2

�
=

1
8

�
5
π

(1 + cos ι)2 ,(36)

Y (−2)
2−2 (ι, 0) =

1
2

�
5
π

sin4
� ι

2

�
=

1
8

�
5
π

(1− cos ι)2 .(37)

For most orientations, either one or the other spin-
weighted harmonic dominates this sum15. Our two
sources have ι = π/4, so the (2, 2) mode dominates by
a factor cos4(π/8)/ sin4(π/8) � 34. This means that to
a good approximation the gravitational wave signal de-
pends on ψ and φref principally through ψ + φref and on
dL and ι through (1 + cos ι)2/dL. More generally, in the
absence of higher harmonics, to a first approximation the

14 The azimuthal argument of Y (−2)
22 is degenerate with φref , so we

can set it to zero without loss of generality.
15 Only when the binary is nearly edge-on, i.e. ι � π/2, are the two

comparable

Γab = 2
� ∞

−∞

∂ah∗∂bh

Sh
df

=
µ
/M
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What can we learn from the “chirp”?

• Shrinking binary “chirps”

• Measure masses, spins, tides, ...

• Adding parameters (spin) degrades 
measurement accuracy

• Fisher matrix

19

14

Source Harmonics Seed ρ ρrec ln Z ln V/Vprior σMc
ση σa DKL N

eff

×10
3 ×10

3
(Mc, η) (τ0, τ3) (Mc, η−2

) (Mc, η, a1) (τ0, τ3, a1) (Mc, η−2, a1)

Zero spin no - 20.33 20.64 180. -33.4 2.13 1.40 - 0 0 0 - - - 7517

Zero spin no 1234 20.33 20.5 177. -33.3 2.26 1.40 - 0.026 0.035 0.048 - - - 8025

Zero spin no 56789 20.33 20.34 172. -34.8 2.57 1.52 - 0.089 0.074 0.061 - - - 10403

Zero spin with - 21.01 21.33 191. -36.3 1.97 1.25 - 0.029 0.028 0.026 - - - 8027

Zero spin with 1234 21.01 21.76 200. -37. 1.90 1.16 - 0.087 0.076 0.068 - - - 7511

Zero spin with 56789 21.01 20.67 177. -36.6 2.34 1.33 - 0.13 0.12 0.12 - - - 11358

Aligned spin no - 22.34 22.67 222. -34.6 6.19 7.89 0.038 0 0 0 0 0 0 9841

Aligned spin no 1234 22.34 22.81 225. -35.1 5.50 7.12 0.029 0.018 0.018 0.030 0.13 0.13 0.15 8670

Aligned spin no 56789 22.34 24.89 272. -37.5 4.70 4.34 0.021 0.95 0.26 0.093 1.6 0.9 0.79 10508

Aligned spin with - 22.86 23.18 231. -37.8 5.15 5.83 0.035 0.16 0.12 0.10 0.19 0.14 0.12 3355

Aligned spin with 1234 22.86 23.67 241. -39.5 4.74 4.98 0.030 0.45 0.27 0.17 0.56 0.35 0.24 5572

Aligned spin with 56789 22.86 25.41 280. -43.2 3.93 4.13 0.017 1.1 0.43 0.44 2.8 2.3 2.4 12070

TABLE III: Simulation results: Table of distinct simulations performed. The first set of columns indicate which of the two

fiducial binaries was used (zero spin vs aligned spin), whether higher harmonics were included, and random seed choice used

to generate noise (a “-” means no noise was used). The two quantities ρ, ρrec provide the injected and best-fit total signal

amplitude in the network [Eqs. (18,20)]. The latter quantity depends on the noise realization of the network. The columns

for ln Z and V/Vprior provide the evidence [Eq. (14)] and volume fraction [Eq. (16)]; the evidence, volume fraction, and signal

amplitude are related by ρ2
rec/2 = ln Z/(V/Vprior). The next three columns show the one-dimensional standard deviations in

chirp mass (σMc), symmetric mass ratio (ση), and BH dimensionless spin (σa). These quantities fluctuate significantly, driven

both by noise realization dependence and the large number of effective samples needed to accurately estimate their value [Eq.

(24)]. The six quantities DKL are calculated from the two- and three-dimensional covariance matrices using Eq. (21), using

the coordinate systems labeling the columns. The two rows with zeros as entries indicate the two reference choices, against

which all nonspinning or spinning parameter estimation was compared. For zero spin, the first three rows show differences

consistent with noise fluctuations [Eq. (27)]; for aligned spin, diffrences are more substantial and coordinate-system dependent,

but not above the conditions needed to distinguish between distributions [Eq. (28)]. Finally, Neff is the effective number

of independent samples in our calculations. FIXME: Explain zero-noise SNR, or replace by zero noise value. [Some DKL

numbers are unclear which 2 rows are being compared. e.g. what is row 4 being compared to, row 1? Is row 5 compared to

row 4 or row 2?]
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FIG. 2: 99.9% confidence intervals in mass plane for aligned-spin binary: For our fiducial aligned-spin signal injected

into distinct realizations of Gaussian noise (colors, as described in the caption to Figure 1), the contours show the 99.9%
confidence intervals from each calculation in our various coordinates for the mass plane. Contour styles are as described in

Figure 1. This figure conveys three key points. First, the similarity between the blue solid and dotted contours shows higher

harmonics provide little additional information about intrinsic parameters. Second, because of the extent of the contour in η,

measurements of spinning binaries cannot distinguish between a broad range of astrophysically distinct sources. Third, suitable

coordinates can simplify all posterior probability distributions, independent of noise realization.
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FIG. 3: 90% confidence intervals for aligned-spin binary: For our fiducial aligned-spin signal injected into distinct

realizations of Gaussian noise (colors, as described in the caption to Figure 1), the contour shows the 90% confidence intervals

from each calculation in theMc, η plane (left panel) and the η, χ plane (right panel). Contour styles are as described in Figure

1; as previously, the heavy black solid and dashed curves show revised analytic predictions using the COOKL method, provided

in Table VI.

B. Marginal information from higher harmonics,
confined to source orientation and position

Using apples-to-apples comparisons of the same source

in the same data, we can explicitly confirm that higher

harmonics provide minimal new information about in-

trinsic parameters. In fact, the differences between the

zero-spin, zero-noise posterior in Mc, η calculated with

and without harmonics are at best comparable to the

fluctuations seen between different data realizations; see

Table III.

With aligned spin, higher harmonics seem to provide

some additional information. For example, Figure 3

shows the two-dimensional posteriors in Mc, η for the

1234 data realization both with (dotted blue) and with-

out (solid blue) higher harmonics; the two ellipsoids differ

slightly in direction and extent. Quantitatively, the DKL

between these two-dimensional posteriors
12

is 0.46; be-

tween the corresponding three-dimensional posteriors, it

is 0.56. These distributions therefore differ more than

would be expected from statistical fluctuations alone, for

example due to change in ρ by of order unity. However,

12 These numbers are not provided in and cannot be derived from
Table I: because KL divergence is not symmetric under exchange
of K, K∗.

these differences are also manifestly much smaller than

the range of DKL seen when changing noise realizations.

Physically, though higher harmonics provide information,

different data realizations shift the error ellipsoids’ posi-

tion, orientation, and scale so much that their marginal

impact cannot be easily isolated. In all cases, however,

higher harmonics seem to provide minimal additional in-

formation about our two fiducial sources’ intrinsic pa-

rameters.

By contrast, as illustrated by Figure 4, higher har-

monics do provide geometric information, improving our

knowledge about the source position and orientation rel-

ative to the line of sight. Higher harmonics are known

break almost-perfect degeneracies present in the ab-

sence of higher harmonics. These degeneracies are well-

understood features of the leading-order graviational-

wave signal:

�
h+

h×

�
= −4µv2

dL

�
cos 2ψ − sin 2ψ

sin 2ψ cos 2ψ

�

×
�

(1+cos2 ι)
2 cos(2(Φorb(t)− φ)

cos ι sin(2(Φorb(t)− φ)

�
(33a)

where ψ is the orientation of the projection of the bi-

nary’s total angular momentum onto the plane of the

sky; Φorb(t) is the orbital phase versus time, with fidu-

cial value φref ≡ Φorb(tref); ι,φ are the polar coordinates

ROS et al 2013
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Distinguishing between formation models?

20
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Fig. 6.— Compact BH-NS binaries visible by advanced
LIGO: Properties of the BH-NS binaries detectable by a single
advanced LIGO instrument, scaled in proportion to their detec-
tion probability. Different color and line styles indicate results for
different binary evolution models: high BH kicks (blue); delayed
SN (green); our standard model (black); and optimistic CE (red).
The top and and bottom panels shows the distribution of birth
time tbirth, birth metallicity and chirp mass, respectively. Though
our simulations use a discrete array of metallicity bins, to guide
the eye, their relative contributions have been joined by solid lines;
this histogram makes no correction for the density of metallicity
bins.

generation instruments.
These relatively small uncertainties pale in compari-

son to systematic uncertainties in stellar binary evolu-
tion astrophysics. Comparing our four fiducial binary
evolution models alone shows a wide range of mass dis-
tributions and event rates. Similarly large changes occur
when varying other parameters [ROS: citations] . That
said, advanced-LIGO scale instruments are only sensitive
to the local universe and hence, as a zeroth approxima-
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Fig. 7.— BH-BH binaries visible by advanced LIGO: Prop-
erties of BH-BH binaries detectable by a single advanced LIGO
instrument, scaled in proportion to their detection probability.
Different color and line styles indicate results for different binary
evolution models: high BH kicks (blue); delayed SN (green); our
standard model (black); and optimistic CE (red). Unlike NS-NS
binaries, the detected population of BH-BH binaries was preferen-
tially formed in the early universe over a wide range of metallicities.
Many detectable BH-BH binaries have high chirp mass and form
at significantly subsolar metallicities.

tion, to the parameters
〈

Mc
15/6

〉

and R(0) that enter

into Eq. (2). Crudely speaking, gravitational wave de-
tectors can identify a rate and typical chirp mass for each
type of binary, providing roughly 6 real parameters. Our
astrophysical intuition and simulation results that these
6 real parameters are not populated independently, av-
eraging over all astrophysically plausible models. Con-
versely, we anticipate that by constraining these 6 real
numbers, correlations between these measurements im-
ply they only constrain a few astrophysical parameters
well (e.g., the formation rate of massive binaries) and

30+30 60+60

Dominik et al (in prep)
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Reminder

• Why use gravitational waves for astronomy?

• Rich data, addressing previously inaccessible phenomena

• Gravitational wave astronomy 101

• Precise measurements, modulo systematics and degeneracies

• Robust constraints on astrophysics

• Gravitational waves astronomy with precessing binaries

21
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More accurate mass, spin measurements

• Companion mass similar to NS?

• BH spin

• Spin-orbit misalignment

22

7

of the number of orbital or precession cycles.2

B. Geometry

As expected analytically and demonstrated by Figure

5, precession-induced modulations encode the orientation

of the various angular momenta relative to the line of

sight. For our loud fiducial signal, the individual spin

components can be well-constrained. Equivalently, be-

cause our fiducial source performs many precession cycles

about a wide precession cone and because that source is

viewed along a generic line of sight, we can tightly con-

strain the precession cone’s geometry: its opening angle;

its orientation relative to the line of sight; and even the

precise precession phase, measured either by cos ι or αJL.

The effective Fisher matrix provides a reliable estimate

of how well these parameters can be measured; see Table

IV and Figure 5.

C. Comparison to and interpretation of analytic
predictions

COOKL presented an effective Fisher matrix for

two fiducial precessing binaries, adopting a specific

post-Newtonian model to evolve the orbit. Following

OFOCKL, we adopt a refined post-Newtonian model,

including higher-order spin terms. In the Supplemen-

tary Material, available online, we provide a revised effec-

tive Fisher matrix, including the contribution from these

terms. Table V summarizes key features of this seven-

dimensional effective Fisher matrix for case A. As noted

above, the two-dimensional marginalized predictions are

in good qualitative agreement. The one-dimensional

marginalized predictions agree surprisingly well with our

simulations [Table IV]. Since the ingredients of the effec-

tive Fisher matrix are fully under our analytic control,

we can directly assess what factors drive measurement

accuracy in each parameter.

First and foremost, as in COOKL, this effective Fisher

matrix has a hierarchy of scales and eigenvalues, with

decreasing measurement error: Mc, η, a, . . .. Unlike non-

precessing binaries, this hierarchy does not clearly split

between well-constrained intrinsic parameters (Mc, η, a)

and poorly-constrained geometric parameters (every-

thing else); for example, as seen in Table V, the eigen-

values of the Fisher matrix span a continuous range of

scales.

The scales in the Fisher matrix are intimately tied to

timescales and angular scales in the outgoing signal. The

2
With relatively few precession cycles in our study, the discrep-

ancy between these two measurement accuracies is fairly small.

However, when advanced instruments with longer waveforms can

probe more precession cycles, we expect this simple argument

will explain dominant correlations.
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FIG. 4: Estimating astrophysical parameters (C): For

our fiducial binary C, the solid and dotted lines show an

estimated 90% confidence interval with and without higher

harmonics, respectively; colors indicate different noise real-

izations; and the (nearly indistinguishable) thick solid and

dashed lines shows an approximate effective Fisher matrix re-

sult, with and without higher harmonics, not accounting for

the constraint imposed by χ1 < 1. Results for case A are

qualitatively and quantitatively similar. The different panels

show different two-dimensional projections of the astrophys-

ically relevant parameters of a merging BH-NS binary: the

binary mass mass ratio, black hole spin, and degree of spin-

orbit misalignment κ ≡ L̂ · Ŝ1. Top,center panels: The masses

and spin magnitude of the binary can be measured very re-

liably, consistent with a single gaussian distribution in four

dimensions. The analytic predictions produced by an effec-

tive Fisher matrix agree qualitatively but not quantitatively

with our simulations. Bottom panel : To guide the eye, the

posterior versus χ1 and L̂ · Ŝ1 is compared with contours of

constant β = cos
−1

0.65, 0.7, 0.75 (precession cone opening

angle; dotted black) and Ωp [Eq. (15)] (precession rate; solid

black). The precession rate is relatively well constrained by

the presence of several (� 7) precession cycles available in

data, while the geometry is relatively poorly constrained, rel-

ative to the whole χ1 vs L̂ · Ŝ1 plane.

7

of the number of orbital or precession cycles.2

B. Geometry

As expected analytically and demonstrated by Figure

5, precession-induced modulations encode the orientation

of the various angular momenta relative to the line of

sight. For our loud fiducial signal, the individual spin

components can be well-constrained. Equivalently, be-

cause our fiducial source performs many precession cycles

about a wide precession cone and because that source is

viewed along a generic line of sight, we can tightly con-

strain the precession cone’s geometry: its opening angle;

its orientation relative to the line of sight; and even the

precise precession phase, measured either by cos ι or αJL.

The effective Fisher matrix provides a reliable estimate

of how well these parameters can be measured; see Table

IV and Figure 5.

C. Comparison to and interpretation of analytic
predictions

COOKL presented an effective Fisher matrix for

two fiducial precessing binaries, adopting a specific

post-Newtonian model to evolve the orbit. Following

OFOCKL, we adopt a refined post-Newtonian model,

including higher-order spin terms. In the Supplemen-

tary Material, available online, we provide a revised effec-

tive Fisher matrix, including the contribution from these

terms. Table V summarizes key features of this seven-

dimensional effective Fisher matrix for case A. As noted

above, the two-dimensional marginalized predictions are

in good qualitative agreement. The one-dimensional

marginalized predictions agree surprisingly well with our

simulations [Table IV]. Since the ingredients of the effec-

tive Fisher matrix are fully under our analytic control,

we can directly assess what factors drive measurement

accuracy in each parameter.

First and foremost, as in COOKL, this effective Fisher

matrix has a hierarchy of scales and eigenvalues, with

decreasing measurement error: Mc, η, a, . . .. Unlike non-

precessing binaries, this hierarchy does not clearly split

between well-constrained intrinsic parameters (Mc, η, a)

and poorly-constrained geometric parameters (every-

thing else); for example, as seen in Table V, the eigen-

values of the Fisher matrix span a continuous range of

scales.

The scales in the Fisher matrix are intimately tied to

timescales and angular scales in the outgoing signal. The

2
With relatively few precession cycles in our study, the discrep-

ancy between these two measurement accuracies is fairly small.

However, when advanced instruments with longer waveforms can

probe more precession cycles, we expect this simple argument

will explain dominant correlations.
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FIG. 4: Estimating astrophysical parameters (C): For

our fiducial binary C, the solid and dotted lines show an

estimated 90% confidence interval with and without higher

harmonics, respectively; colors indicate different noise real-

izations; and the (nearly indistinguishable) thick solid and

dashed lines shows an approximate effective Fisher matrix re-

sult, with and without higher harmonics, not accounting for

the constraint imposed by χ1 < 1. Results for case A are

qualitatively and quantitatively similar. The different panels

show different two-dimensional projections of the astrophys-

ically relevant parameters of a merging BH-NS binary: the

binary mass mass ratio, black hole spin, and degree of spin-

orbit misalignment κ ≡ L̂ · Ŝ1. Top,center panels: The masses

and spin magnitude of the binary can be measured very re-

liably, consistent with a single gaussian distribution in four

dimensions. The analytic predictions produced by an effec-

tive Fisher matrix agree qualitatively but not quantitatively

with our simulations. Bottom panel : To guide the eye, the

posterior versus χ1 and L̂ · Ŝ1 is compared with contours of

constant β = cos
−1

0.65, 0.7, 0.75 (precession cone opening

angle; dotted black) and Ωp [Eq. (15)] (precession rate; solid

black). The precession rate is relatively well constrained by

the presence of several (� 7) precession cycles available in

data, while the geometry is relatively poorly constrained, rel-

ative to the whole χ1 vs L̂ · Ŝ1 plane.
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How do binaries evolve when radiating?

• Orbit shrinks

• Spin angular momentum more significant

• L<S easier if unequal mass or high spin

23
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FIG. 4: Angular momentum dominated versus spin-dominated
binaries: In terms of the mass and spin of the black hole, contours
of the ratio γ = |�S|/|�L| evaluated at 40Hz. The bottom left re-
gion is angular-momentum dominated (|�L| � |�S|); the top right
region of large black hole mass and spin is strongly spin-dominated
(|�S| � |�L|). Contours show the ratio |�S|/|�L| ≡ γ = 1 (thick
curve), sin π/4 = 1/

√
2, sin π/6 = 1/2 and sin π/8, evaluated

with a 1.4M⊙ NS companion, versus the black hole mass and spin
parameters mBH , χBH . Above (below) the thick curve, BH-NS bi-
naries’ total angular momenta are spin (orbit) dominated in band. If
spin and orbital angular momenta are nearly antialigned, these bi-
naries have undergone transitional precession at lower frequencies,
typically not in band. Conversely, for orbital-angular-momentum-
dominated binaries (γ < 1), transitional precession has not occurred
in the past at lower frequencies and may, if anti-aligned and γ near
1, occur in band in the immediate future. Finally, below the bottom
curve, BH-NS binaries waveforms are modulated little by precession
in band.

and bounded above by

βmax ≡ sin
−1 γ . (8)

In the neighborhood of this extreme misalignment, at κ = −γ,
the opening angle is nearly stationary with spin-orbit mis-
alignment (i.e., d cos β/dκ � 0). In short, a distribution of
�L dominated binaries has two choices for spin-orbit misalig-
ment (i.e., two values of κ) consistent with each realized open-
ing angle. Additionally, because of the local maximum in β
as a function of κ, a randomly oriented distribution of spins
will have opening angles β that cluster near that maximum
(i.e., β � βmax). To illustrate which regions are �L and �S
dominated, Figure 4 shows contours of constant γ, assuming
m2 = 1.4M⊙.

C. Regions of parameter space II: Steady precession and
geometry

Unless transitional precession happens in band, ground-
based gravitational-wave detectors are sensitive to emission
from a relatively well-defined epoch: the precession cone has
relatively constant opening angle [Fig. 1]. Quantitatively,
we define a reference frequency fpeak corresponding to the
frequency up to which half of the signal power has been ac-
cumulated. The specific reference frequency depends on the
noise curve adopted.5 For this paper, we adopt the fiducial
advanced LIGO noise curve with zero-detuned signal recy-
cling; see [41]). This includes a low-power mode for which
fpeak � 40 Hz and high-power for which fpeak � 60 Hz.
However, all planned noise curves we have examined have a
reference frequency in the neighborhood of which a constant
precession cone is a good approximation. Henceforth the ra-
tio γ = |S1|/|L| and opening angle β between L̂ and Ĵ will
refer to quantities predicted at this frequency by the simple
precession expressions [Eqs. 4,3].6

Second, not only is the precession cone nearly fixed, but
as shown in Figure 2 at least a few complete precession cy-
cles occur between 20− 100 Hz, where most of the signal-to-
noise accumulates. For example, for an angular-momentum-
dominated binary (γ � 1), the number of precession cycles
for a single-spin binary can be approximated by the spin-
independent expression

NP �
� πfmax

πfmin

dforb
dt

dforb
Ωp

=
5

96
(2 + 1.5

m2

m1
)[(Mπfmin)

−1 − (Mπfmax)
−1

]

≈ 27(1 + 0.75m2/m1)

M/10M⊙
(9)

with a comparable but spin-dependent number for an S-
dominated binary (γ � 1); see ACST Eqs. (45, 63) for
a general solution. As indicated by Figure 2, each preces-
sion cycle usually accumulates a comparable proportion of
detectable power (i.e., each pair of peaks is a similar order
of magnitude in area). More critically, the figure indicates
that at least one and often several precession cycles contribute
to the total signal to noise. With many precession cycles, a
gravitational-wave detector should be relatively insensitive to
the initial value of the precession phase.

For our purposes, then, the binary undergoes nearly steady
simple precession in band. The instantaneous beam pattern of

5 In the text we choose the reference frequency as the half-power point,
where

R
f−7/3/Sh(f)df reaches half of its total value. Alterna-

tively, the reference frequency can be set by maximizing dρ/d ln f =
4f |h̃(f)|2/Sh, or even phenomenologically, in whatever manner is
needed for numerically-calculated amplitude and match to reproduce our
expressions. For the noise curves considered in this paper, all approaches
nearly agree.

6 For simplicity, we adopt the leading-order (Newtonian) expression for
r(f). Higher order corrections are small.

BH Mass

B
H

 s
pi

n

J ~ L

J~S

J = L + S1 + S2

Brown et al 2012

Example: BH-NS (40 Hz)

Apostolatos et al 1994
4 10
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Putting it together

24
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• Kinematics

• Before merger, orbit shrinks & 
precesses

• GW signal in all directions have 
common trends

• Amplitude

• Inspiral : up

• Merger: peak

• Ringdown: exponential decay

• Frequency “chirps” to merger
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What does a GW from a binary look like? 

25

ROS et al 1209.3712

• Each direction distinctively modulated
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What does a GW from a binary look like? 
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ROS et al 1209.3712

• Each direction distinctively modulated
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What does a GW from a binary look like? 

26

Example: no modulation

h(t)

time

Example: with modulation

• Each direction:

• High-frequency chirping 
carrier signal (orbit)

• Direction-dependent:

• Low-frequency amplitude & 
phase modulation
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Solving the linear wave equation in spherical coord

Generally

• Separate variables

• Outgoing radial solutions at infinity

27

h(t, r, n̂) =
�

lm

hlm(t, r)−2Y lm(n̂)

hlm(t, r) � Hlm(t− r)
r

−2Y 2−2 =
�

5
64π

(1− cos θ)2e−2iφ ,

−2Y 22 =
�

5
64π

(1+ cos θ)2e+2iφ .

Angular equation

• Orthonormal angular basis 
(“spherical harmonics”)

• “Beaming”

x�
y�

z�

x�

y�

z�

Θ

Φ

n�
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Gravitational waves from nonprecessing binaries

Quasicircular binary

• Reflection-symmetric

• Periodic source

• Dominant

Polarization (definition via fourier)

• Right handed

• m>0  :  right-handed. Polarized beams!

• Obvious projection to right, left
28

(orbital angular momentum)

P (x, y, z) = (x, y,−z)
h(t, Pr) = h(t, r)∗

hlm(t) = |hlm|e−imΦ(t)

h̃(ω < 0) = 0

h�t�

h2,±2(t)

�L

↔ (−1)lhl,−m(t)∗ = hlm(t)
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Phase and amplitude: all modes + strong field

• Harmonics

29

ψ4(t, n̂) =
�

m

ψlmY (−2)
lm (n̂)
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Comoving Frame

Radiation from precessing binary 

~ rotation x (radiation from nonprecessing)

30

R(t)

h � Rh0h0

Schmidt et al 2011
ROS et al 2011       [arxiv: 1109.5224]
Boyle et al 2012
Ochsner and ROS 2012 [arxiv:1205.2287]

�L

�L

�J
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Corotating frame algorithm 

•Construct tensor

• If reflection-symmetric,trivial

•Find eigensystem

• Largest: V

•Construct frame

• Minimal rotation

•Transform to 
(noninertial) basis

31

V̂ = (cos α sinβ, sinα sinβ, cos β) .

γ(t) = −
� t

0
cos β

dα

dt
dt

=
�

lmm� ψ∗
4,lm�ψ4,lm�lm�|L(aLb)|lm�

�
dΩ|ψ4|2

ψROT

4,l,m =
�

m̄

Dl

mm̄(R(α, β, γ)−1)ψ4,lm̄

=
�

m̄

eim̄γdm̄m(β)eimαψ4,lm̄
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Simulation-frame radiation

Precession-induced “mode mixing”

32
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Corotating-frame radiation

• Corotating-frame harmonics

• Inspiral: recover common phase evolution 

• Post-merger: recover exponential decay 

33
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Polarization (versus time)

• Left- and right-handed radiation easy to distinguish

• Constrains opening angle of precession

• Sets lower bound on (transverse) spin

• Often: separation of timescales

34

7

400 500 600 700 800 900 1000
�8

�7

�6

�5

�4

�3

�2

�1

t�M

lo
g
�Ψ 4�

L dominated

R dominated

400 500 600 700 800 900 1000
�1.0

�0.5

0.0

0.5

t�M

�z Ψ�

FIG. 3: Polarization imprints on signal 2: Precessing:
For a precessing binary (Sq(4,0.6,90,9)), the polarization car-
ries a strong imprint from the relative orientation of the pre-
ferred emission direction relative to the line of sight. For the
precessing q = 4 binary described in the text and [27], a de-
composition of the gravitational wave signal along a “generic”
orientation [(θ, φ) = (60◦, 205◦)] is shown. Results are shown
using just l = 2 (solid) and all modes l ≤ 4 (dotted), reversing
the convention of Figure 2. Top panel : The line of sight right
and left-handed amplitudes |ψ4R,L| (red R, blue L) using all
modes (dotted) and just l = 2 (solid). The gray shaded box
shows the interval where V̂ · n̂ ≤ 0. Bottom panel : Compar-
ison of |zψ(t)| extracted along this line of sight (black solid
[l = 2] and dotted curves [l ≤ 4]) with the leading-order esti-
mate z̃V̂ provided by Eq. (11) and the preferred orientation

V̂ selected by
˙
L(aLb)

¸
t

(blue).

of sight and simulations considered, we believe zψ is pri-

marily determined by the orientation of n̂ relative to the

time-dependent preferred orientation V̂ and can usually

be well-approximated by Eq. (11).

As described in subsequent sections, our calculations

suggest the preferred orientation V̂ evolves significantly

and rapidly during merger. Equivalently, the polarization

content – the distribution of lines of sight dominated by

left versus right handed emission – changes significantly

at the merger event. As seen in Figure 4, immediately

before and after the merger event, the two points cor-

responding to predominantly left- or right-handed emis-

sion change noticeably. This interval corresponds to the

merger phase itself. As described in the next section, we

suspect this rapid, global change in polarization content

may reflect features of the strong-field merger event itself.

E. Waveforms along other fixed directions

For reference, in Figure 5 we show the polarization con-

tent for two other preferred orientations: the initial (� fi-

nal) total angular momentum direction Ĵ (top panel) and

the preferred orientation V̂ evaluated at the time of peak

emission (bottom panel). In the first case, one polariza-

tion is vastly larger than the other at early times; during

the merger, however, both polarizations become signif-

icant. Similar results are found when extracting along

ẑ, the initial orbital angular momentum. In the second

case, both polarizations are comparatively large early on.

During the merger epoch, however, only one polarization

dominates. Generally speaking, when adopting a fixed

frame one can choose to simplify some narrow epoch of

the waveform by reducing the other polarization. For

any time, frequency, or mass range, a generalization of�
L(aLb)

�
t

can be constructed to determine what orien-

tation would be suitable. However, in general no one

orientation works for all time.

Finally, we emphasize that we have been able to accu-

rately estimate the polarization content using the time-

dependent preferred orientation V̂ . For our simulations,

this orientation differs substantially from L̂ at all times.

Based on this performance, we anticipate that corotating-

frame waveforms along V̂ will be substantially simpler

than any analog extracted along L̂.

III. SIMULATIONS II: TRENDS AND

VARIATIONS

From the diagnostics above, we anticipate simulations

are best and most naturally characterized by (a) the

modal waveforms ψ4lm in a corotating frame and (b)

the evolution of our preferred orientation with time.

In addition, to simplify the translation between time

and frequency domain, we will also use (c) the overall

orientation-averged signal power ρ̄. In this section we

briefly report on salient ways these three features change

with spin and mass ratio.

A. Polarization bias

Generic precessing binaries exhibit a polarization bias:
at any given instant, the binary is radiating more of one

handedness than another. During the inspiral, the bal-

ance between L and R oscillates. At merger, the balance

fixes, preferring one handedness, with the choice depend-

ing on the spin-orbit configuration just prior to merger.

This asymmetry produces large kicks [46], with a signif-

icant component perpendicular to the orbital plane; see

also Healy et al (in prep) and cf. [47].

R

L
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Polarization for alignment and precession

• Polarization easy to measure

• “Only see what we see” = at 100 Hz !

• Measure spin-orbit misalignment

• via simple geometry + polarization

• Traces strength whatever misaligns them

• SN kicks

• Stellar dynamics [binary collisions]

• Measure BH spin

• Insight into SN, massive star physics

35

h(t)

time
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More accurate mass, spin measurements

• Companion mass similar to NS?

• BH spin

• Spin-orbit misalignment

36

7

of the number of orbital or precession cycles.2

B. Geometry

As expected analytically and demonstrated by Figure

5, precession-induced modulations encode the orientation

of the various angular momenta relative to the line of

sight. For our loud fiducial signal, the individual spin

components can be well-constrained. Equivalently, be-

cause our fiducial source performs many precession cycles

about a wide precession cone and because that source is

viewed along a generic line of sight, we can tightly con-

strain the precession cone’s geometry: its opening angle;

its orientation relative to the line of sight; and even the

precise precession phase, measured either by cos ι or αJL.

The effective Fisher matrix provides a reliable estimate

of how well these parameters can be measured; see Table

IV and Figure 5.

C. Comparison to and interpretation of analytic
predictions

COOKL presented an effective Fisher matrix for

two fiducial precessing binaries, adopting a specific

post-Newtonian model to evolve the orbit. Following

OFOCKL, we adopt a refined post-Newtonian model,

including higher-order spin terms. In the Supplemen-

tary Material, available online, we provide a revised effec-

tive Fisher matrix, including the contribution from these

terms. Table V summarizes key features of this seven-

dimensional effective Fisher matrix for case A. As noted

above, the two-dimensional marginalized predictions are

in good qualitative agreement. The one-dimensional

marginalized predictions agree surprisingly well with our

simulations [Table IV]. Since the ingredients of the effec-

tive Fisher matrix are fully under our analytic control,

we can directly assess what factors drive measurement

accuracy in each parameter.

First and foremost, as in COOKL, this effective Fisher

matrix has a hierarchy of scales and eigenvalues, with

decreasing measurement error: Mc, η, a, . . .. Unlike non-

precessing binaries, this hierarchy does not clearly split

between well-constrained intrinsic parameters (Mc, η, a)

and poorly-constrained geometric parameters (every-

thing else); for example, as seen in Table V, the eigen-

values of the Fisher matrix span a continuous range of

scales.

The scales in the Fisher matrix are intimately tied to

timescales and angular scales in the outgoing signal. The

2
With relatively few precession cycles in our study, the discrep-

ancy between these two measurement accuracies is fairly small.

However, when advanced instruments with longer waveforms can

probe more precession cycles, we expect this simple argument

will explain dominant correlations.
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FIG. 4: Estimating astrophysical parameters (C): For

our fiducial binary C, the solid and dotted lines show an

estimated 90% confidence interval with and without higher

harmonics, respectively; colors indicate different noise real-

izations; and the (nearly indistinguishable) thick solid and

dashed lines shows an approximate effective Fisher matrix re-

sult, with and without higher harmonics, not accounting for

the constraint imposed by χ1 < 1. Results for case A are

qualitatively and quantitatively similar. The different panels

show different two-dimensional projections of the astrophys-

ically relevant parameters of a merging BH-NS binary: the

binary mass mass ratio, black hole spin, and degree of spin-

orbit misalignment κ ≡ L̂ · Ŝ1. Top,center panels: The masses

and spin magnitude of the binary can be measured very re-

liably, consistent with a single gaussian distribution in four

dimensions. The analytic predictions produced by an effec-

tive Fisher matrix agree qualitatively but not quantitatively

with our simulations. Bottom panel : To guide the eye, the

posterior versus χ1 and L̂ · Ŝ1 is compared with contours of

constant β = cos
−1

0.65, 0.7, 0.75 (precession cone opening

angle; dotted black) and Ωp [Eq. (15)] (precession rate; solid

black). The precession rate is relatively well constrained by

the presence of several (� 7) precession cycles available in

data, while the geometry is relatively poorly constrained, rel-

ative to the whole χ1 vs L̂ · Ŝ1 plane.
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our fiducial binary C, the solid and dotted lines show an

estimated 90% confidence interval with and without higher

harmonics, respectively; colors indicate different noise real-

izations; and the (nearly indistinguishable) thick solid and

dashed lines shows an approximate effective Fisher matrix re-

sult, with and without higher harmonics, not accounting for

the constraint imposed by χ1 < 1. Results for case A are

qualitatively and quantitatively similar. The different panels

show different two-dimensional projections of the astrophys-

ically relevant parameters of a merging BH-NS binary: the

binary mass mass ratio, black hole spin, and degree of spin-

orbit misalignment κ ≡ L̂ · Ŝ1. Top,center panels: The masses

and spin magnitude of the binary can be measured very re-

liably, consistent with a single gaussian distribution in four

dimensions. The analytic predictions produced by an effec-

tive Fisher matrix agree qualitatively but not quantitatively

with our simulations. Bottom panel : To guide the eye, the

posterior versus χ1 and L̂ · Ŝ1 is compared with contours of

constant β = cos
−1

0.65, 0.7, 0.75 (precession cone opening

angle; dotted black) and Ωp [Eq. (15)] (precession rate; solid

black). The precession rate is relatively well constrained by

the presence of several (� 7) precession cycles available in

data, while the geometry is relatively poorly constrained, rel-

ative to the whole χ1 vs L̂ · Ŝ1 plane.
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Summary

• Why use gravitational waves for astronomy?

• Rich data, addressing previously inaccessible phenomena

• Gravitational wave astronomy 101

• Precise measurements, modulo systematics and degeneracies

• Robust constraints on astrophysics

• Gravitational waves astronomy with precessing binaries

• Richer signals, tracing different phenomena

• The future

• Look to the sky, to new scales and new phenomena

37
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The future
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General relativity

Data analysisAstrophysics
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Plan

• Interpreting gravitational waves from the expected first GW detections

• Establish infrastructure for inference (GR/GW + astrophysics)

• Timely and correct inference

• Connect the EM and GW sky

• Short GRBs: on/off, output/input, geometry, hosts

• Joint population inference

• Prepare for the unexpected and exciting: Dynamical formation and eccentric mergers

• Other mass scales: Supermassive black holes

• EM, GW, and EM+GW

39
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Palomar

FermiGAIA
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Short GRB rates

41

Belczynski, ROS et al 2007 Chen and Holz 2012
Also: Coward et al 2011; Petrillo, Dietz, Cavaglia 2012 (102.0804)
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What do we learn about formation from EM?

• Progenitor composition

42

Berger 2009
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What do we learn with EM : BH-NS binaries

• Model degeneracy

• Where did detected mergers come from?

• Recent star formation, like us?

• Ancient star formation, unlike us?

43
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Fig. 6.— Compact BH-NS binaries detectable by aLIGO:
Same as Figure 5, but for BH-NS binaries in the high-end metal-
licity scenario.

waveforms (such as PhC and EOB) provide a more accu-
rate representation of the early inspiral incorporating PN
amplitude corrections that reduce the signal amplitude3

– and hence the event rates – for signals dominated by
the early inspiral.
Including the merger portion of the signal is more im-

portant for BH-BH systems. For illustration, let us focus
on the Standard Model: if we use PhC waveforms, rather
than the restricted PN approximation, BH-BH rates in-
crease from 116.8 (183.2) to 148.2 (246.2) in the high-
metallicity (low-metallicity) scenario.
The rates predicted by EOB and PhC models agree

3 To see this, note e.g. that the dominant correction coefficient
in Eq. (3.14) of Santamaŕıa et al. (2010), i.e. the coefficient A2

listed in their Eq. (A5), is negative.
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Fig. 7.— BH-BH binaries detectable by aLIGO: Same as
Figure 5, but for BH-BH binaries in the high-end metallicity sce-
nario.

quite well4. This can be understood by looking again at
Figure 2, which shows that different approximations of
the strong-field merger waveform agree rather well (at
least in the equal-mass limit) on the SNR ρ and hence
on the predicted event rates (∝ ρ3). Waveform differ-
ences produce systematic rate uncertainties significantly
less than a factor of 2, much smaller than astrophysical
differences between our preferred models.
Our detailed calculation shows that typically PhC

models overestimate the rates by about 10% when com-
pared to EOB models. This agreement is nontrivial, be-

4 We also carried out calculations using PhB models, which over-
estimate rates by about 10% with respect to PhC models. We de-
cided not to report these results in the Tables, because the PhB
model is essentially an outdated version of PhC, whose main ad-
vantage is that it is simple to implement.
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quite well4. This can be understood by looking again at
Figure 2, which shows that different approximations of
the strong-field merger waveform agree rather well (at
least in the equal-mass limit) on the SNR ρ and hence
on the predicted event rates (∝ ρ3). Waveform differ-
ences produce systematic rate uncertainties significantly
less than a factor of 2, much smaller than astrophysical
differences between our preferred models.
Our detailed calculation shows that typically PhC

models overestimate the rates by about 10% when com-
pared to EOB models. This agreement is nontrivial, be-

4 We also carried out calculations using PhB models, which over-
estimate rates by about 10% with respect to PhC models. We de-
cided not to report these results in the Tables, because the PhB
model is essentially an outdated version of PhC, whose main ad-
vantage is that it is simple to implement.
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Long-term vision

• Ground-based  next-generation:  

• Sensitive to high redshift

• Many events/yr

• Enable high-precision tests 
[cosmology, 
astrophysics,nuclear matter]
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Figure 34: True and recovered coalescence rates (taking into account detection efficiency) for the models of Hopkins

and Beacom [28] (solid black line), Fardal et al. [195] (dotted red line), Wilkins et al. [196] (dashed green

line), and Nagamine et al. [194] (dot-dot-dashed blue line). The lines are the true rates, the symbols give

the number of measured coalescences in a redshift bin, error bars denoting a 2-sigma spread in recovered

rates.

∼ 275,000 sources survive the SNR cut, depending on the SFR model. Note that this local coalescence rate will
most likely already be measured by Advanced LIGO and Virgo, so that we may consider it a known quantity
in the context of ET.

Fig. 34 shows both the underlying rates dR0
c(z)/dz and the recovered rates, with 2-sigma spreads, for the four

SFR models considered. First we note some systematic effects due to uncertainties in the redshift measurements:

At small redshifts (z � 1.5), the recovered rate distribution is shifted very slightly to the left with respect
to the underlying distribution. This is because of higher-redshift events ending up in lower redshift bins
due to measurement errors. The effect is not compensated by lower redshift events ending up in higher
redshift bins, because at lower redshifts the spread in measured redshift is smaller.

At intermediate redshifts (1.5 � 3) the true coalescence rate is being underestimated (despite having
folded in efficiency loss) because of events ending up in both higher and lower measured redshift bins;

Beyond z � 3.5 the recovered rate diverges, because there are still measured redshift values there, but the
efficiency �(z) → 0.

We see that ET can easily distinguish between the four models we took from recent literature. Generally, two
models for BNS coalescence rates can be distinguished from each other if over at least one ∆z = 0.1 redshift
bin at z � 1.5, the number of sources in the bin differs by more than a few percent.

2.6.4 Intermediate mass black holes

The existence of IMBHs with masses in the range 102 − 104 M⊙ has not yet been corroborated observationally,
but these objects are of high interest for astrophysics. Our understanding of the formation and evolution
of supermassive BH, as well as galaxy evolution modeling and cosmography would dramatically change if an
IMBH were to be observed. From the point of view of traditional electromagnetic astronomy, which relies on
the monitoring of stellar kinematics, the direct detection of an IMBH seems to be rather far in the future.
However, the prospect of the detection and characterization of an IMBH has good chances in lower-frequency
GW astrophysics, in particular with ET. The detection and characterization of a binary containing an IMBH
would corroborate the existence of such systems and provide a robust test of general relativity through tests of
the BH uniqueness theorem (see subsection 2.4.6).
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located binary, i.e. overhead from the detector and with a face-on orbit. Sub-optimally located and oriented
sources are detected with an SNR of 8 at closer distances.

The sky-position averaged distance up to which a 3-detector ET observatory would detect signals from coalescing
binaries with an SNR of 8 is shown in Fig. 18, for the ET-B sensitivity curve (see Box 1.3). The range is plotted
both as a function of the intrinsic (red lines) and observed (blue lines) total mass. The two are related by the
redshift function z(DL) as we will describe later. The binary systems are modeled by the phenomenological
waveforms of [24] which comprise the inspiral, merger and ringdown stages of the coalescence. Fig. 18 shows
the reach associated with two physical configurations of the binary: equal-mass, non-spinning and equal-mass,
spin-aligned configuration with spins χ1 = χ2 = χ = 0.75.

A neutron star binary composed of two 1.4M⊙ NSs would be observed by ET from a redshift of z � 2. A NS-BH
system comprising a 1.4M⊙ NS and a 10M⊙ BH would be observed from z � 4. Binaries formed by stellar-mass
BH will be visible at much larger distances, allowing ET to explore their populations at cosmological distances
of z � 10 and further. ET is also sensitive to intermediate-mass BBHs of total mass in the range [102, 104]M⊙
over the redshift range z ∼ 1–15. ET-D’s better sensitivity at lower frequencies compared to ET-B is important
in all cases, but particularly so for systems with total mass in the range 500–104 M⊙, for which the reach is a
factor 2–10 greater for ET-D than ET-B.

Table 2: Expected coalescence rates per Mpc
3
per Myr in the local universe (z � 0). Also shown are predicted event

rates in Advanced LIGO (aLIGO) and ET.

Source BNS NS-BH BBH
Rate (Mpc−1 Myr−1) 0.1–6 0.01–0.3 2× 10−3–0.04
Event Rate (yr−1) in aLIGO 0.4–400 0.2–300 2–4000
Event Rate (yr−1) in ET O(103–107) O(103–107) O(104–108)

Expected coalescence rates Black holes and neutron stars are expected to form after Type II supernovae,
which occur roughly once a century in galaxies like our own. Most stars seem to form in binaries; a fraction
of compact binary progenitors will survive the kicks that supernovae impart, and roughly half of the remaining
low-mass binaries (NSBH, BNS) will inspiral and eventually merge through the gradual emission of radiation.
With roughly one Milky Way-like galaxy per 100Mpc3, we anticipate a rate per comoving volume ρc large
enough to permit many detections even for advanced detectors (see Table 2). For example, the binary pulsar

population in the Milky Way implies a local BNS merger rate ρ(NS−NS)
c � 0.2− 6Myr−1 Mpc−3 [25–27]. With

its vastly greater sensitivity, ET will reach deep back into the universe. Due to an enhanced star formation rate
between z � 1− 3 [28], ET will probe a regime of possibly significantly enhanced compact object merger rates
[29–31]. We give an illustration of this for BNS systems in Appendix A.1.

Lacking direct observational input, predictions for BBH and NSBH merger rates rely entirely on theory. How-
ever, recent observational evidence for BBH progenitors (see below) have allowed, for the first time, an astro-
nomical estimate of BBH rates.

Studies of isolated binary evolution in the Milky Way [32–35] and local universe [30] lead to expected event
rates in the ranges shown in Table 2, depending on the assumptions adopted in the model. As with the BNS
rate, the NSBH merger rate is roughly proportional to the star formation rate [31] and therefore also increases
substantially with redshift; many detections are expected.

The BBH merger rate is even more uncertain. First, long expected delays between BBH birth and merger imply
BH born in the early universe could merge now [30]. Second, BH masses depend strongly on the metallicity of the
gas from which the progenitor star forms, low metallicity environments form both more binaries and binaries
that can be detected farther away [36, 37]. Even restricting attention to the local universe, low-metallicity
environments should be significantly over-represented in the present-day detection rate [38]. For example, the
nearby BBH progenitor binaries IC10 X-1 and NGC300 X1 lie in a low metallicity environment and suggest a
high BBH detection rate for initial LIGO of 1 per two years, strongly dependent on survey selection effects (see
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Eccentric mergers?

• GW signal “In band” : Only see what we see!

• Eccentricity rapidly lost:  e ~ 1/f 
• Residual eccentricity implies something exciting happened lately?
• Binary evolution and clusters: historically assume low-e at merger

• Astrophysical initial orbits ~ hours vs detection frequency ~ 100 Hz

I. Kowalska et al.: The eccentricity distribution of compact binaries 3

Table 1: Known merging compact object binaries

Name Porb [h] Present e Tmerge [Gyr] e at 0.3 Hz e at 3 Hz e at 30 Hz Ref.
J0737-3039A/B 2.454 0.088 0.085 4.5 × 10−5 4 × 10−6 3.5 × 10−7 Burgay et al. (2003)
B2127+11C 8.05 0.681 0.2 2.9 × 10−4 2.6 × 10−5 2.3 × 10−6 Anderson et al. (1990)
J1906+0746 3.98 0.085 0.3 2.6 × 10−5 2.3 × 10−6 2 × 10−7 Lorimer et al. (2006)
B1913+16 7.752 0.617 0.3 2.2 × 10−4 1.9 × 10−5 1.7 × 10−6 Weisberg & Taylor (2005)
J1756-2251 7.67 0.181 1.7 2.6 × 10−5 2.5 × 10−6 2.2 × 10−7 Faulkner et al. (2005)

B1534+12 (=J1537+1155) 10.098 0.274 2.7 3.6 × 10−5 3.2 × 10−6 2.8 × 10−7 Wolszczan (1991)
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Fig. 2: The properties of the population of double neutron stars obtained using the StarTrack code. The plot shows only the binaries
that will merge within the Hubble time. Solid lines correspond to evolutionary tracks for initial gravitational waves frequencies from
f0 = 10−8 Hz (first line from the left-hand side) to f0 = 102 Hz (first line from the right-hand side).
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Fig. 1: We present ten cases of eccentricity evolution, starting
with different values of e from e = 0.1 (first line from the
bottom) to e = 0.99 (first line from the top). Initial semi-
major axis is chosen such that a binary will merge within time
Tmerg = 10Gyr in each case.

3. Results

3.1. Properties of the binaries at formation time

We start with an initial population created using the StarTrack
code. We present the properties of the population of compact

object binaries in Figures 2 - 4 in the space spanned by the ini-
tial eccentricity and initial gravitational wave frequency, which
is twice the orbital frequency. Each panel in theses figures cor-
responds to a different model labeled as listed in Table 2.

The case of the NS-NS systems is shown in Figure 2. The
boundary of the region populated by the systems on the left-hand
side corresponds to the requirement that we only consider bina-
ries that merge within a Hubble time. The bulk of the binaries
shown in each panel correspond to those that have undergone
one CE phase in their evolution. The top row corresponds to the
models AZK, AZk, AzK, and Azk, in which we allow the bina-
ries to cross through the common envelope with the donor on the
Hertzsprung gap, denoted by ”+” in Table 2. These binaries may
undergo a second common envelope phase with a helium star
companion. At the second CE stage, the orbit is tightened even
more leading to formation of the stripe in the diagram stretching
from fGW ≈ 10−2 Hz at e ≈ 10−2. In these models, the initial
distribution in the space of gravitational wave frequency versus
eccentricity is bimodal. The influence of the value of the kick ve-
locity has a small impact on the shape of distributions presented
in Figure 2 as can be seen by comparing the data in plots labeled
as either K-large kicks or k-small kicks.

For BH-NS systems, presented in Figure 3, and BH-BH bi-
naries, in Figure 4, we present the results of six out of eight
models, since in models BZK and BZk, almost no binaries are
formed in our simulations that involve 2×106 initial binaries. For
BH-NS and BH-BH binaries, the formation of ultra-compact bi-
naries is not expected. The formation of NS-NS ultra-compact

[Kowalska et al 2011]
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• Hierarchical triples + “Kozai”

• Potentially many triples with large eccentricity at 
merger

• Dense environments (nuclear or GC): capture via GW 

• Binary-single: cross-section boosted by 
“resonances”. [Samsing]  Rare but plausible (0.1%?)

• Random spin orientations

Eccentric mergers!

46

O’Leary et al 2009;  Kocsis and Levin 2012
Tsang 2013

Lee, Ramirez-Ruiz, Van den ven 2010
Samsing et al 2013

Antonini 2013; Antognini  2013; Pejcha 2013

10 Antonini, Murray & Mikkola
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Fig. 5.— Histograms of the eccentricity distribution in MOD1 of coalescing BH binaries driven by the Kozai mechanism in GCs when their
emitted GW signal first enters the 10 Hz (left panel) and the 40 Hz (right panel) frequency bands. Insert panels show the corresponding
cumulative distribution of eccentricities. Distributions are normalized to the total number of systems that merge before being perturbed by
encounters with other stars in the cluster. Systems were evolved using both the octuple-order orbit average equations of motion (hatched
histograms and dashed lines) and more accurate N-body direct integrations (filled histograms and solid lines). The N-body runs produce
orbital distributions that are significantly more biased towards large eccentricities, and predict that about 50 % of merging binaries have
eccentricities larger than 0.1 and that 10 % of them posses extremely large eccentricities (e1 ∼ 1) when they first enter the aLIGO frequency
band. The number of these highly eccentric GW sources is strongly underestimated when using the orbit average (secular) code.
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Fig. 6.— Same as Figure 5 but adopting an initial uniform distribution in semi-major axes and eccentricities (MOD2).

tions of motion up to order 2.5 and the algorith-
mically regularized chain structure to avoid singulari-
ties (Mikkola & Merritt 2008). We have shown that
the presence of a third outer BH can drive the inner bi-
nary at very high eccentricities; at which point the BHs
can rapidly merge before the triple system is perturbed
or disrupted through gravitational encounters with clus-
ter field stars and on timescales much shorter than for
similar binaries that are evolved in isolation. We deter-
mined the properties of coalescing BH binaries in GCs
and compared the results of our N -body simulations to
the predictions of the standard orbit average treatment
in which the equations of motion are averaged over the

rapidly varying mean anomalies of inner and outer orbit.
We have demonstrated that the orbit average treatment
leads to incorrect results if the inner binary is orbited by
an outer perturber at a small distance (Equation [18]).
The implications of our results are discussed in what

follows.

5.1. Eccentric gravitational wave sources

The N−body integrations presented in this paper pre-
dict a large number (30 − 50%) of GW sources with
a substantial eccentricity (e1 ! 0.1) in the high fre-
quency band of GW detectors. We predict the exis-
tence of a large population of extremely eccentric GW
sources, (1 − e1) " 10−5, that will be potentially de-

Antonini 2013
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Conclusion: Vision and opportunities

• Detections soon

• Complex signal informative: challenge & opportunity

• Calibrating and applying precessing full-GR models for astrophysics 

• Unique opportunities with violent events (eccentric mergers)

• Compact binary parameter distributions

• Constrain nearly-unconstrained astrophysics

• Immensely powerful constraints 

• Connecting GW and EM sky

47
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Precision measurement enables discovery

48

Planck, 2013
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Measuring the precession cone

• Cone shape and phase of 
precession measurable

• Application: check if EM 
radiation correlates with 
instantaneous orbital plane, 
versus other directions

49

3

FIG. 1: Coordinate system for the precessing binary.
The left coordinate corresponds to the conventional GW ra-
diation frame. θNJ (φNJ) is a polar (azimuthal) angle of
the total angular momentum (J) with respect to the radia-
tion vector (N). In the left coordinate βJL (αJL) is a polar
(azimuthal) angle of the orbital angular momentum (L) with
respect to the total angular momentum (J). In the right co-
ordinate, N , J , and x2 are coplanar and the shaded region
indicates the orbital plane.

describe the gravitational wave signal from precessing
BH-NS binaries, emphasizing suitable coordinates for the
spins (i.e., defined at 100Hz, relative to the total angular
momentum direction) and the waveform (i.e., exploiting
the corotating frame to decompose the signal into three
timescales: orbit, precession, and inspiral). Exploiting
this decomposition, we revisit and generalize the results
provided in COOKL, explaining how well modulations
in the gravitational wave signal allow us to estimate the
kinematics of precession and hence the underlying bi-
nary’s geometry. Next, in Section III we describe how
we created synthetic data consistent with the two fiducial
precessing signals described in COOKL in gaussian noise;
reconstructed a best estimate (“posterior distribution”)
for the possible precessing source parameters consistent
with that signal; and compared those predictions with
our analytic estimates.

II. KINEMATICS AND GRAVITATIONAL
WAVES FROM PRECESSING BH-NS BINARIES

A. Kinematics and dynamics of precessing binaries

The kinematics of precessing binaries are well de-
scribed in [? ], BLO, and LO; see, e.g., Eq. (10) in
BLO. In brief, the orbit contracts in the instantaneous or-
bital plane on a long timescale 1/Ωrad over many orbital
periods 1/Ωφ. On an intermediate timescale 1/Ωprec,
due to spin-oribt coupling the angular momenta precess
around the total angular momentum direction, which re-
mains nearly constant. On timescales between 1/Ωprec

and 1/Ωrad, the orbital angular momentum traces out a
“precession cone”. For this reason, we adopt coordinates
at 100Hz which are compatible with that frame; our co-
ordinates are identical to those used in BLO, LO, and
COOKL. Relative to a frame with ẑ oriented along the
emission direction, the total, orbital, and spin angular
momenta are described by the vectors:

Ĵ = sin θJN cos ψJ x̂ + sin θJN sinψJ ŷ + cos θJN ẑ (1)

L̂ = sin ι cos ψLx̂ + sin ι sinψLŷ + cos ιẑ (2)

Ŝ = sin θ1 cos(ψL + φ1)x̂ + sin θ1 sin(ψL + φ1)ŷ + cos θ1ẑ
(3)

Because the orbital angular momentum evolves along a
cone, precessing around Ĵ , we prefer to describe the or-
bital and spin angular momenta in frame aligned with
the total angular mometum ẑ� = Ĵ :

L̂ = sinβ cos αJLx̂� + sinβ sinαJLŷ� + cos βĴ (4)

where the frame is defined so ŷ� is perpendicular to n̂ as
in Figure 1 [? ] figure shows reversed x axis - figure not
correct, x2 and N should have an angle less than 90 deg?:

ŷ� = − n̂× Ĵ

|n̂× Ĵ |
, x̂� = ŷ� × Ĵ =

n̂− Ĵ(Ĵ · n̂)
|n̂× Ĵ |

(5)

In this phase convention for αJL, the zero of αJL corre-
sponds to L, J, n̂ in a common plane, sharing a common
direction in the plane of the sky. Transforming between
these two representations for L̂ is straightforward. For
example, given n̂, L̂ and Ĵ , we identify α and β via

β = cos−1 Ĵ · L̂ (6)

αJL = argĴ · [
L̂× (x̂� + iŷ�)

i sinβ
] (7)

The spin angular momentum direction is determined
from the direction of L, the direction of J , and the angle
between Ŝ and L̂

Ŝ = sin(β − θLS) cos αJLx̂� + sin(β − θLS) sinαJLŷ�

+ cos(β − θLS)Ĵ (8)

Finally, the opening angle β and the angle θLS are re-
lated. Using the ratio of �S1 to the Newtonian angular
momentum �L = µ�r × �v as a parameter:

γ(t) ≡ |�S1|/|�L(t)| =
χ1m2

1

ηM
�

Mr(t)
(9)

Using this parameter, the opening angle angle β of the
precession cone (denoted λL in ACST) can be expressed
trigonometrically as

β(t) ≡ arccos Ĵ · L̂ = arccos
1 + κγ�

1 + 2κγ + γ2
(10)

ROS et al (in prep)
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FIG. 7: Source geometry: Angular momenta (C): This figure demontrates (1) that the individual angular momenta to

be well-constrained to two discrete regions; (2) higher harmonics allow us to distinguish between the two alternatives; and (3)

that the precession cone is well-determined, at the accuracy level expected from the number of precession cycles. As in Figure

4, colors indicate different noise realizations; solid and dotted lines indicate the neglect or use of higher harmonics; the green

point shows the expected solution; and the solid blue path shows the trajectory of L and S over one precession cycle. Top
panels:Projection of the orbital angular momentum direction (L̂; top left panel); spin angular momentum direction (Ŝ; center

panel); and total angular momentum direction Ĵ into the plane of the sky (top right). Bottom left panel : The precession angle

αJL of L around J . For comparison, the green points show the simulated values; when present, the solid blue path shows

variables covered in one precession cycle. Roughly speaking, the precession phase can be measured with relative accuracy of a

few times ρ−1
: tens of percent. Bottom right panel : Illustration that both the opening angle β of the precession cone and the

angle θJN between the line of sight and Ĵ can be measured accurately, with relative error � 1/NP ρ significantly smaller than

the relative error in the precession phase αJL. ROS: Fix plots, they are not showing the right base points

quasicircular (or even orbit-averaged) EOMs is not prop-

agated back in...and with precession, differences can be

significant. Physical intuition and experience with NR

suggests the orbit-averaged equations are more physi-

cal...but detailed studies are needed.

* Demonstrate geometrical parameters can be mea-

sured and their measurements understood. Believe

these symmetry-breaking features are leading-order ef-

fects, less-susceptible to systematic error than fine issues

in the GW phase

** particularly opening angle of precession cone, which

can be constrained with extremely high precision in a rel-

atively model-neutral way. Should be INDEPENDENT

of PN order (confirm!) – systematics are interpreta-

tion/ID of β(f)?

** that reference angle along precession cone does not

shift best-fit values for masses, or shape of distribution

(intuitively obvious) – but beware case B

** that except in very well-chosen coordinates, the con-

fidence regions are not ellipsoidal, so a naive Fisher ma-

trix approach is poorly-suited to the problem

* demonstrate that higher harmonics add some relative

value here – not small things, either

** this is despite the fact that we have lots of small

eigenvalues, so higher harmonics have greater leverage to

change the small measurements a lot

** main effect is GLOBAL, to eliminate degenerate

peaks, usually in orientation

** but this can influence the intrinsic parameters, de-

pending on the precise orientation of the precession phase
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FIG. 6: Angular momentum direction on the sky (C) : Projection of the orbital angular momentum direction (L̂) on

the plane of the sky at f = 100Hz; compare to Figure 2. This figure demonstrates that the individual angular momenta to be

well-constrained to two discrete regions and that higher harmonics allow us to distinguish between the two alternatives; and

(3) that the precession cone is well-determined, at the accuracy level expected from the number of precession cycles. As in

Figure 4, colors indicate different noise realizations; solid and dotted lines indicate the neglect or use of higher harmonics; and

the green point shows the expected solution.
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FIG. 7: Distance and inclination degeneracy broken
(C): Posterior probability contours in distance and inclina-

tion.

well (if not better) at fixed SNR. For our fiducial bina-
ries, the mass parameters are constrained well enough
to definitively say if it is a BH-NS binary (as opposed
to BH-BH); the mass parameters are constrained better
than similar non-precessing binaries; and several param-
eters related to the spin and orientation of the binary can
be measured with reasonable accuracy. Second and more
importantly, we were able to explain our results quali-
tatively and often quantitatively using far simpler, often
analytic calculations. Building on prior work by BLO,
LO, and others [47], we argued precession introduced
distinctive amplitude, phase, and polarization modula-
tions on a precession timescale, effectively providing an-
other information channel independent from the usual
inspiral-scale channel found in non-precessing binaries.
Though our study targeted only two specific configu-
rations, we anticipate many of our arguments explain-
ing the measurement accuracy of various parameters can

be extrapolated to other binary configurations and ad-
vanced detectors. The effective Fisher matrix approach
of COOKL and OFOCKL provides a computationally-
efficient means to undertake such extrapolations. Third
and finally, we demonstrated that for this mass range and
orientation, higher harmonics have minimal local but sig-
nificant global impact. For our systems, we found higher
harmonics broke a degeneracy in the orientation of L̂ at
our reference frequency (100 Hz), but otherwise had neg-
ligible impact on the estimation of any other parameters.

Due to the relatively limited calculations of spin ef-
fects in post-Newtonian theory, all inferences regarding
black hole spin necessarily come with significant system-
atic limitations. For example, Nitz et al. [64] imply that
poorly-constrained spin-dependent contributions to the
orbital phase versus time could significantly impact pa-
rameter estimation of nonprecessing black hole-neutron
star binaries. Fortunately, the leading-order precession
equations and physics are relatively well-determined. For
example, the amplitude of precession-induced modula-
tions is set by the relative magnitude and misalignment
of �L and �S1. In our opinion, the leading-order symmetry-
breaking effects of precession are less likely to be suscepti-
ble to systematic error than high-order corrections to the
orbital phase. Significantly more study would be needed
to validate this hypothesis.

Robust though these correlations may be, the quanti-
ties gravitational wave measurements naturally provide
(chirp mass; precession rate; geometry) rarely correspond
to astrophysical questions. We have demonstrated by
example that measurements of relatively strong gravi-
tational wave signals can distinguish individual compo-
nent masses and spins to astrophysical interesting accu-
racy [Fig. 4]. These measurements should transform our
understanding of the lives and deaths of massive stars.
Ignoring correlations, gravitational wave measurements
seem to only relatively weakly constrain spin-orbit mis-
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FIG. 3. A schematic representation of our model for BH binary formation and spin evolution. Empty circles represent stars,

filled circles represent BHs. Phase (a) shows the initial main-sequence stellar binary. Mass transfer from the primary to the

secondary (b) leads to a possible mass-ratio reversal. The first SN kick tilts the angle between the spins and the orbital plane

(c). Tidal interactions can realign the stellar member of the binary (d). The second SN kick tilts the orbital plane again (e).
Gravitational radiation shrinks and circularizes the binary before our explicit PN evolution begins (f).

We assume that the spins of the primary S�
and sec-

ondary S��
are initially aligned with the orbital angular

momentum L. As the primary evolves, its envelope ex-

pands until it fills its Roche lobe, initiating stable mass

transfer to the secondary (phase b in Fig. 3). The ef-

ficiency of mass transfer is usually parametrized via a

parameter fa ∈ [0, 1]: cf. Eq. (A9) of Appendix A 3. We

assume this mass transfer continues until the primary has

depleted its hydrogen envelope, leaving behind a helium

core of mass M �
C

= 8.5M⊙ (M �
C

= 8M⊙) in the SMR

(RMR) scenario. Following [12], we assume semiconser-

vative mass transfer: the secondary accretes a fraction

fa = 1/2 of the mass lost by the primary, growing to a

mass M ��
Sf

= 30M⊙ (M ��
Sf

= 35M⊙) in the SMR (RMR)

scenario at the end of the mass-transfer episode. In prin-

ciple mass transfer should also change the orbital separa-

tion, but we neglect this change as it is smaller than the

width of the distribution of initial separations, as well

as subsequent changes in the separation during the CE

phase.

Following the end of mass transfer, the primary ex-

plodes in a SN (phase c in Fig. 3) producing a BH of

mass M �
BH

= 7.5 M⊙ (M �
BH

= 6 M⊙ ) in the SMR

(RMR) scenario. For simplicity, in our simulations the

spin of this newly born BH is assumed to be maximal
3

(χi = 1, i = 1 , 2) and aligned with its stellar progenitor.

The SN ejecta are generally emitted asymmetrically, im-

parting a recoil velocity to the BH which is generally a

fraction of the typical recoil velocities for protoneutron

3 Note that spin-orbit resonances are effective provided that the
dimensionless spins χi � 0.5 [6].

Gerosa et al 2013
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FIG. 3. A schematic representation of our model for BH binary formation and spin evolution. Empty circles represent stars,

filled circles represent BHs. Phase (a) shows the initial main-sequence stellar binary. Mass transfer from the primary to the

secondary (b) leads to a possible mass-ratio reversal. The first SN kick tilts the angle between the spins and the orbital plane

(c). Tidal interactions can realign the stellar member of the binary (d). The second SN kick tilts the orbital plane again (e).
Gravitational radiation shrinks and circularizes the binary before our explicit PN evolution begins (f).

We assume that the spins of the primary S�
and sec-

ondary S��
are initially aligned with the orbital angular

momentum L. As the primary evolves, its envelope ex-

pands until it fills its Roche lobe, initiating stable mass

transfer to the secondary (phase b in Fig. 3). The ef-

ficiency of mass transfer is usually parametrized via a

parameter fa ∈ [0, 1]: cf. Eq. (A9) of Appendix A 3. We

assume this mass transfer continues until the primary has

depleted its hydrogen envelope, leaving behind a helium

core of mass M �
C

= 8.5M⊙ (M �
C

= 8M⊙) in the SMR

(RMR) scenario. Following [12], we assume semiconser-

vative mass transfer: the secondary accretes a fraction

fa = 1/2 of the mass lost by the primary, growing to a

mass M ��
Sf

= 30M⊙ (M ��
Sf

= 35M⊙) in the SMR (RMR)

scenario at the end of the mass-transfer episode. In prin-

ciple mass transfer should also change the orbital separa-

tion, but we neglect this change as it is smaller than the

width of the distribution of initial separations, as well

as subsequent changes in the separation during the CE

phase.

Following the end of mass transfer, the primary ex-

plodes in a SN (phase c in Fig. 3) producing a BH of

mass M �
BH

= 7.5 M⊙ (M �
BH

= 6 M⊙ ) in the SMR

(RMR) scenario. For simplicity, in our simulations the

spin of this newly born BH is assumed to be maximal
3

(χi = 1, i = 1 , 2) and aligned with its stellar progenitor.

The SN ejecta are generally emitted asymmetrically, im-

parting a recoil velocity to the BH which is generally a

fraction of the typical recoil velocities for protoneutron

3 Note that spin-orbit resonances are effective provided that the
dimensionless spins χi � 0.5 [6].
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FIG. 3. A schematic representation of our model for BH binary formation and spin evolution. Empty circles represent stars,

filled circles represent BHs. Phase (a) shows the initial main-sequence stellar binary. Mass transfer from the primary to the

secondary (b) leads to a possible mass-ratio reversal. The first SN kick tilts the angle between the spins and the orbital plane

(c). Tidal interactions can realign the stellar member of the binary (d). The second SN kick tilts the orbital plane again (e).
Gravitational radiation shrinks and circularizes the binary before our explicit PN evolution begins (f).

We assume that the spins of the primary S�
and sec-

ondary S��
are initially aligned with the orbital angular

momentum L. As the primary evolves, its envelope ex-

pands until it fills its Roche lobe, initiating stable mass

transfer to the secondary (phase b in Fig. 3). The ef-

ficiency of mass transfer is usually parametrized via a

parameter fa ∈ [0, 1]: cf. Eq. (A9) of Appendix A 3. We

assume this mass transfer continues until the primary has

depleted its hydrogen envelope, leaving behind a helium

core of mass M �
C

= 8.5M⊙ (M �
C

= 8M⊙) in the SMR

(RMR) scenario. Following [12], we assume semiconser-

vative mass transfer: the secondary accretes a fraction

fa = 1/2 of the mass lost by the primary, growing to a

mass M ��
Sf

= 30M⊙ (M ��
Sf

= 35M⊙) in the SMR (RMR)

scenario at the end of the mass-transfer episode. In prin-

ciple mass transfer should also change the orbital separa-

tion, but we neglect this change as it is smaller than the

width of the distribution of initial separations, as well

as subsequent changes in the separation during the CE

phase.

Following the end of mass transfer, the primary ex-

plodes in a SN (phase c in Fig. 3) producing a BH of

mass M �
BH

= 7.5 M⊙ (M �
BH

= 6 M⊙ ) in the SMR

(RMR) scenario. For simplicity, in our simulations the

spin of this newly born BH is assumed to be maximal
3

(χi = 1, i = 1 , 2) and aligned with its stellar progenitor.

The SN ejecta are generally emitted asymmetrically, im-

parting a recoil velocity to the BH which is generally a

fraction of the typical recoil velocities for protoneutron

3 Note that spin-orbit resonances are effective provided that the
dimensionless spins χi � 0.5 [6].
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FIG. 3. A schematic representation of our model for BH binary formation and spin evolution. Empty circles represent stars,

filled circles represent BHs. Phase (a) shows the initial main-sequence stellar binary. Mass transfer from the primary to the

secondary (b) leads to a possible mass-ratio reversal. The first SN kick tilts the angle between the spins and the orbital plane

(c). Tidal interactions can realign the stellar member of the binary (d). The second SN kick tilts the orbital plane again (e).
Gravitational radiation shrinks and circularizes the binary before our explicit PN evolution begins (f).

We assume that the spins of the primary S�
and sec-

ondary S��
are initially aligned with the orbital angular

momentum L. As the primary evolves, its envelope ex-

pands until it fills its Roche lobe, initiating stable mass

transfer to the secondary (phase b in Fig. 3). The ef-

ficiency of mass transfer is usually parametrized via a

parameter fa ∈ [0, 1]: cf. Eq. (A9) of Appendix A 3. We

assume this mass transfer continues until the primary has

depleted its hydrogen envelope, leaving behind a helium

core of mass M �
C

= 8.5M⊙ (M �
C

= 8M⊙) in the SMR

(RMR) scenario. Following [12], we assume semiconser-

vative mass transfer: the secondary accretes a fraction

fa = 1/2 of the mass lost by the primary, growing to a

mass M ��
Sf

= 30M⊙ (M ��
Sf

= 35M⊙) in the SMR (RMR)

scenario at the end of the mass-transfer episode. In prin-

ciple mass transfer should also change the orbital separa-

tion, but we neglect this change as it is smaller than the

width of the distribution of initial separations, as well

as subsequent changes in the separation during the CE

phase.

Following the end of mass transfer, the primary ex-

plodes in a SN (phase c in Fig. 3) producing a BH of

mass M �
BH

= 7.5 M⊙ (M �
BH

= 6 M⊙ ) in the SMR

(RMR) scenario. For simplicity, in our simulations the

spin of this newly born BH is assumed to be maximal
3

(χi = 1, i = 1 , 2) and aligned with its stellar progenitor.

The SN ejecta are generally emitted asymmetrically, im-

parting a recoil velocity to the BH which is generally a

fraction of the typical recoil velocities for protoneutron

3 Note that spin-orbit resonances are effective provided that the
dimensionless spins χi � 0.5 [6].
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B. Parameterizing the resonant solutions

Spin-orbit resonances are coplanar equilibrium solu-
tions of the 3PN spin-precession equations [6, 13]. Res-
onant solutions can be found fixing ∆Φ = 0◦ or ∆Φ =
180◦ and solving the spin precession equations to ob-
tain θ1 and θ2. Two different one-parameter families of
solutions can be found for ∆Φ = 0◦ and ∆Φ = 180◦
[5, 6]. We parameterize these one-dimensional families
by a “projected effective spin” ξ, defined as

ξ ≡ S0 · L̂
M2

�����
f=fref

∈
�
−χ1 + qχ2

1 + q
,
χ1 + qχ2

1 + q

�
, (8)

where the “effective spin” S0, first introduced in [14], is

S0 = (1 + q)S1 +
�

1 +
1
q

�
S2 . (9)

Note that for our choice of maximal spins χi = 1, Eq. (8)
implies that ξ ∈ [−1,+1]. Fig. 1 shows the resonant fam-
ilies superimposed with contours of constant ξ. For each
resonant family (i.e. ∆Φ = 0◦ or 180◦), there is a one-
to-one correspondence between ξ and resonant solutions
(θ1, θ2) of the PN equations. The parameter ξ is particu-
larly well-suited to describe spin-orbit dynamics, because
it is approximately conserved by orbital evolution when
all known PN orders are included [5] (and exactly con-
served up to 2PN when the 2PN-order radiation-reaction
[15, 16] is used).

The approximate conservation of the parameter ξ sug-
gests that resonant binaries should dynamically resemble
single-spin binaries. This idea leads to the main results
of this paper, and it will be discussed in detail in the
subsequent section.

C. Different families have qualitatively different
precessional dynamics

The two resonant families have qualitatively different
precessional dynamics. Put simply, in the ∆Φ = 180◦
resonance, the two spins are on opposite sides of the or-
bital angular momentum. For comparable-mass binaries
with similar spin magnitude, this results in a small to-
tal spin and, consequently, the total and orbital angular
momentum are nearly aligned and the orbital plane does
not precess significantly. By contrast, in the ∆Φ = 0◦
resonance, the two spins point to the same side of the
orbital angular momentum. Except for very small angles
θ1 and θ2, this results in a large total spin component
perpendicular to the orbital angular momentum. There-
fore L and J are significantly misaligned, which leads to
significant orbital precession. This is also illistrated in
Fig. 2, which shows the degree of alignment between the
unit orbital and total angular momentum vectors L̂, Ĵ
for the two resonant families at fref . For ∆Φ = 180◦,
L̂ and Ĵ are almost completely aligned for any value of
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FIG. 1. (color online) One-parameter families of resonant bi-
naries (red, green) superimposed with contours of constant
ξ = S0 · L̂/M2. Red (top-left) and green (bottom-right)
curves show resonant configurations in the two coplanar fam-
ilies for our canonical choice of the parameters (q = 0.8,
M = 13.5M⊙, χ1 = χ2 = 1) at three different emitted fre-
quencies: 20 Hz (dashed), 60 Hz (i.e. fref , solid) and 150 Hz
(dotted). The value of ξ ∈ [−1, 1] is constant over the sloped
dashed lines. Each of them always cross the resonant curves
exactly once, thus unambiguously identifying a single binary
[i.e. a pair (θ1, θ2)] in each family.

the parameter ξ whereas binaries in the ∆Φ = 0◦ fam-
ily show significant misalignment of L̂ and Ĵ unless ξ is
close to ±1. Note that ξ = ±1 corresponds to the bottom
left and top right corner in the cos θ1 vs. cos θ2 plane of
Fig. 1, where the two resonant families meet. Binaries
with ξ = ±1 have spins totally aligned or anti-aligned
with L̂, and therefore belong to both families.

Barring these special cases, however, the weak preces-
sion of binaries with ∆Φ = 180◦ and the strong preces-
sion of binaries with ∆Φ = 0◦ will produce significant dif-
ferences in their GW signal. We illustrate this in Fig. 3,
where we show the expected SNR accumulated over the
frequency domain for various members of the ∆Φ = 0◦
and the ∆Φ = 180◦ families. In each panel of this figure
we fix a frame by specifying the relative orientation of the
line of sight n̂ with respect the orbital angular momen-
tum L̂, i.e. ι = arccos(L̂ · n̂), at the reference frequency
fref .

The pronounced precession of the orbital plane in bi-
naries with ∆Φ = 0◦ manifests itself in significant os-
cillations in the SNR per frequency bin in these figures
as compared with the ∆Φ = 180◦ family. In contrast,
fixing a frame by choosing ι such that the line of sight
n̂ is aligned with the total angular momentum Ĵ elimi-
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B. Parameterizing the resonant solutions

Spin-orbit resonances are coplanar equilibrium solu-
tions of the 3PN spin-precession equations [6, 13]. Res-
onant solutions can be found fixing ∆Φ = 0◦ or ∆Φ =
180◦ and solving the spin precession equations to ob-
tain θ1 and θ2. Two different one-parameter families of
solutions can be found for ∆Φ = 0◦ and ∆Φ = 180◦
[5, 6]. We parameterize these one-dimensional families
by a “projected effective spin” ξ, defined as

ξ ≡ S0 · L̂
M2
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Note that for our choice of maximal spins χi = 1, Eq. (8)
implies that ξ ∈ [−1,+1]. Fig. 1 shows the resonant fam-
ilies superimposed with contours of constant ξ. For each
resonant family (i.e. ∆Φ = 0◦ or 180◦), there is a one-
to-one correspondence between ξ and resonant solutions
(θ1, θ2) of the PN equations. The parameter ξ is particu-
larly well-suited to describe spin-orbit dynamics, because
it is approximately conserved by orbital evolution when
all known PN orders are included [5] (and exactly con-
served up to 2PN when the 2PN-order radiation-reaction
[15, 16] is used).

The approximate conservation of the parameter ξ sug-
gests that resonant binaries should dynamically resemble
single-spin binaries. This idea leads to the main results
of this paper, and it will be discussed in detail in the
subsequent section.

C. Different families have qualitatively different
precessional dynamics

The two resonant families have qualitatively different
precessional dynamics. Put simply, in the ∆Φ = 180◦
resonance, the two spins are on opposite sides of the or-
bital angular momentum. For comparable-mass binaries
with similar spin magnitude, this results in a small to-
tal spin and, consequently, the total and orbital angular
momentum are nearly aligned and the orbital plane does
not precess significantly. By contrast, in the ∆Φ = 0◦
resonance, the two spins point to the same side of the
orbital angular momentum. Except for very small angles
θ1 and θ2, this results in a large total spin component
perpendicular to the orbital angular momentum. There-
fore L and J are significantly misaligned, which leads to
significant orbital precession. This is also illistrated in
Fig. 2, which shows the degree of alignment between the
unit orbital and total angular momentum vectors L̂, Ĵ
for the two resonant families at fref . For ∆Φ = 180◦,
L̂ and Ĵ are almost completely aligned for any value of
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ferences in their GW signal. We illustrate this in Fig. 3,
where we show the expected SNR accumulated over the
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close to ±1. Note that ξ = ±1 corresponds to the bottom
left and top right corner in the cos θ1 vs. cos θ2 plane of
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with ξ = ±1 have spins totally aligned or anti-aligned
with L̂, and therefore belong to both families.

Barring these special cases, however, the weak preces-
sion of binaries with ∆Φ = 180◦ and the strong preces-
sion of binaries with ∆Φ = 0◦ will produce significant dif-
ferences in their GW signal. We illustrate this in Fig. 3,
where we show the expected SNR accumulated over the
frequency domain for various members of the ∆Φ = 0◦
and the ∆Φ = 180◦ families. In each panel of this figure
we fix a frame by specifying the relative orientation of the
line of sight n̂ with respect the orbital angular momen-
tum L̂, i.e. ι = arccos(L̂ · n̂), at the reference frequency
fref .

The pronounced precession of the orbital plane in bi-
naries with ∆Φ = 0◦ manifests itself in significant os-
cillations in the SNR per frequency bin in these figures
as compared with the ∆Φ = 180◦ family. In contrast,
fixing a frame by choosing ι such that the line of sight
n̂ is aligned with the total angular momentum Ĵ elimi-

where Seff is some linear combination of S1 and S2 (note
this is not the same effective spin as in [7]). Since LN !
_LN " 0, without radiation reaction, the magnitude of the

orbital angular momentum vector is constant with spin
precession. The magnitude of the total spin vector S, on
the other hand, is not conserved as the angle changes
between the two-spin vectors (each of constant
magnitude).

The relations (2.11) and (2.12) constrain the binary
system to a subset of the complete parameter space defined
by the three vectors LN, S1, and S2. We believe it is this set
of constraints that best explains much of the behavior
presented below, as opposed to a more classical description
of resonance based on Hamiltonian mechanics and energy
minima in phase space (see, e.g., Murray and Dermott [24],
Sussman and Wisdom [25]). However, a Hamiltonian for-
mulation of the post-Newtonian equations of motion such
as in [26–28] may prove to give a more classical explana-
tion to these apparently geometric constraints.

The inclusion of gravitational radiation causes the orbit
to shrink and also circularize in time, reducing a, e, and the
magnitude of the angular momentum

LN " !
!!!!!!!!!!!!!!!!!!!!!!!!

ma#1$ e2%
q

: (2.13)

Following Peters [23] and adopting units with m " 1, we
use the coupled first-order differential equations

d
dt

a " $ 64
5

!
a3#1$ e2%7=2

"

1& 73
24

e2 & 37
96

e4
#

; (2.14)

d
dt

e " $ 304
15

!e
a4#1$ e2%5=2

"

1& 121
304

e2
#

; (2.15)

and
d
dt

LN " $ 32
5

!2

a7=2#1$ e2%2
"

1& 7
8
e2
#

L̂N (2.16)

to evolve the binary orbital elements in time (higher-order
evolution equations for these orbital elements, including
spin effects, can be found in [29–31]). All of the above
orbit-averaged precession and radiation reaction equations
have been tested and compared to the full 2.5-order post-
Newtonian equations of motion in Kidder [19]. The agree-
ment is very good for most of the inspiral, all the way down
to r & 10 m, after which almost any post-Newtonian ap-
proximation becomes increasingly uncertain.

III. GEOMETRY OF EQUILIBRIUM

One of the most difficult aspects of studying the spin-
ning binary system is the problem of visualizing and
analyzing the orientation of the two spins and the angular
momentum in an informative way. In general, these three
vectors are defined by nine coordinates [the angular mo-
mentum is also related to a and e through (2.13)]. Since the
spin magnitudes S1 and S2 are conserved in the point mass

approximation, and we can pick a coordinate system where
LN points in the êz direction, we are left with five coor-
dinates: #LN; "1; "2;#1;#2%. Furthermore, the overall dy-
namics are preserved under rotation around LN so we can
reduce the spin degrees of freedom by defining the êx
direction along #1 " 0, leaving four independent coordi-
nates to define the orientation of the system:
#LN; "1; "2;!#%. Figure 1 shows a schematic of the ge-
ometry used throughout this paper. Following the post-
Newtonian formalism, all angles and vector magnitudes
are defined in a Cartesian, flat space-time.

In this coordinate system, there exists a set of equilib-
rium spin configurations for which LN, "1, "2, and !# are
constant (without radiation reaction), even though the in-
dividual vectors might vary in time from the point of view
of a fixed inertial coordinate system. Trivial equilibrium
examples include the collinear cases with cos"1 " '1 and
cos"2 " '1. More interesting cases occur when S1, S2,
and LN all appear to precess around a fixed axis at a
constant rate so as to remain in a fixed relative orientation.
These points in parameter space can be found by solving
(cf. Apostolatos [9])

θ1

S1

LN

ey

ex∆φ

θ2

S2

FIG. 1. Schematic diagram of the spin and orbital angular
momentum vectors. The coordinate system is defined such that
LN is along the z axis and #"1; "2% are the respective angles
between LN and #S1;S2%. The projection of S1 onto the x-y plane
is defined to be along the x axis so the azimuthal spin angles are
#1 " 0 and #2 " !#.
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FIG. 1. Schematic summary of our predictions for the spin orientation of BH binaries as they enter the LIGO/Virgo band.

Before summarizing our results, we first introduce
some notation. Consider a BH binary with component
masses m1 ≥ m2, total mass M = m1 + m2 and mass
ratio q = m2/m1 ≤ 1. The spin Si of each BH can be
written as

Si = χi
Gm2

i

c
Ŝi , (1)

where 0 ≤ χi ≤ 1 (i = 1, 2) is the dimensionless spin mag-
nitude and a hat denotes a unit vector. Our goal is not
to rival the complexity of existing population-synthesis
models of compact-binary formation, but rather to inves-
tigate specifically those astrophysical ingredients which
affect the spin dynamics. We therefore focus on maxi-
mally spinning BH binaries with mass ratio q = 0.8, a
typical value predicted by population-synthesis studies
(cf. e.g. Fig. 9 of [12]).

Let us define θi to be the angle between each spin Si

and the orbital angular momentum of the binary L, θ12
to be the angle between S1 and S2, and ∆Φ to be the
angle between the projection of the spins on the orbital
plane:

cos θ1 = Ŝ1 · L̂, cos θ2 = Ŝ2 · L̂, (2)

cos θ12 = Ŝ1 · Ŝ2, cos∆Φ =
Ŝ1 × L̂

|Ŝ1 × L̂|
· Ŝ2 × L̂

|Ŝ2 × L̂|
. (3)

As we will demonstrate below, the physical mechanisms
leading to the formation of the BH binary leave a char-
acteristic imprint on the angles ∆Φ and θ12. This has
implications for GW data analysis and, even more strik-
ingly, for GW astronomy: at least in principle, measure-
ments of spin orientation with future GW detections can
constrain the astrophysical evolutionary processes that
lead the binary to merger.

Binaries can be locked into spin-orbit resonances if
there is an initial asymmetry in their spin alignments
with the orbital angular momentum, i.e. if θ1 �= θ2 (see
[6, 11] and Fig. 1 of [9]). In these resonant configurations,
the BH spins and orbital angular momentum jointly pre-
cess in a common plane, which we refer to as “resonant-
plane locking”. Binaries in which the two BH spins and
the orbital angular momentum do not share a common
plane at the end of the inspiral are said to precess freely.
If initially θ1 < θ2, the two spins align with each other

so that ∆Φ → 0◦, θ12 → 0◦. If initially θ1 > θ2, the
projections of the BH spins on the orbital plane anti-
align so that ∆Φ → 180◦, θ12 → θ1 + θ2. The strength
of resonance locking depends on the binary mass ratio:
resonances are strongest for mass ratios q close – but not
exactly equal – to unity (cf. Figs. 3 and 4 of [11]), which
is a typical case for stellar-mass BH binaries detectable
by Advanced LIGO/Virgo.
Astrophysical formation channels determine the initial

conditions for PN evolutions in the late inspiral. As a re-
sult they determine whether resonant locking can occur,
and which resonant configuration is favored. Here we
introduce a model for BH binary formation that allows
us to establish a link between binary-formation channels
and the near-merger spin configurations of precessing BH
binaries.

A. Executive summary

Our main findings are summarized schematically in
Fig. 1. Supernova (SN) kicks tilt the orbit, producing
a misalignment between the orbital angular momentum
and the orientation of the spins of the binary members
[71]. As a result, the main factors determining the spin
alignment of a BH binary are the magnitude of SN kicks
and the possibility that other physical effects may realign
the spins with the orbital angular momentum in between
SN events. Dominant among these physical effects (aside
from the SN kick itself) are the efficiency of tidal inter-
actions and the possibility of a mass-ratio reversal due
to mass transfer from the initially more massive, faster
evolving progenitor.
Tides affect the binary in two significant ways: they

align the spins of stellar BH progenitors with the or-
bital angular momentum and they reduce the binary ec-
centricity. Additionally, tides force stars to rotate syn-
chronously with the orbit, increasing the likelihood of a
large BH spin at collapse and implying that our results
will depend only mildly (if at all) on the initial stellar
spin. Consider the evolution of the system between the
two SN events, when the binary consists of a BH and
a non-degenerate star. If tidal interactions are efficient
(a reasonable assumption, as we argue in Appendix A6)
they tend to align the star (but not the BH) with the or-
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FIG. 5. Pairing between the resonant families. Each reso-
nant source ξsource is paired with the best-matching template
ξBM
template, taken from the other resonant family. Maximized

overlaps (i.e. the tips of the peaks reported in Fig. 4) are
shown on the color scale: each binary has a best-matching
companion from the other family with overlap as low as 0.94.
The highest values � 1 are found for aligned and anti aligned
binaries ξ → ±(χ1 + qχ2)/(1 + q), which belong to both fam-
ilies (Fig. 1).

A. Orbital and precessional phasing

To approximate the binary’s evolution, we adopt a
single-spin approximation. The physics of single-spin bi-
naries is summarized in [20, 21]. While locked into a
resonant configuration, the orbital angular momentum L̂
precesses (jointly with the spins) about the total angular
momentum Ĵ. Its precessional frequency ΩJ is implicitly
defined by

dL
dt

= ΩJ Ĵ× L . (10)

We define β to be the (instantaneous) opening angle of
the precession cone,

cos β ≡ Ĵ · L̂ , (11)

and α to be the accumulated precessional phase of L̂
about Ĵ :

α(f)− αref ≡
� f

fref

ΩJ(f �)
dt

df �
df � . (12)

Here αref is a reference value at f = fref , and in practice
α(t) can be computed from a knowledge of the (time-
dependent) angular momentum of the binary.

Following [20, 22], we decompose the GW signal from
a precessing binary using the following expression [Eq.
(4) of [22]]:

h+(t) =
2Mη

D
v2Re

�
z(t)e2i(φorb−ζ)

�
(13)

In this expression, φorb is the orbital phase and ζ, z are
quantities set by the relative orientation of L̂ and the
radiation frame. The phase from a precessing binary
[2(φorb− ζ)− i ln z)] can be decomposed into three parts.
First, the orbital phase (φorb) accumulates monotonically
on the orbital timescale. On the precessional timescale, ζ
and ln z combine to produce both periodic modulations
and a secular increase in the overall phase, in propor-
tion to the number of precession cycles. Following Brown
et al. [20], we estimate this secular contribution by the
factor W

�
d

dt
(−ζ − i ln z/2)

�
�Wdα/dt (14)

The quantity W depends on the orientation of the pre-
cession cone of L about J, relative to the line of sight; it
therefore evolves on the inspiral timescale. For simplicity,
in this work we will neglect precession-induced modula-
tions, instead emphasizing the secular phase φwave:

φwave � φorb + Wα . (15)

Brown et al. [20] provide an exhaustive discussion of the
function W . For reasons explained above, in this work we
focus on binaries seen directly along their total angular
momentum direction (n̂ = ±Ĵ). Since the misalignment
between the line of sight and the direction of the angular
momentum is always quite small (see Fig. 2), the line of
sight never crosses the orbital plane during the inspiral1.
Whenever this condition holds, the quantity W assumes
the simple form [20]

W = sign(cos β)− cos β . (16)

Both the phase φorb and the accumulated precession
α are defined to be zero at the reference frequency: the
former by choosing φref = 0, the latter by fixing αref =
0 in Eq. (12). It follows that also φwave = 0 at fref .
The evolution of φwave with the frequency is computed
numerically by integrating forwards in time for f > ffref ,
and backwards in time for f < fref . Figures 6 and 7 show
the evolution of the GW phase φwave during the inspiral
for two resonant sources. [US: If we remove Fig. 6, also
remove the reference to this figure here. If we keep the
figure, add a sentence here on the extra lines for non-best-
matching templates.]

[EB: I stopped editing here, there are notational issues to
fix in the next subsection.]

B. Best-matching predictors

Here we develop two conjectures to predict the best-
matching template binaries, i.e. to predict the pairing
relation between the resonant families shown above.

1 This point has been checked numerically with dedicated integra-
tion of the PN equations.
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FIG. 10. Distributions of ξ and ∆Φ at fref = 60 Hz in
the astrophysical models developed by Ref. [3]. All scenar-
ios shown here assume isotropic supernova kicks. Binaries in
both ”Tides” scenarios are typically locked into resonances by
the end of the inspiral: RMR binaries tend to be attracted
by the ∆Φ = 0◦ resonance, while SMR binaries fall into the
∆Φ = 180◦ resonance. Boxes select binaries which are found
to be (at fref) within 50◦ degrees from either ∆Φ = 0◦ or
∆Φ = 180◦, and with maximum overlap as low as 0.99 with
the other family.

IV. CONCLUSIONS

We have calculated and compared the gravitational
wave signals emitted by comparable-mass binary black
holes in two post-Newtonian resonant families. For sim-
plicity using radiation along a preferred high symme-
try axis, we demonstrated that gravitational waves from
these two resonant families can be distinguished (match
0.99) as long as the black hole binaries are not too closely
aligned [Figure 10]. More broadly, on kinematic grounds,
we expect gravitational waves from these two families can
always be distinguished, for all angles. One family has
both spins on the same (opposite) side of the total an-
gular momentum, producing significant (minimal) spin-
orbit modulation in the emitted radition.

Our numerical and analytic study suggests the kinet-
matics and gravitational waves from resonant post-
Newtonian binaries closely resemble the dynamics of a

single-spin binary. Further, large-scale investigations are
needed to determine how effectively post-Newtonian res-
onances can be distinguished from this large and compli-
cated model family.

Finally, reviewing previous results to generate a plau-
sible distribution of initial conditions, we argue post-
Newtonian resonances can frequently be distinguished
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both spins on the same (opposite) side of the total an-
gular momentum, producing significant (minimal) spin-
orbit modulation in the emitted radition.
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needed to determine how effectively post-Newtonian res-
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West Virginia University, Nov 26

Student project opportunities

• Data analysis and parameter estimation 

• Scale up alternative algorithm 

• Detection algorithm for precessing binaries

• Strong-field waveforms

• Modeling effort in NR/strong GR (Berti, SXS, GT)

• New DOF: Eccentricity

• Tidal disruption and EM counterparts 

• Where are the missing short GRBs at high redshift?

• Coincident parameter measurements: EM & GW and short GRBs [Farr++...] 

• Mining host galaxy correlations

• Astrophysics

• Compare O(1000) existing model predictions

• Limit of many detections? (“Analytic” fisher matrix)

• Astrophysics (“dirty mergers”; predicting final BH spins)
58
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Interpreting stellar mass binary mergers

• General relativity

• Precessing IMR models and systematics

• “Inverse problem”: dynamics, given waveform

• Investigate robust features (attractors/cycles)

• Parameter estimation

• Attention to detail: convergence, systematics

• Provable results: circumvent ergodicity/non-MCMC

• Low latency: efficient computation

• Astrophysics

• Controlled, useful exploration of model space

• EM+GW: Host galaxy correlations

59
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When will we detect gravitational waves
• Order of magnitude estimate : NS-NS detection soon!

•Galactic NS-NS: > few mergers/Myr 

•LIGO range:         ~ 200 Mpc    [for NS-NS]

•Galaxy density:     1/100 Mpc3

•Detection rate:     >   few/yr

• Other compact object binaries (=NS or black hole) too!

60

[Abadie et al 2010,  arXiv:1003.2480]

[ROS & Kim 2010,ApJ 715 230]

Thursday, February 27, 2014



What will GW detectors find?

• Gravitational wave detectors sensitive to source mass (& spin)
• Low mass: (horizon) range ~ mass 5/6   

6

0 5 10 15 20 25
Total Mass (M )

0

50

100

150

200

250

In
sp

ira
lH

or
izo

n
Di

st
an

ce
(M

pc
)

H1
L1
V1
H2 S6 H1

S5 L1

VSR2

VSR3

VSR1

S5 H2

S6 L1

S5 H1

ʘ

FIG. 2: Inspiral horizon distance versus the total mass
of equal-mass binaries from S5/VSR1 (gray lines) and
S6/VSR2/VSR3 (colored lines). The horizon distance is the
distance at which an optimally located and oriented binary
would produce an expected signal-to-noise ratio of 8. The
figure shows the best sensitivity achieved by each detector
during the runs.

LIGO detectors between S5 and S6 and for Virgo be-
tween VSR1 and VSR2. The reduction in the horizon
distance of the Virgo detector in VSR3 is due to a mir-
ror with an incorrect radius of curvature being installed
during the conversion to monolithic suspension.

III. BINARY COALESCENCE SEARCH

To search for gravitational waves from compact binary
coalescence [? ? ? ], we use matched filtering to correlate
the detector’s strain output with a theoretical model of
the gravitational waveform [? ]. Each detector’s output
is separately correlated against a bank [? ] of template
waveforms generated at 3.5 post-Newtonian order in the
frequency domain [? ? ]. Templates were laid out across
the mass range such that no more than 3% of the SNR
was lost due to the discreteness of the bank. Only non-
spinning waveforms with zero eccentricity and a compo-
nent mass ≥ 1 M⊙ were generated, and the templates
were terminated prior to merger. In the early stages of
the run, as in previous searches [? ? ? ], the template
bank included waveforms from binaries with a total mass
M ≤ 35 M⊙. However, the search results indicated that
the higher mass templates (M > 25 M⊙) were more sus-
ceptible to non-stationary noise in the data. Further-
more, it is at these higher masses where the merger and
ringdown phases of the signal come into the detectors’
sensitive bands. Consequently, the upper mass limit of
this search was reduced to 25 M⊙ during the latter stages
of the science run. Results of a search for higher mass
binary black holes using non-spinning, full coalescence
(inspiral-merger-ringdown) template waveforms, such as

in [? ], will be presented in a future publication. Al-
though the template waveforms in this search neglect the
spin of the binary components, the search is still capable
of detecting binaries whose waveforms are modulated by
the effect of spin [? ].

We require candidate signals to have a matched filter
SNR greater than 5.5 in at least two detectors, and to
have consistent values of template masses and time of ar-
rival (allowing for travel-time difference) across the detec-
tors where this threshold is exceeded [? ]. We use a chi-
squared test [? ] to suppress non-Gaussian noise tran-
sients, which have a high SNR but whose time-frequency
evolution is inconsistent with the template waveform. If
the reduced chi-squared of a signal, χ2

r, is greater than
unity, we re-weight the SNR ρ in order to suppress the
significance of false signals, obtaining a re-weighted SNR
statistic1

ρ̂ =






ρ

[(1 + (χ2
r)3)/2]1/6

for χ2
r > 1,

ρ for χ2
r ≤ 1.

(1)

Our analysis reports the coalescence time and the
quadrature sum, ρc, of re-weighted SNRs for events
coincident between the detectors. The statistic ρc is
then used to rank events by their significance above
the expected background. To measure the background
rate of coincident events in the search, we time-shift
data from the detectors by an amount greater than the
gravitational-wave travel time difference between detec-
tor sites and re-analyze the data. Many independent
time-shifts are performed to obtain a good estimate of the
probability of accidental coincidence of noise transients
at two or more sites. The analysis procedure described
above is similar to the one used in previous searches of
LIGO and Virgo data, such as [? ] and [? ]; it will be
described in more detail in [? ].

The background rates of coincident events were ini-
tially estimated using 100 time-shifted analyses. These
background rates vary depending on the binary’s mass
— via the waveform duration and frequency band —
and also on the detectors involved in the coincidence (the
event type). The relevant mass parameter is the binary’s
chirp mass, M ≡ (m1m2)3/5(m1 + m2)−1/5, where m1

and m2 are the component masses in the binary system.
Thus, we sort coincident events into three bins by chirp
mass, and by event type [? ].

The requirement of a coincident signal between at least
two sites restricts the times that can be analyzed to
four distinct types of coincident time. Between July
2009 and October 2010, a total of 0.56 yr of two-or-
more-site coincident data was collected. This comprised

1 Equation 1 is an improvement over the “effective SNR” used
to rank events in [? ? ? ]. Most notably: while effective SNR
also re-weighted SNR using χ2

r, it became larger than SNR when
χ2

r < 1. This made it susceptible to over weighting events that
had statistical downward fluctuations in χ2

r.

Abadie et al, PRD [arxiv:1111.7314]

4

Test-mass limit (ψ0
k ) x(10) x(11) x(12) x(20) x(21) x(30)

ψ2 3715/756 -920.9 492.1 135 6742 -1053 -1.34×104

ψ3 −16π +113 χ/3 1.702×104 -9566 -2182 -1.214×105 2.075×104 2.386×105

ψ4 15293365/508032−405 χ2/8 -1.254×105 7.507×104 1.338×104 8.735×105 -1.657×105 -1.694×106

ψ6 0 -8.898×105 6.31×105 5.068×104 5.981×106 -1.415×106 -1.128×107

ψ7 0 8.696×105 -6.71×105 -3.008×104 -5.838×106 1.514×106 1.089×107

Test-mass limit (µ0
k ) y(10) y(11) y(12) y(20) y(21) y(30)

f1 1−4.455(1−χ)0.217 +3.521(1−χ)0.26 0.6437 0.827 -0.2706 -0.05822 -3.935 -7.092
f2 [1−0.63(1−χ)0.3]/2 0.1469 -0.1228 -0.02609 -0.0249 0.1701 2.325
σ [1−0.63(1−χ)0.3] (1−χ)0.45/4 -0.4098 -0.03523 0.1008 1.829 -0.02017 -2.87
f3 0.3236+0.04894χ +0.01346χ2 -0.1331 -0.08172 0.1451 -0.2714 0.1279 4.922

TABLE I: Phenomenological parameters describing the analytical waveforms (see Eq. (2)). In test-mass limit, they reduce to the appropriate
quantities given by perturbative calculations [14, 33, 34]. The test-mass limit of f1 is a fit to the frequency at the last stable orbit given in [33].
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FIG. 4: Distance to optimally-located and oriented- equal-mass bi-
naries with (equal) spin χ producing optimal SNR 8 in Initial LIGO.

resent the spins by a single parameter. This will considerably
simplify the use of our waveforms in GW searches in the near
future, and will accelerate the incorporation of NR results into
the current effort for the first detection of GWs. There are
many other immediate applications of our waveforms: injec-
tions into detector data will help to put more realistic upper
limits on the rate of BBH coalescences, and to compare the
different algorithms employed in the search for BBHs, while
employing these in population-synthesis studies will provide
more accurate coalescence rates observable by the current and
future detectors. Our method can readily be generalized to in-
corporate non-quadrupole harmonics, larger portions of the
BBH parameter space and further information from analytical
approximation methods or numerical simulations.
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What will GW detectors find?

• Detection strongly favors large masses (+BH spin)

• Be careful: include rare, massive events!

62

Intrinsic
Observed
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What will we see? 
• How many?

• Star formation rate + efficiency
• Insert known range vs mass

   

                       Key factors for theorists

dN

dt
� 1M⊙/yr × 10−2

Mpc3

4π

3

��
DH(M)

2.26

�3
�

Pform

mav,∗

� 3.6× 104M⊙/yr
Pform

mav,∗
(Dbns/100Mpc)3

��
M

Mbns

�15/6
�
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Eccentric mergers and dynamical scenarios

• General relativity and parameter estimation

• Hamiltonian dynamics [point particle; multi-encounter models with matter]

• Robust non-quasicircular waveforms at moderate and low eccentricity

• Parameter estimation

• Structurally different algorithms + insight

• Astrophysics

• Formation scenarios; “inverse problem” (dynamical vs not)

64
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Supermassive black hole binaries and pulsar timing

65

XIII. DIMENSIONALITY AND THOUGHTS (*)
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Part II

Core: Merger
Waveforms
Rather than tackle truly sophisticated problems imme-

diately, this section begins with a simple review of the

core concepts of gravitational waves (and their detection)

from circularly inspiralling, nonspinning binaries. To im-

prove clarity, I limit attention to quadrupole waves.

The waveforms listed here are discussed at much

greater length in my waveform model(local dvi; pdf) sec-

tion.

Trivial point: Scaling: So long as you are at z � 1,

you can take any LIGO result for h(f) and rescale it via

a similarity transformation

M �
= xM (302)

d� = yd (303)

f � = x−1f (304)

h�(f �) = x2/yh(f) (305)

because gravitational waveforms depend only on M. For

binaries, the usual Mc
5/6

arises because of an f−7/6 de-

pendence of h(f).]

Context: Low-mass systems evolve quickly; high mass

systems evolve slowly; just because ω ∝ v3/M and

Tmgr ∝M/v8;

XIV. BASICS: INSPIRAL SIGNAL

The gravitational waveform due to Newtonian (or post-

newtonian-corrected) inspiral is a fairly straightforward

application of GW + newtonian kinetmatics.

A. Time-domain signal, Newtonian limit,
Quadrupole waves

Circular inspiral waveform: The GW waveform from

circular quadrupole inspiral, fully derived in newto-

nian limit [7, 12, 32] [see also my inspiral page: (New-

tonian inspiral:local dvi; pdf), which provides useful re-

lations such as φ(t), r(t), ...] Relative to the observed
wave frequency f, (f = 2forb = 2∂tφorb) the sinu-

soidal waves from an instantaneously stationary binary

are given by, in the h+× representation:

h+(t) = − 4G

c4r
µ(πGMf)

2/3 (1 + cos2 ι)

2
(306)

cos(2πft− 2φo)

h×(t) = − 4G

c4r
µ(πGMf)

2/3
cos ι (307)

sin(2πft− 2φo)

add more generif F factors; see my sample problems(local

dvi; pdf); or equivalently in the spheroidal-harmonic rep-

resentation [? ] Check normalization:

h+ − ih× = −4µ(πMf)2/3

r

�
4π

5

×
�
e−i2ψorb−2Y 22 + e+i2ψorb−2Y 2−2

�
(308)

Special case: Axial emission: The axial emission is par-

ticularly simple

hc(t,±ẑ) = −4µ(πMf)2/3

r
e±i(2πft−2φo)

(309)

Sanity checks:Some obvious sanity checks can confirm

this form for the waveform:

• (1) At any given time, the waveform’s polarization

is manifestly circular (perfect helicity) on the poles

and is manifestly constant (pure h+) in the plane

of the orbit, as one would expect geometrically.

• (2) The normalization can be confirmed by calcu-

lating the energy flux implied by the above via Eq.

(21) and comparing that expression with the known

Peters expression for dE/dt [[32];(inspiral:local dvi;

pdf)] and dJ/dt

dE/dt =
32

5
µ2

(πMf)
10/3

=
32

5

µ2M3

a5
(310a)

dJ/dt =
32

5
Mc(πMcf)

10/3
=

32

5

µ2M3

a5

�
a3/2

M
(310b)

= dE/dt/(Ω)

Naturally the two agree perfectly

• (3) Geometrically (from reflection symmetry) only

the 22 and 2-2 components of the spin-(-2) wave-

forms can contribute, and then only with complex-

conjugate coefficients components.

Link to TOC 44 Generated November 19, 2013

Inspiral timescale Binary environment?

Modulated EM signal?
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Pulsar timing

66

When will NANOGrav make a detection?

Demorest et al 2013 had 17 pulsars. We will start timing 44 in 2014, for about 4 
additions per year. The plots above assume we add 4 new pulsars per year with a 
precision which is the median of the 40 we currently have data for.
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Effect of a gravitational wave on pulsar radio pulses

Ω̂

p̂

Timing residuals just an integral of redshift

 Anholm, Ballmer, Creighton, Price, Siemens (2008)

z =
1

2

p̂ip̂j

1 + Ω̂ · p̂
�
hE
ij − hP

ij

�

Sazhin 1978, Detweiler 1979

Pulsar termEarth Term
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p̂

Ω̂

Thursday, February 27, 2014



Research program

• Supermassive black holes

• Science:

• Search pipelines and parameter constraints

• Targeted astrophysics using posterior of all data (fore- and back-ground)

• EM counterparts

• Rationale: 

• Vast interest (galaxy evolution; how structure forms; black holes) 

• Multiband accessibility: GW [PTA & eventually LISA] & EM

• Plan:

• GW:

• Existing algorithms (PTA: Ellis/Siemens; ...) with astro priors/insight

• Tailor LIGO experience to unique PTA challenges

• GW+EM

• Build on prior & RIT experience
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BONUS SLIDES
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How do precessing binaries evolve?

• Orbit shrinks

• Spin angular momentum more significant

• L<S easier if unequal mass or high spin

69
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FIG. 4: Angular momentum dominated versus spin-dominated
binaries: In terms of the mass and spin of the black hole, contours
of the ratio γ = |�S|/|�L| evaluated at 40Hz. The bottom left re-
gion is angular-momentum dominated (|�L| � |�S|); the top right
region of large black hole mass and spin is strongly spin-dominated
(|�S| � |�L|). Contours show the ratio |�S|/|�L| ≡ γ = 1 (thick
curve), sin π/4 = 1/

√
2, sin π/6 = 1/2 and sin π/8, evaluated

with a 1.4M⊙ NS companion, versus the black hole mass and spin
parameters mBH , χBH . Above (below) the thick curve, BH-NS bi-
naries’ total angular momenta are spin (orbit) dominated in band. If
spin and orbital angular momenta are nearly antialigned, these bi-
naries have undergone transitional precession at lower frequencies,
typically not in band. Conversely, for orbital-angular-momentum-
dominated binaries (γ < 1), transitional precession has not occurred
in the past at lower frequencies and may, if anti-aligned and γ near
1, occur in band in the immediate future. Finally, below the bottom
curve, BH-NS binaries waveforms are modulated little by precession
in band.

and bounded above by

βmax ≡ sin
−1 γ . (8)

In the neighborhood of this extreme misalignment, at κ = −γ,
the opening angle is nearly stationary with spin-orbit mis-
alignment (i.e., d cos β/dκ � 0). In short, a distribution of
�L dominated binaries has two choices for spin-orbit misalig-
ment (i.e., two values of κ) consistent with each realized open-
ing angle. Additionally, because of the local maximum in β
as a function of κ, a randomly oriented distribution of spins
will have opening angles β that cluster near that maximum
(i.e., β � βmax). To illustrate which regions are �L and �S
dominated, Figure 4 shows contours of constant γ, assuming
m2 = 1.4M⊙.

C. Regions of parameter space II: Steady precession and
geometry

Unless transitional precession happens in band, ground-
based gravitational-wave detectors are sensitive to emission
from a relatively well-defined epoch: the precession cone has
relatively constant opening angle [Fig. 1]. Quantitatively,
we define a reference frequency fpeak corresponding to the
frequency up to which half of the signal power has been ac-
cumulated. The specific reference frequency depends on the
noise curve adopted.5 For this paper, we adopt the fiducial
advanced LIGO noise curve with zero-detuned signal recy-
cling; see [41]). This includes a low-power mode for which
fpeak � 40 Hz and high-power for which fpeak � 60 Hz.
However, all planned noise curves we have examined have a
reference frequency in the neighborhood of which a constant
precession cone is a good approximation. Henceforth the ra-
tio γ = |S1|/|L| and opening angle β between L̂ and Ĵ will
refer to quantities predicted at this frequency by the simple
precession expressions [Eqs. 4,3].6

Second, not only is the precession cone nearly fixed, but
as shown in Figure 2 at least a few complete precession cy-
cles occur between 20− 100 Hz, where most of the signal-to-
noise accumulates. For example, for an angular-momentum-
dominated binary (γ � 1), the number of precession cycles
for a single-spin binary can be approximated by the spin-
independent expression

NP �
� πfmax

πfmin

dforb
dt

dforb
Ωp

=
5

96
(2 + 1.5

m2

m1
)[(Mπfmin)

−1 − (Mπfmax)
−1

]

≈ 27(1 + 0.75m2/m1)

M/10M⊙
(9)

with a comparable but spin-dependent number for an S-
dominated binary (γ � 1); see ACST Eqs. (45, 63) for
a general solution. As indicated by Figure 2, each preces-
sion cycle usually accumulates a comparable proportion of
detectable power (i.e., each pair of peaks is a similar order
of magnitude in area). More critically, the figure indicates
that at least one and often several precession cycles contribute
to the total signal to noise. With many precession cycles, a
gravitational-wave detector should be relatively insensitive to
the initial value of the precession phase.

For our purposes, then, the binary undergoes nearly steady
simple precession in band. The instantaneous beam pattern of

5 In the text we choose the reference frequency as the half-power point,
where

R
f−7/3/Sh(f)df reaches half of its total value. Alterna-

tively, the reference frequency can be set by maximizing dρ/d ln f =
4f |h̃(f)|2/Sh, or even phenomenologically, in whatever manner is
needed for numerically-calculated amplitude and match to reproduce our
expressions. For the noise curves considered in this paper, all approaches
nearly agree.

6 For simplicity, we adopt the leading-order (Newtonian) expression for
r(f). Higher order corrections are small.

BH Mass

B
H

 s
pi

n

J ~ L

J~S

J = L + S1 + S2

Brown et al 2012

Example: BH-NS (40 Hz)

Apostolatos et al 1994
4 10
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A helpful way to represent the radiation

•Want                 and  

•Stationary-phase (“F2”): example calculation

70

h̃(f |λ) dh̃(f |λ)
dλ

h(t) = (−2)Y2,2(n̂)h2,2(t) + (−2)Y2,−2(n̂)h2,−2(t)

h2,2(t) ∝
ηv2

dL
e−2iΦ(t)

dΨ
dω

= t

 : power series in v
   set by stationary phase condition
   (=Legendre transform of        )

Ψ(ω)
dt

dω
=

dt

dv

dv

dω

Φ
Ψ = ωt− 2Φ

h̃2,2(ω) ∝ ηv2

dL

1�
id2Φ/dt2/π

eiΨ(ω)
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Representing GW from precessing binaries 

•Time-domain signal

•Fourier-transform term-by-term

•Regroup terms: “carrier+sideband” [restricted to (l,m)=(2,2) + (2,-2)]

71

h+(t)− ih×(t) = e−2iψ
�

lm

hlm(t) −2Yl,m(θ, φ)

= e−2iψ
�

lm�

�

m

Dl
m�,m(α(t),β(t), ζ(t))hROT

l,m (t)−2Yl,m�(θ, φ)

R(t)

X(t) ≡ Dl
m�,2(R(t))× ηv2

dL
e−i2Φ(t) × (−2)Yl,m�(θ, φ)

X̃(ω) � Dl
m�,2(R(t(ω)))× ηv2

dL

eiΨ(ω)

�
id2Φ/dt2/π

× (−2)Yl,m�(θ, φ)
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What’s in the paper

•Time domain form

•Kinematics

•Precession angles

•Frequency domain form

72

α(v) = η

�
2 +

3m2

2m1

� �
v5 ΓJ

�
dt

dv

�
dv

ζ(v) = η

�
2 +

3m2

2m1

� �
v5

�
1 + κγ

� �
dt

dv

�
dv .

h̄+(f) � 2πM2
c

D

�
5

96π (πMf)−7/6
�

m zmei(Ψ−2ζ)+imα

γ ≡ |S1|
|L| =

�m1χ

m2

�
v ;

ΓJ ≡ |J|/|L| =
�

1 + 2κγ + γ2 .

h+ =
2Mη

D
v2Re

��

m

zmeimαe2i(Φ−ζ)

�

zm = −2Y2,m(β, 0)
4π

5
�
e−2iψ

−2Y2m(θ, 0) + e2iψ
−2Y2−m(θ, 0)

�
.
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UIUC, Feb 2

Resonances

•Resonances occur if an initial asymmetry exists

73
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FIG. 5. (Color online.) Scatter plots of the PN inspiral of maximally spinning BH binaries with mass ratio q = 0.8 from

an initial separation aPNi just above 1000M to a final separation aPNf = 10M . The left panel shows this evolution in the

(θ1, θ2) plane and the right panel shows the evolution in the (∆Φ, θ12) plane. Darker (red) and lighter (green) dots refer to

the SMR and RMR scenarios, respectively. The initial distribution for these Monte Carlo simulations was constructed from an

astrophysical model with efficient tides and isotropic kicks. An animated version of this plot is available online at the URL:

http://www.phy.olemiss.edu/~berti/tides_isotr.gif

In Fig. 5, we show the evolution of the dynamical vari-
ables (θ1, θ2,∆Φ) for both the SMR and RMR scenarios
with efficient tides and isotropic kicks. As already an-
ticipated in the introduction, efficient tidal interactions
lead to spin orientations that are strongly affected by
spin-orbit resonances. When binaries are brought close
enough to resonant configurations by precessional mo-
tion and gravitational-radiation reaction, they no longer
precess freely through all values of ∆Φ, but instead os-
cillate about the resonant configurations [6, 9]. In the
SMR scenario, the initial orientation of the spins is such
that θ1 > θ2, and the binaries lock into resonances with
∆Φ = ±180◦ [darker (red) points in Fig. 5]. In contrast,
in the RMR scenario the initial spins have θ1 < θ2 and
the binaries lock into resonances with ∆Φ = 0◦ [lighter
(green) points in Fig. 5]. Once the binaries are trapped
near resonances, they evolve toward the diagonal in the
(θ1, θ2) plane, as seen in the left panel of Fig. 5. This
corresponds to θ12 → 0◦ for binaries near the ∆Φ = 0◦

family of resonances (RMR scenario). As seen in the
right panel of Fig. 5, there is a much broader range of fi-
nal values for θ12 in the SMR scenario, because these final
values depend on the initial astrophysical distribution of
S0 · L̂ according to Eq. (19).

Fig. 6 shows that spin-orbit resonances can have an
even stronger effect on BH binaries when SN kicks are
polar (aligned within θb = 10◦ of the stellar spin [37]).
As discussed in Appendix A 5, exactly polar kicks tilt the

orbital plane by an angle Θ given by Eq. (A24), which
can only attain a maximum value cos−1(2β)−1/2 (where
β = Mf/Mi is the ratio of the total binary mass before
and after the SN) without unbinding the binary. For
β � 0.9, as in our SMR and RMR scenarios, Θ � 40◦,
and kicks are rarely large enough even to saturate this
limit. This explains the much narrower distribution of
initial values of θi in the left panel of Fig. 6 compared to
Fig. 5. Binaries with these smaller initial misalignments
are more easily captured into resonances, as can be seen
from the near total segregation of the SMR and RMR
populations in ∆Φ by the time the binaries reach aPNf =
10M in the right panel of Fig. 6.

In our model, two physical mechanisms are responsi-
ble for changing BH spin orientations: SN kicks and tidal
alignment. Both mechanisms are critical: kicks generate
misalignments between the spins and the orbital angular
momentum, but only tides can introduce the asymme-
try between these misalignments that causes one family
of spin-orbit resonances (the ∆Φ = ±180◦ family in the
SMR scenario, the ∆Φ = 0◦ family in the RMR sce-
nario) to be favored over the other. When tidal effects
are removed, as shown in Figs. 7 and 8, BH binaries are
formed with θ1 � θ2 on average. Being symmetric un-
der exchange of the two BHs, the evolution in the SMR
and RMR scenarios is almost identical. As expected,
the binaries do not lock into resonant configurations, in-
stead precessing freely during the whole inspiral. In the

Resonances
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UIUC, Feb 2

Resonances

•But not without one

74
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FIG. 8. Scatter plots of the same quantities shown in Fig. 5 for an astrophysical model with inefficient tides and polar kicks.
For an animated version of this plot, see: http://www.phy.olemiss.edu/~berti/notides_polar.gif

IV. COMPARISON WITH POPULATION
SYNTHESIS

We have demonstrated that viable astrophysical for-

mation channels can result in BH binaries that are

strongly affected by spin-orbit resonances during the late

PN portion of the inspiral but before the binary enters

the GW detection band. Therefore PN resonances can af-

fect the observed dynamics of precessing binaries. Even

more interestingly, the distribution of the angles ∆Φ and

θ12 is a diagnostic tool to constrain some of the main

physical mechanisms responsible for BH binary forma-

tion (namely the efficiency of tides, and whether mass

transfer can produce mass-ratio reversal).

However, some caveats are in order. Even our limited

exploration of the parameter space of BH binary forma-

tion models has shown that the influence of PN reso-

nances depends sensitively on highly uncertain factors,

such as the magnitude and direction of SN kicks, or the

mass ratio and semimajor axis of the binary at various

stages of its evolution. In this Section, we argue that: (i)

our fiducial scenarios are indeed representative of the pre-

dictions of more sophisticated population-synthesis mod-

els (Section IVA); and (ii) as a consequence, observations

of spin-orbit resonances through their GW signatures can

provide valuable insight into BH binary formation chan-

nels (Section IVB).

A. Is our fiducial scenario representative?

In our study we chose to follow the evolution of

two binary progenitors in detail, using a specific for-

mation channel. The resulting BH binaries resemble at

least qualitatively the low-mass BH binaries that can be

formed through a wide range of compact object forma-

tion scenarios at a range of metallicities: see e.g. [12].

An important assumption made in this study is that

of negligible mass loss. Current calculations suggest that

the progenitors of the most commonly detected BH bi-

naries will in fact have low metallicity and strongly sup-

pressed mass loss [12]. The advantage of our approach

is that by neglecting mass loss and focusing on a pair

of fiducial binaries we can perform a “controlled experi-

ment” to highlight how different physical phenomena in-

fluence the efficiency of PN resonance locking. Variations

in the range of initial binary masses, wind mass loss and

other mass transfer modes will affect the mass distribu-

tion of the binaries and the initial distribution of the mis-

alignment angles (θ1 , θ2), but not our main qualitative

predictions, that should be rather robust.

This study included what we believe to be the most

important physical mechanisms that could trap binaries

in resonant configurations, but it is certainly possible

that additional ingredients overlooked in our model could

complicate our simple interpretation of the results. For

example, our argument relies on a universal and deter-

ministic relationship between stellar masses and compact

remnants. By contrast, some studies suggest that the re-

lationship between the initial and final mass may depend

sensitively on interior structure [39], rotation, or con-
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Binary population synthesis

Key fact: stars evolve and expand

Typical life of interacting binary system

• Star 1 ages, expands. Potential mass transfer 1->2

• Star 1 explodes

• Star 2 ages, expands. Potential mass transfer 2->1

• Star 2 explodes

• Compact binary left behind

• May merge via GW....

75
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•Phenomenology:

•  [Hard to model via hydro]

•Critical for most mergers

•Shrinkage model depends on 
stellar (envelope) structure 

•New tables-> new results

Common envelope shrinks orbit the most

76
Voss and Tauris

Loveridge et al; Xu et al Dominik et al 2012, Belczynski et al 2012, etc
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What physics will we have access to?

• Kicks strongly influence 

• merger rate

• disruption vs pushed closer

• (present-day) eccentricity, proper motion (of galactic binaries)

77

Postnov and Kuranov [0710.4465] 

NS spin-kick alignment and DNS coalescence rates 3

Figure 1. The distribution of orbital eccentricities before the second collapse in binaries producing DNS for two kick models. Kick
type A: all NS in binaries receive a kick; kick type B: the NS kick is zero in those binaries where NS is produced from main-sequence
progenitors with masses 8 − 11M!.

Figure 2. Galactic coalescence rate of DNS vs. the kick parameter v0 assuming random central kicks. Almost an exponential decay with
v0 is seen for v0 > 100 km/s for kick type A (a), while the decrease in the rate is smaller for kick type B

.

bital plane which, if directed opposite to the orbital velocity,
can additionally bind the post-explosion binary system.

3 NEUTRON STAR SPIN – ORBIT

MISALIGNMENT

There is another observational consequence of the kick in
DNS systems: the NS spin – orbit misalignment, which can
be tested by geodetic precession measurements in binary
pulsars (Bailes 1988). Such a misalignment is potentially
very interesting for GW studies (Apostolatos et al. 1994).
After the first supernova explosion in a binary system (SN1),
the additional kick imparted to the newborn neutron star
(NS1) results, in general, in a misalignment between the

new orbital angular momentum and the NS1 (as well as the
secondary component’s) spin vector characterized by some
angle. For the instantaneous explosion of one of the com-
ponents treated as point-like masses on a Keplerian orbit,
this angle can be calculated analytically, see for example
Kalogera (2000). After the second supernova explosion in
the system (SN2), there are several possibilities for spin-
orbit misalignment of the compact components.

1) In close binaries, tidal interactions tend to rapidly
align the angular momentum vector of the normal star with
the orbital angular momentum. To spin-up the NS rotation
to observed ms periods (in binary ms pulsars), a modest
amount of matter (∼ 0.1M!) should be accreted by NS.
This amount is sufficient to align the NS rotation with the
orbital angular momentum. So if NS1 accreted matter before

Willems et al 2008, Kalogera et al 0712.2540, Fragos et al 2010, Wong et al 2012,
Corongiu et al 2007, ...

A: all NS kicked (Maxwell: thermal)
B: low-mass (ECS) NS not kicked

Thursday, February 27, 2014



What physics will we have access to?

• Kicks strongly influence 

• merger rate

• disruption vs pushed closer

• (present-day) eccentricity, proper motion (of 
galactic binaries)

• spin-orbit misalignment distribution

• ...if interpreted properly: birth != merger

78

Willems et al 2008, Kalogera et al 0712.2540, Fragos et al 
2010, Wong et al 2012, Corongiu et al 2007, ...

15

FIG. 6. PN inspiral of maximally spinning BH binary with mass ratio q = 0.8: distributions of θ1, θ2 (left panel) and ∆Φ, θ12
(right panel). Initial distribution are obtained from the astrophysical model assuming tidal alignment and isotropic kicks. Red

and green binaries are computed in the SMR and RMR scenarios respectively.

[DG: I decided to plot the angles instead of their cosines to stress the details at small misalignment angles (we have many events

there). It would make more sense to show the cosines because they are polar angles, but I think plots are clearer in this way.]

[DG: Write ”aPNi” instead of ”Initial” in the top left panels?]

[DG: Here I put 9 snapshots at different separation, I could do it with just 4 of them.]

FIG. 7. PN inspiral of maximally spinning BH binary with mass ratio q = 0.8: distributions of θ1, θ2 (left panel) and ∆Φ, θ12
(right panel). Initial distribution are obtained from the astrophysical model assuming tidal alignment and polar kicks. Red

and green binaries are computed in the SMR and RMR scenarios respectively.

Gerosa et al (in prep)

Isotropic

15

FIG. 6. PN inspiral of maximally spinning BH binary with mass ratio q = 0.8: distributions of θ1, θ2 (left panel) and ∆Φ, θ12
(right panel). Initial distribution are obtained from the astrophysical model assuming tidal alignment and isotropic kicks. Red

and green binaries are computed in the SMR and RMR scenarios respectively.

[DG: I decided to plot the angles instead of their cosines to stress the details at small misalignment angles (we have many events

there). It would make more sense to show the cosines because they are polar angles, but I think plots are clearer in this way.]

[DG: Write ”aPNi” instead of ”Initial” in the top left panels?]

[DG: Here I put 9 snapshots at different separation, I could do it with just 4 of them.]

FIG. 7. PN inspiral of maximally spinning BH binary with mass ratio q = 0.8: distributions of θ1, θ2 (left panel) and ∆Φ, θ12
(right panel). Initial distribution are obtained from the astrophysical model assuming tidal alignment and polar kicks. Red

and green binaries are computed in the SMR and RMR scenarios respectively.

Polar
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What physics will we have access to?

• Precession

• Measure spin-orbit misalignment

• via simple geometry + polarization

• Traces strength whatever misaligns them

•  SN kicks

• Stellar dynamics [binary collisions]

• Measure BH spin

• Insight into SN, massive star physics

79

h(t)

time
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What physics will we have access to?

• Black hole spins suggests massive star evolution

• Weakly (BH spin measurements poor)

• Complement NS constraints on birth spin

80

NS progenitor, Heger et al 2005 ApJ 626 350
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Future directions

• Relate observed (merger) properties to formation

• Evolution (post-Newtonian resonances); inverting

• Identify, quantify features to connect to observations

• Favored delay times set by stellar structure?

• Masses, spins, spin-orbit:  Fisher matrix limit

• More physics

• Modified CE termination condition (Ivanova et al)

• Rotation (Langer; MESA)
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Conclusions

• Detections likely:  greater sensitivity, higher predictions

• Expected nursery: low-metallicity star formation

• Need detailed understanding of all low-Z star formation, ever

• EM signals complement GW detections

• GW: collision input

• EM : collision output (mod precursor)

• Simulations needed

• Connect EM, GW signal

• Relate observables

82
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Statistical challenges: Comparing distributions

Frequently must compare distributions

• Convergence of distribution estimate

• Compare model family members to each other (and random samples)

One diagnostic: KL divergence

• Definition

• Natural local “radius squared” coordinate on manifold of distributions
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4

xk between xk, xk + dxk is

P (x1 . . . xn)d
n
x = d

n
xp(n|µ)

�

k

p(xk) (4)

p(n|µ) ≡ µ
n

n!
e
−µ

(5)

Conversely, given a model X = (µ, p) and a set of events

d ≡ (x1 . . . xn), we can define a likelihood estimate L̂

L̂(X) ≡ L̂(X|d) = lnP (x1 . . . xn) (6)

where for shorthand we omit explicit dependence on the

data realization d. Modulo priors and model dimension

penalties, models with higher peak L̂ are more plau-

sible estimates for the generating process for x1 . . . xk

than models with lower L̂. Suppose each measurement

is independently drawn instead from a fiducial model

X∗ = (µ∗, p∗). Averaging over all measurements implies

�
L̂(X)

�

X∗
= �ln p(n|µ)�+ �n�

�
d

dparamp∗(x) ln p(x)

(7)

If the fiducial and test models X, X∗ are equal, the av-

erage

�
L̂

�
is the sum of (a) the entropy of the Poisson

distribution plus (b) �n� = µ∗ times the entropy of the

parameter distribution p. In the more general case where

X �= X∗, the mean log likelihood

�
L̂

�
will be smaller

than this bound. We characterize the decrease in ex-

pected log likelihood with the KL divergence.

For a general pair of probability distributions

p(x), q(x), the entropy Hp and KL divergence DKL(p|q)
are defined by [14, 15, 44? ]

Hp = −
�

dxp ln p (8)

DKL(p|q) ≡
�

dxp ln p/q (9)

Roughly, the KL divergence characterizes the informa-

tion gain the data must provide to go from a prior p to a

posterior q. The KL divergence is non-negative definite

with D = 0 if and only if p = q. The KL divergence is

not symmetric.4 Substituting into Eq. (7), the

�
L̂(X)

�

X∗
= −[DKL(µ∗|µ) + Hµ∗ ]

−µ∗[DKL(p∗|p) + Hp∗ ] (10)

4 The exchange-antisymmetric combination DKL(p|q) −
DKL(q|p) =

R
dx(p + q) ln p/q is generally nonzero. Examples

are easily constructed by combining arbitrary distributions p̄
and functions f ∈ [0, 1] via p = fp̄, q = (1 − f)p̄. Lacking
symmetry, the KL divergence is not a metric on the space of
probability distributions. Equivalently, our ability to distinguish
models from the truth depends on what the truth is. In this
paper, we always pick a single preferred model and sort models
in the neighborhood of that candidate model.

where D(µ∗|µ) is shorthand for the KL divergence be-

tween two poisson distributions:

DKL(µ∗|µ) =

�

n

p(n|µ∗)[µ− µ∗ + n ln(µ∗/µ)]

= µ− µ∗ + µ∗ ln(µ∗/µ) (11)

Hµ = −
�

n

p(n|µ)[−µ + n lnµ− lnn!]

� 1

2
ln 2πeµ µ � 1 (12)

In particular, given a fixed reference model with parame-

ters λ∗, the expected difference in log likelihood between

two candidate models λ1,λ2 can be expressed as a sum

of two contributions:

− δL = −(

�
L̂(X(λ1))

�

∗
−

�
L̂(X(λ2))

�

∗
)

= −(�ln p(n|µ1)� − �ln p(n|µ2)�) (13)

= [DKL(µ∗|µ1)−DKL(µ∗|µ2)]

+µ∗[DKL(p∗|q1)−DKL(p∗|q2)] (14)

The KL divergence therefore provides a simple, in-

variant diagnostic, quantifying differences between mod-

els. Further, the differences it identifies are statistically

meaningful, connected to differences in (expected) log

likelihood. Finally, the differences factor : the two terms

tell us how to weight models’ differences, on the one hand

in rate (the mean number of detections) and on the other

hand in their predicted parameter distributions.

In this work, we de facto propose DKL(p(λ)|p(λ�))
as a local coordinate on λ� when λ� is in the neighbor-

hood of λ. Being positive-definite and zero if and only

if p(λ) = p(λ�), this coordinate functions like a “distance

squared”, like the data-realization-dependent likelihood

function. Like the likelihood, DKL has statistical sig-

nificance. Being independent of the specific realization,

DKL therefore provides a well-posed, global, statistically-

significant measure of the difference between two distri-

butions. The KL divergence has been extensively applied

to the theory and practice of Markov Chain Monte Carlo;

see [14] and references therein.

B. Fisher matrix and local dimensionality

One way to discriminate between models relies on max-

imum likelihood. Observations of viable models have

L̂ increase (with decreasing relative variance) as more

observations xk accumulate. For any given data real-

ization, statistical fluctuations insure that many models

with only marginally smaller �L� cannot be reasonably

distinguished. We therefore want to know how many

models are “nearby,” in the sense that the average �L�
is within some threshold of the value for the reference

model itself.

For well-determined observations, the log likelihood

has a narrow peak, defining a dparams-dimensional ellip-

soid. In a small neighborhood surrounding the reference

5

model λ∗, the mean log likelihood can be expanded in

series using the Fisher matrix Γab:

�L(λ)� � �L(λ∗)� −
1

2
(λ− λ∗)a(λ− λ∗)bΓab (15)

where for brevity we use (λ− . . .)a to denote the coordi-

nate vector (λa− . . .a) and similarly. In particular, given

a threshold ∆L in log likelihood, a coordinate volume

of order (∆L)dparams/2/
�

|Γ| has (median) log likelihood

within ∆L of the maximum likelihood point. This coor-

dinate volume can be very small and scale very favorably

with ∆L, given the many parameters dparams
>∼ 7 com-

monly modified in binary evolution [6, 17, 24].

In practice, however, many detections will be required

to tightly confine all binary evolution model parameters.

Rather than an ellipsoid, a threshold ∆L simply restricts

to some extended subspace. Nonetheless, we can still

compute �L� for any model and thus pair of models. If

we can sample the model space, then for each reference

model, we can still quantify how many models “look sim-

ilar”: the coordinate volume V (< ∆L|λ∗) defined by

V (< ∆L|λ∗) ≡
�

L(λ)−L(λ∗)<−∆L
dλ (16)

For each model this relation defines a one-dimensional

function V (< ∆L). For very small ∆L, the parame-

ter volume will scale as V ∝ (∆L)dparams/2 as described

above. At larger likelihood differences, some parameters

are weakly constrained while others are determined. In

this regime, we define an “effective dimension” deff by

deff ≡ 2
d lnV

d ln∆L
(17)

On physical grounds, we anticipate deff should usually

decrease monotonically as ∆L increases.5 For large like-

lihood differences, all models are consistent and V con-

verges to the whole parameter space.

In practice, the simulation space cannot be exhaus-

tively explored: not enough computing power is available

to sample all possible likelihood differences. Nonethe-

less, for each candidate reference simulation, the func-

tions V (∆L) can be easily estimated by evaluating �L�
for all other simulations, building a histogram, and fitting

accordingly.

To this point we have used a composite discriminant

(�L�) involving both rate and shape. One can also deter-

mine how many models have a similar event rate alone or

parameter distribution alone as our reference model. To

answer the first, let us translate a threshold on ∆Lrate,

5 The derivative of the volume is mathematically equivalent to the
(logarithmic derivative of the) density of states. Many examples
in condensed matter physics show the density of states and by
implication deff can behave unexpectedly in fine-tuned scenar-
ios.

the contribution to the log likelihood from the event rate

alone, to an uncertainty in the event number µ:

∆Lrate = −DKL(µ∗|µ1) � −1

2
µ∗[ln(µ/µ∗)]

2
(18)

A threshold on ∆Lrate corresponds to a relative uncer-

tainty δµ/µ∗ �
�

2∆Lrate/µ∗ in the event rate. In other

words, the event rate provides a single real measurable

parameter 6 (lnµ) which can be measured to an accuracy

scaling as
�

∆L/µ∗ (i.e., the Poisson limit ∝ 1/
√

n, if the

likelihood threshold ∆L doesn’t change with the number

of events or location on the parameter manifold).

By comparison with above and the process of elimi-

nation, the shape diagnostic DKL(p∗|p) constrains the

remaining deff − 1 parameters. Explicitly, the KL diver-

gence DKL(p∗|p) between a reference distribution p∗ and

perturbed configuration p can be expanded as

DKL(p∗|p) =

�
p∗ ln p∗/p

� δλaδλa

2

�
∂2

∂λa∂λb
ln p

�
(19)

in the limit of infinitesimal parameter change δλ = λ−λ∗
and assuming p is never precisely zero.7 [The linear-

order term cancels, as
�

p = 1 for all λ.] In princi-

ple, the final expression lets us calculate the contribu-

tion to the positive-definite Fisher matrix Γab due to

shape changes δp in terms of tabulated shape distribu-

tions p(x|λ). In practice, however, numerical estimates

of p(x|λ) are rarely accurate enough to allow accurate

second derivatives. More critically, the parameter space

has not been thoroughly enough explored to permit this

second derivative to be accurately evaluated, except in a

handful of selected cases.

Prior probabilities and effective dimensions: To this

point, we assume each coordinate option in the model

space is equally likely; equivalently, we assume the model

space has a uniform prior probability for each choice.

Prior observations or measurement may disfavor cer-

tain scenarios, characterized by some probability density

P(λ)dλ. If adopted, this prior probability would enter

into the overall posterior probability P � = PP and hence

the likelihood L� = ln P �. To estimate the effect a strong

prior has on the Fisher matrix and similar conclusions,

we can approximate lnP = −1/2(λ − λ�∗)aKab(λ − λ�∗)b

plus a constant; expand about and determine the new

optimal extremum; and deduce

�L�� �L(λ�∗)� −
1

2
(λ− λ∗)a(λ− λ∗)b(Γab + Kab)

6 Binary evolution comparisons are particularly simple when event
rate is used as a coordinate.

7 A model where physics completely forbids a particular configu-
ration can always be distinguished from one that does not, via
a single observation with those conditions. We will not discuss
this limit here.

Fisher matrix, if p is gaussian!

U = {p(x|λ)}
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Validating scaling of parallel tempering

• High evidence: 

• Partly better fit (“louder”; Z up):  

• Partly via stronger constraints (“tighter”; Z down)

• Isolate second effect

• Identify # of parameters measured

• Test if constraints possible on new DOF

84
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FIG. 10: Prior volume versus amplitude: A plot of
ln V/Vprior versus signal amplitude ρ, derived from the sig-
nal amplitude and from ln V/Vprior versus β. For compari-
son, dotted lines are provided with a logarithmic slope −9
and −11, the number of parameters in the nonspinning and
spinning model, respectively. To illustrate a critical sepera-
trix between simulation-specific and universal behavior, the
dashed line shows the curve ln V/Vprior � −ρ2/2 [Eq. (21)].
This curve corresponds to Z = 1: the data is equally consis-
tent with the null hypothesis or the presence of a single signal.
For comparison, the dotted and dashed curves intersect at a
network amplitude ρ � exp 2.1, roughly consistent with a sig-
nal amplitude � 5.7 in each detector. The colored points show
the prior volume calculated using the direct integration evi-
dence, as listed in Table III; as in Figure 9, our approximate
thermodynamic evidence integral differs from direct integra-
tion evidence. The vertical scales’ absolute units depend on
the choice of prior and have been chosen consistently with all
other calculations described in this work.

nearly linear versus ln ρ; the slope is −Deff . Different
physical systems have different numbers of parameters,
some of which may not be measurable (e.g., ψ+). As a
result, each curve has a distinct slope at high temper-
ature, set by the number of measurable parameters at
ρ � 10− 20 [Eq. (21)]. At sufficiently high temperatures
and low amplitudes, the evidence physically should20

converge to nearly equal odds – equivalently, because the
signal cannot be distinguished from noise. In this regime,
V/Vprior follows the dashed line in Figure 10. Below this
threshold, the form of lnV/Vprior versus ln ρ should be
universal, set by the definition of the signal amplitude
ρ and completely unrelated to the physical dimension of
the problem. Even for the suboptimal but conventional
prior used in this work, the low-temperature behavior
nearly reproduces the expected form [Eq. (C11)].

Though not apparent in our study, the effective di-
mension Deff will increase with signal amplitude as more

20 As noted above and in Footnote 9, the low-temperature behav-
ior in our simulations reflects the pathological but conventional
prior; that choice should be eliminated in future work.

parameters become measurable. Because the effective di-
mension Deff(ρ) has physical significance, it has an easily-
estimable functional form versus ρ: roughly speaking, at
each signal amplitude, count how many parameters pro-
duce a significant change to ρ (i.e., δρ2/2 � 1). More
broadly, the effective dimension and thus the functional
form of V/Vprior reflects the local shape of the posterior
distribution in the neighborhood of the best fit point and
therefore should not depend sensitively on noise realiza-
tion. Specifically, the effective dimension allows us to
calculate the prior volume relative to a reference ampli-
tude ρ∗ with known prior volume lnV/Vprior(ρ∗):

lnV/Vprior(ρ) = lnV/Vprior(ρ∗)−
� ρ

ρ∗

Deffd ln ρ (C14)

Combined with the universal behavior of V/Vprior for
any individual simulation, the effective dimension can be
bootstrapped into simple estimates for Z and V/Vprior

for any candidate signal with known network amplitude
and an estimated Deff(ρ).

APPENDIX D: RECOMMENDATIONS FOR

FUTURE STUDIES

Parameter estimation strategies for gravitational wave
detection are rapidly evolving, including improved wave-
form models and treatment of systematic uncertainty,
better-adapted strategies to explore the model space, and
approximations which allow fast evaluation and explo-
ration. Even with all these improvements considered,
however, the lalinference mcmc code and waveform
models only provide an algorithm which asymptotically
provides samples from the posterior distribution; their
use depends on the user. In this appendix, we summa-
rize our opinions on how to best use the MCMC:

• Priors: Use a large maximum distance, to address
the issue identified in Footnote 9. Insure redshift
effects are consistently included in the waveform
generation and injection code.

• Validate convergence: Use many temperature
chains. Run multiple zero-temperature chains.
Confirm the high-temperature chains have �L�β
scaling with the expected number of dimensions
[Figure 10].

• Thermodynamic evidence calculations: Use enough
effective samples to accurately estimate the aver-
age log likelihood at each temperature. Use the
effective sample size to estimate the error in �L�
at each temperature. Verify convergence and the
effective sample size: the first 10% of the effective
samples should produce a mean consistent with the
rest. Use enough chains to resolve the temperature
distribution, including both the abrupt transition

V/Vprior ≡
Z(d|H1)

maxλL(λ|{d}) .

Z ∝ eρ2/2

Z ∝ |Γ|1/2/ρDeff

ROS et al 2013
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