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Abstract

In this dissertation we study black-hole horizons in general relativity and in Gauss-Bonnet

gravity. We generalize Wald’s “black-hole entropy is the Noether charge” construction to

the first-order formalism of these theories. Next we construct the “membrane paradigm” for

black objects in Gauss-Bonnet gravity and demonstrate how the horizon can be viewed as a

membrane with fluidlike properties. Holography is invoked to relate the transport coefficients

obtained for the horizons in the membrane paradigm with the transport coefficients which

describe the hydrodynamic limit of the boundary gauge theory.
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Chapter 1

Introduction

Gravitation, being the manifestation of the curvature of spacetime, affects the causal

structure of spacetime. This can lead to the existence of regions which are causally inacces-

sible to a class of observers. An example of such a region is the portion of spacetime inside

the event horizon of a black hole, which is causally disconnected from any outside observer.

Hence, the relevant physics for the observers outside the black hole must be independent of

what is happening inside the black hole. This observation forms the basis of the membrane

paradigm for black holes.

The membrane paradigm is an approach in which the interaction of the black hole with

the outside world is modelled by replacing the black hole by a membrane of fictitious fluid

“living” on the horizon (Damour, 1978, Thorne et al., 1986). The mechanical interactions of

the black hole with the outside world are then captured by the (theory dependent) transport

coefficients of the fluid. The electromagnetic interaction of the black hole is described by

endowing the horizon with conductivity and so forth. This formalism provides an intuitive

and elegant understanding of the physics of the event horizon and also serves as an efficient

computational tool useful in dealing with some astrophysical problems. After the advent

of holography, the membrane paradigm took a new life in which the membrane fluid is

conjectured to provide the long wavelength description of the strongly coupled quantum

field theory at a finite temperature (Policastro et al., 2001).

The original membrane paradigm was constructed for black holes in general relativity

(Damour, 1978, Thorne et al., 1986). The membrane fluid has the shear viscosity, η =
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1/16πG. Dividing this by the Bekenstein-Hawking entropy density, s = 1/4G, gives a

dimensionless number, η/s = 1/4π. The calculation which leads to this ratio relies only on

the dynamics and the thermodynamics of the horizon in classical general relativity. But,

interestingly enough, it was found by Policastro et al. (2001) that the same ratio is obtained

in the holographic description of the hydrodynamic limit of the strongly coupled N = 4,

U(N) gauge theory at finite temperature which is dual to general relativity in the limit N →

∞ and λt → ∞, where N is the number of colors and λt is the ‘t Hooft coupling. Kovtun

et al. (2003) conjectured that this ratio 1/4π is a universal lower bound for all materials. This

bound became known as the KSS bound. The relationship between the membrane paradigm

calculations and the holographically derived KSS bound was explained as a consequence

of the trivial renormalization group (RG) flow from infrared (IR) to ultraviolet (UV) in

the boundary gauge theory as one moves the outer cutoff surface from the horizon to the

boundary of spacetime (Bredberg et al., 2011, Iqbal & Liu, 2009). The universality of this

bound, how it might be violated, and the triviality of the RG flow in the long wavelength

limit at the level of the linear response were first clarified by Iqbal & Liu (2009).

The general theory of relativity, which is based upon the Einstein-Hilbert action func-

tional, is the simplest theory of gravity one can write guided by the principle of diffeomor-

phism invariance while containing only time derivatives of the second order in the equation

of motion. Although such a simple choice of the action functional has so far been ade-

quate to explain all the experimental and observational results, there is no reason to believe

that this choice is fundamental. Indeed, it is expected on various general grounds that the

low-energy limit of any quantum theory of gravity will contain higher-derivative correction

terms. In fact, in string theory the low-energy effective action generically contains terms

which are higher order in curvature due to the stringy (α′) corrections. In the context of

holographic duality, such α′ modifications correspond to 1/λt corrections. The specific form

of these terms depends ultimately on the detailed features of the quantum theory. From
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the classical point of view, a simple modification of the Einstein-Hilbert action is to include

the higher-order curvature terms preserving the diffeomorphism invariance and still leading

to an equation of motion containing no more than second-order time derivatives. In fact

this generalization is unique (Lovelock, 1971) and goes by the name of Lanczos-Lovelock

gravity, of which the lowest order correction (second order in curvature) appears as a Gauss-

Bonnet (GB) term in spacetime dimensions D > 4. Einstein-Gauss-Bonnet (EGB) gravity

is free from ghosts (unphysical degrees of freedom) and leads to a well-defined initial value

problem (Zumino, 1986, Zwiebach, 1985). Black hole solutions in EGB gravity have been

studied extensively and are found to have various interesting features (Boulware & Deser,

1985, Myers & Simon, 1988). The entropy of these black holes is no longer proportional

to the area of the horizon but contains a curvature dependent term (Iyer & Wald, 1995,

Jacobson & Myers, 1993, Visser, 1993, Wald, 1993). Hence, unlike in general relativity, the

entropy density of the horizon in EGB gravity is not a constant but depends on the horizon

curvature. Now, the form of the membrane stress tensor in the fluid model of the horizon

is also theory dependent and therefore the transport coefficients of the membrane fluid will

change due to the presence of the GB term in the action. Hence, it is of interest to inves-

tigate the membrane paradigm and calculate the transport coefficients for the membrane

fluid in the EGB gravity. The violation of the KSS bound due to the GB term in the action

has already been shown by Brigante et al. (2008b) and Brigante et al. (2008a) using other

methods. Also, the arguments that there really are string theories that violate the bound

were presented by Kats & Petrov (2009) and Buchel et al. (2009).

The plan of this thesis is as follows: In Chapter 2 we discuss the entropy of black

holes as given by the Noether charge corresponding to diffeomorphisms. We generalize the

Noether-charge method to the theories with local Lorentz gauge freedom by introducing a

gauge-covariant Lie derivative which realizes the action of diffeomorphisms on the dynamical

fields in a gauge-covariant fashion. In Chapter 3 we review the holographic principle and
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we show how in the long-wavelength regime the linear response of the boundary gauge

theory to small perturbations is very well captured by the linear response of the black-hole

horizon. We introduce the membrane paradigm for the first time in this chapter which

connects the two descriptions. In Chapter 4 we first review the membrane paradigm in

general relativity and then construct the membrane paradigm for Gauss-Bonnet gravity.

The transport coefficients for different bulk backgrounds are then intrepreted via holography

as the transport coefficients of the dual gauge theory on the boundary. We conclude with

the discussion of the results. The Appendix contains the relevant identities and some basics

of hydrodynamics.
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Chapter 2

Horizons

2.1 Introduction

A horizon is the causal boundary of the future history of an observer or a set of observers.

For example, consider an observer undergoing constant acceleration in the right quadrant of

the 1+1 dimensional Minkowski spacetime. In the whole history of her future she will never

be able to receive any signal that originates in the region on the left of the outgoing null

ray, see Figure 4.1. Hence this null ray forms the boundary of the set of events from which

she can receive signals and thus it acts as a horizon for her.

We will be interested in the event horizons of black holes. What is special about this

horizon is that it is the boundary of the set of events which can send signals to any observer

who reaches the future null infinity. For an asymptotically flat spacetime, the event horizon

is mathematically defined as the boundary of the causal past (J −) of the future null infinity

(I)+ (Wald, 1984). Physically this is the surface from beyond which even light cannot escape.

Thus, classically black holes are black with zero temperature. However, Hawking showed

that when quantum mechanics is taken into account black holes emit thermal radiation at

a black-body temperature which is proportional to the surface gravity of the black hole

(Hawking, 1974, 1975). One can then interpret the laws of black-hole mechanics as the

laws of thermodynamics with the role of entropy played by a quarter of the area of the

event horizon. The area theorem of Hawking, which says that the area of the horizon never

decreases in a classical process, lends support to this interpretation of the area of the horizon
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as a measure of its entropy (Hawking & Ellis, 1973). Due to Hawking radiation though the

horizon loses energy and the area of the horizon can decrease, the black hole can evaporate.

The second law of thermodynamics was then promoted to the Generalized Second law by

Bekenstein (1974). This says that the sum of the entropy of the horizon plus the Hawking

radiation plus other matter can never decrease. To account for the microscopic degrees of

freedom responsible for the black hole entropy is one of the driving forces for the research

in quantum gravity. Also, the area instead of the volume dependence of the entropy of the

black hole was a precursor of the holographic principle (Susskind, 1995, ’t Hooft, 2001).

Notice that the entropy of the black hole is Area/4 only in general relativity, i.e., in

the Einstein theory of gravity. In more general theories of gravity there could be other

curvature dependent terms in the formula for the black-hole entropy. Wald has given an

elegant construction of the formula for the entropy of black holes in diffeomorphism-invariant

theories of gravity, Wald (1993). His insight was based upon the proof of the first law by

Sudarsky & Wald (1993) and the analysis of symmetries by Lee & Wald (1990). This

construction was then applied to many diffeomorphism invariant theories by Iyer & Wald

(1994). But only the metric theories of gravity were treated in these references. Here we

will generalize Wald’s method to the theories which in addition to being diffeomorphism

invariant also have another gauge invariance: the local Lorentz invariance. We will first

see how a naive application of Wald’s algorithm fails. We will then show why it fails and

how to recover the correct expression for the entropy. We then introduce a new kind of

Lie derivative which is gauge covariant and we will show how the use of this Lie derivative

as the variational derivative of fields gives the correct Wald entropy. It turns out that

the gauge covariant Lie derivative that we have rediscovered was recently constructed by

mathematicians using the language of fibre bundles and it was called the Kosmann derivative

(Fatibene & Francaviglia, 2009). We thus identify Wald’s entropy as the Noether charge

corresponding to the combined Lorentz-diffeomorphism symmetry.

In Section 2.2 we review the algorithm due to Wald which leads us to identify the
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black-hole entropy as the Noether charge corresponding to the infinitesimal diffeomorphisms

generated by the Killing vector field which becomes null on the horizon. We will closely follow

Wald’s original paper (Wald, 1993). In the Section 2.3 we will apply Wald’s algorithm to

the first-order formulation of general relativity and find that the entropy seems to vanish.

In this section we also propose a resolution of this problem. In Section 2.4 we construct a

new representation of the diffeomorphism symmetry and realize it using a gauge-covariant

derivative and show how the black-hole entropy is the Noether charge corresponding to this

symmetry. Finally, in Section 2.5 we use our construction to calculate the black-hole entropy

in Gauss-Bonnet gravity. The results reported in this chapter are based upon original work

(Jacobson & Mohd, 2012).

2.2 Wald’s algorithm

Wald’s method applies to any diffeomorphism-invariant theory given by a Lagrangian

D-form where D is the spacetime dimensionality. The dynamical fields in the theory are

collectively denoted as φ. The indices on the fields in this abstract treatment will be sup-

pressed.

The first variation of the Lagrangian under a variation of the dynamical fields φ can be

written as

δL = Eδφ+ dθ(δφ), (2.1)

where d is the exterior derivative on the spacetime manifold. The symbol δ in equation (2.1)

stands for the partial derivative on the phase space. There is an elegant geometrical way of

thinking about δ as an exterior derivative on the infinite-dimensional phase space (Ashtekar

et al., 1990, Crnković, 1988, Crnković & Witten, 1986). For our purposes though, we are

going to stick with the definition of δ as a partial derivative on the phase space. Since the

partial derivatives along two directions (δ1 and δ2) commute, we have δ1δ2 = δ2δ1.
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The equation of motion satisfied by the field φ is given by E = 0. The (D − 1)-form θ

is called the symplectic potential and is locally constructed out of the dynamical fields and

their first variation. The antisymmetrized variation of θ defines the (D− 1)-form called the

symplectic current as

Ω(φ, δ1φ, δ2φ) = δ1θ(φ, δ2φ)− δ2θ(φ, δ1φ). (2.2)

Now, let ξ be any vector field on the spacetime and consider the variation of the dynamical

field given by δ̂φ = Lξφ. Diffeomorphism invariance means that the variation of the La-

grangian is given by δ̂L = LξL = d iξL, where iξ stands for the operation of contracting the

vector index of ξ with the first index of the Lagrangian form. Since the Lagrangian changes

by a total derivative we learn that the vector fields on the spacetime generate infinitesimal

local symmetries. Therefore, with each ξ is associated a (D − 1)-form called the Noether

current form which is defined as

j = θ(φ,Lξφ)− iξL. (2.3)

The exterior derivative of j can be calculated using the equations (2.1) and (2.3) to be

dj = ELξφ. (2.4)

Hence, we see that when the equation of motion E = 0 is satisfied, j is closed. Since this is

true for all ξ, it must be that the pull-back of j to the space of solutions of the equation of

motion is an exact form, j = dQ, for some (D − 2)-form Q called the Noether charge form

corresponding to ξ. The integral of Q over a closed codimension-2 surface S is called the

Noether charge of S relative to ξ (Wald, 1990).
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The on-shell variation of j can be calculated to be

δj = δθ(φ,Lξφ)− Lξθ(φ, δφ) + d iξθ. (2.5)

If the covariant derivative ∇ compatible with the unperturbed metric is Lie dragged by ξ,

we can combine the first two terms of equation (2.5) to get

δj = Ω(φ, δφ,Lξφ) + d iξθ. (2.6)

Now, if the Hamiltonian generating the transformation on the phase space corresponding to

the evolution with respect to ξ exists, then by its very definition, δHξ =
∫

Σ
Ω(φ, δφ,Lξφ),

where Σ is a Cauchy surface. Hence from equation (2.6) we get

δHξ =

∫
Σ

δj −
∫

Σ

d iξθ. (2.7)

It must be emphasized that equation (2.7) is well-defined, i.e., it does not depend on the

choice of the Cauchy surface Σ when Ω is a closed form. One has to show that this is the

case in the theory at hand by using the equations of motion and the linearized equations

of motion. This requirement typically imposes some restriction on the allowed variations in

the form of the boundary conditions. Also, if motions on the phase space generated by ξ

are gauge transformations then Ω is an exact form too.

On shell, δj can be replaced by δdQ and we see from equation (2.7) that the variation

of the Hamiltonian is given by the boundary integral

δHξ =

∫
∂Σ

(δQ− iξθ) . (2.8)

Now consider a stationary black hole with a bifurcation surface SB and a Killing field ξ that

vanishes on SB (Raćz & Wald, 1992). The Killing field ξ can be written in terms of the
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stationary Killing field t and the axial Killing field ϕ as

ξa = ta + Ωϕa, (2.9)

where Ω is the angular velocity of the horizon. Now choose the hypersurface Σ to run from

spatial infinity and intersecting the horizon at SB. Since ξ is the Killing vector field we have

Lξφ = 0. This implies that δHξ =
∫

Σ
Ω(φ, δφ,Lξφ) = 0. Then using the fact that ξ = 0 on

SB equation (2.8) gives

δ

∫
SB

Q =

∫
∞

(δQt − itθ) + Ω

∫
∞
δQϕ. (2.10)

The terms on the right-hand side of equation (2.10) coming from the boundary at infinity are

the variation of the Hamiltonian corresponding to the stationary and the axial Killing vector

field, respectively. These terms can be recognized as the δE and −δJ where E and J are the

asymptotically defined Energy and Angular Momentum, respectively. Thus, equation (2.10)

is recognized as the first law of black-hole mechanics. However, the left-hand side of (2.10)

is not of the form of κ times the variation of a local, geometric quantity on SB. Besides

the fields contained in the Lagrangian, it also depends on ξ and its derivatives. But all that

dependence can be simplified using the fact that ξ is a Killing vector field and therefore the

only degree of freedom is in its value and its first derivative. Higher-order derivatives of

ξ can be written in terms of the Riemann tensor and the first-order derivative of ξ. Now

on the bifurcation surface, the first-order derivative of ξ is ∇aξb = κnab, where nab is the

binormal to SB. Also, ξ vanishes on SB by the definition of bifurcation surface. Hence all the

dependence of Q on ξa is contained in κ. We take a factor of κ out of Q thus writing Q as κ

times Q̃. Now identifying κ/2π as the black-hole temperature we get the expression 2π
∫
SB
Q̃

as the entropy of the horizon. So we have the expression of the entropy as a local, geometric

quantity constructed out of the dynamical fields in the Lagrangian. Finally, assuming that
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the zeroth law of black-hole mechanics, i.e., the constancy of the surface gravity κ on the

horizon, holds true then the first law of black-hole mechanics really looks like the first law

of thermodynamics

κ

2π
δS = δE − ΩδJ . (2.11)

This completes Wald’s identification of the black-hole entropy as a Noether charge corre-

sponding to the infinitesimal diffeomorphism generated by the Killing-field ξ. In the next

section we apply this formalism in the first-order formulation of general relativity. The

lower case Latin indices will stand for the internal Lorentz indices and the spacetime form

indices are suppressed. Useful identities are collected in Appendix A and we shall use them

extensively without any warning.

2.3 General relativity in the first-order formulation

The Lagrangian 4-form for General relativity in 4 dimensions in the first-order formalism

is written in terms of the vierbein one forms ea, which are so(3, 1) vector-valued, and the

so(3, 1) valued connection one forms ωab. These are the dynamical variables of the theory.

Instead of working directly with the vierbein it is more convenient to work with the field

Bab defined as Bab =
1

2
εabcde

c ∧ ed. The Lagrangian can be written as

L = tr(B ∧R), (2.12)

where R is the curvature 2-form of the connection, R = dω + ω ∧ ω. This Lagrangian is

manifestly gauge and diffeomorphism invariant. We are working in units such that 16πG = 1.

An arbitrary variation of L gives

δL = tr(δB ∧R−DB ∧ δω) + d tr(B ∧ δω). (2.13)
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Here, D is the covariant exterior-derivative and we have used the identity δR = Dδω. The

equations of motion are given by

DB = 0, (2.14)

R = 0. (2.15)

The first one of these says that the action of D defined by ω on the Lorentz indices is the same

as that of the unique derivative ∇ that annihilates the vierbein, ∇µe
a
ν = 0. This equation

can be solved to write the connection ω in terms of the vierbein and Christoffel symbols.

When substituted in the second equation of motion, one gets the Einstein equation. When

the equations of motion are satisfied, the curvature of ω is related to the curvature of the

Christoffel connection, Rµν
ρσeaρe

b
σ = Rµν

ab.

From equation (2.13) we can read off the symplectic potential θ as

θ = tr(B ∧ δω). (2.16)

Given a point in the phase space with coordinates (ea, ωab) and two tangent vectors (δ1e
a, δ1ω

ab)

and (δ2e
a, δ2ω

ab), the second variation of the symplectic potential gives the symplectic cur-

rent

Ω(δ1, δ2) = tr (δ1B ∧ δ2ω − δ2B ∧ δ1ω) , (2.17)

where the argument of Ω on the left-hand side stands for two tangent vectors: (δ1, δ2) =:(
(δ1e

a, δ1ω
ab), (δ2e

a, δ2ω
ab)
)
. Now, vector fields on the spacetime constitute a collection of

infinitesimal diffeomorphisms. To each vector field ξa, associate a Noether current 3-form

j = θ(δ̂) − iξL, where δ̂ means the variation on the phase space induced by taking the Lie

derivative of fields along ξa on the spacetime, i.e., δ̂ = Lξ. This gives the Noether current

12



corresponding to the infinitesimal diffeomorphisms as

j = −tr(DB ∧ iξω)− tr(iξB ∧R) + d tr(B ∧ iξω). (2.18)

Using the equations of motion the first two terms on the right-hand side are seen to vanish

and we get j = dQ where

Q = tr(B ∧ iξω). (2.19)

Thus, when the equations of motion are satisfied we have that j is an exact and hence

closed form, i.e., dj = 0 on shell. According to the general arguments due to Wald that we

reviewed in Section 2.2, if ξ is taken to be the Killing field that becomes the null generator

of the horizon and vanishes on the bifurcation surface, the integral of Q over the bifurcation

surface gives κS, where κ is the surface gravity and S is the entropy of the black hole. But

we see from equation (2.19) that Q = 0 on the bifurcation surface because ξ vanishes there.

This seems to suggest that Wald’s algorithm, when applied in the first-order formulation of

general relativity, gives a zero entropy. This cannot be correct. What went wrong?

It must be that something singular is happening on the bifurcation surface. The con-

nection is diverging and ξ is approaching zero in just such a way that the Noether charge

is finite and non-zero. To see this, recall that Wald’s algorithm requires that the dynamical

fields should be Lie dragged by ξ. If the vierbein is Lie dragged by ξ then ω will be Lie

dragged too, because ω is determined from e on shell. Now demanding that Lξea = 0 we

get

Lξea = 0 = iξDe
a + Diξe

a − iξω
a
b ∧ eb. (2.20)
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Solving this equation for iξω we get

iξω
a
b = eµbDµ(iξe

a). (2.21)

On substituting this in the equation (2.19) we get

Q =
1

2
εabcde

c ∧ edeµaDµ(ξρebρ). (2.22)

Integrating this on the bifurcation surface we get

∫
SB

Q =
1

2

∫
SB

εabcde
c ∧ edeaρebσ∇ρξσ, (2.23)

where we have replaced Dµ by ∇µ because on shell their action is the same on internal

indices. Now we get rid of the differential-form notation and write everything in terms of

tensors and noting that on SB, we have ∇µξν = κnµν , where nµν is the binormal to SB, we

get

∫
SB

Q =
1

2

∫
SB

εabcde
c
µe
d
νe
a
ρe
b
σκn

ρσεµν
√
σ, (2.24)

where
√
σ is the volume element of SB and εµν is the volume form on SB. Now freely

converting between internal and spacetime indices and noting that nabεabcd = 2εcd we get

after restoring 16πG,

∫
SB

Q =
1

8πG
κ

∫
SB

√
σ =

κ

2π

Area

4G
. (2.25)

Thus we recover the formula for the black-hole entropy in general relativity in the first-order

formulation using Wald’s algorithm. In the next section we discover a new mathematical

structure which will lead us to an elegant derivation of the black-hole entropy.
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2.4 New symmetry and the Noether charge entropy

In the last section we mentioned that it was necessary that the dynamical fields should

be Lie dragged by the Killing vector field ξ for Wald’s algorithm to go through. Let us recall

the reason why we needed that in the first place. The symplectic structure for a general,

and not necessarily a Killing, vector field ξ is

Ω(δ, δξ) = δB ∧ δξω − δξB ∧ δω. (2.26)

Using the equations of motion DB = 0 and R = 0 and the linearized equations of motion

DδB = [δω,B] and Dδω = 0, the symplectic structure can be written as

Ω(δ, δξ) = d (δB ∧ iξω − iξB ∧ δω) . (2.27)

Thus, the symplectic structure is an exact form, as it should be for a diffeomorphism invariant

theory. However, recall how the first law of black-hole thermodynamics was obtained. We

obtained equation (2.10) because the dynamical fields were Lie dragged by the Killing vector

field ξ so that Ω(δ, δξ) vanished identically. Hence the surface integral at the inner bounday

becomes equal to the one at the outer boundary. The outer boundary contribution gives

the change in mass plus the angular velocity times the change in angular momentum of the

black hole. Then comparing with the first law of black-hole thermodynamics, we identified

the surface term in the inner boundary as equal to κS and we could read off the expression

for S. But we see from equation (2.27) that there is no reason why Ω(δ, δξ) should vanish

if ξ is a Killing vector field. Therefore, as it stands Wald’s construction will not go through

and one cannot obtain the black-hole entropy from the Noether charge method.

In the last section, we forced Ω(δ, δξ) to vanish by fixing the gauge so that Lξea = 0.

But this condition cannot be maintained at the bifurcation surface. Thus one needs an

alternative method to extract the black-hole entropy.
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We start by introducing the definition of a gauge-covariant Lie derivative,

δξe
a = Lξea + λab e

b, (2.28)

and δξω
a
b = Lξωab −Dλab. (2.29)

where λab = iξω
a
b + eaµebν∇[µξν]. Here ∇ is the covariant extension of D. It is the unique

connection which is compatible with the vierbein. The point of the definitions in equations

(2.28) is that when we are on shell (i.e., De = 0), i.e., if the connection ωab is torsion-free

and hence determined from the vierbein ea, then it is easy to check that

δξe
a
µ =

1

2
eaρLξgρµ. (2.30)

Thus, when ξa is a Killing vector field δξe
a = 0 = δξω

ab. The variation defined in equations

(2.28) and (2.29) is called the Kosmann Lie derivative in the mathematical physics literature

(see for example Fatibene & Francaviglia (2009)).

Since the new variation is the linear combination of ordinary Lie derivative and a gauge

transformation, and since the Lagrangian is invariant under gauge transformation (i.e., it

does not produce even a surface term under gauge transformation), it follows that the

variation of the Lagrangian under the field variation defined in equations (2.28) and (2.29)

produces the same surface term as it did under the old variation, which was induced by

the Lie derivative of the fields. Hence the symplectic potential does not change either.

The expression of the Noether current corresponding to the invariance under these field

transformations is the same as before,

j = tr(B ∧ δξω)− tr iξ(B ∧R). (2.31)

On using the equation of motion and the definition of field variations it now follows imme-
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diately that j is an exact form, j = dQ, where

Q = Bab∇[bξa], (2.32)

which is the desired Komar form as is easily seen by comparing it with equation (2.22). Rest

of the steps are then identical to those after equation (2.22). Thus, we see that the black-hole

entropy is still the Noether charge but the symmetry that it is the Noether charge of is not

the diffeomorphism but a certain combination of diffeomorphism and gauge transformation.

2.5 Black-hole entropy in Gauss-Bonnet gravity

The computational efficiency resulting from our use of the gauge-covariant Lie derivative

will be apparent now when we calculate the black-hole entropy in Einstein-Gauss-Bonnet

gravity in five dimensions. For the reasons discussed in the previous section, all we need to do

to find the black-hole entropy is write down the expression of Noether charge corresponding

to the gauge-covariant transformations of the fields given in equations (2.28) and (2.29).

The Gauss-Bonnet (GB) part of the Lagrangian is given by

L = α′ Rab ∧Rcd ∧ efεabcdf , (2.33)

where α′ is the GB coupling which we shall set to unity and only in the end shall we restore

it. An arbitrary variation of the Lagrangian gives

δL = 2 d(δωab ∧Rcd ∧ efεabcdf ) + 2 δωab ∧Rcd ∧Defεabcdf +Rab ∧Rcd ∧ δefεabcdf . (2.34)

Unlike general relativity, the torsion-free condition is not an equation of motion for the pure

GB theory. In order to not have the torsion propagating we have to restrict ourselves to

a torsion-free connection by hand. Then the equation of motion obtained by setting the

coefficient of δω equal to zero is automatically satisfied. The remaining equation of motion
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is Rab ∧ Rcdεabcdf = 0. The symplectic potential can be read off from the variation of the

Lagrangian as

θ = 2 δωab ∧Rcd ∧ efεabcdf . (2.35)

Given a vector field ξ, the Noether charge due to the induced variations of fields is

j = θ(δξ)− iξL

= 2 δξω
ab ∧Rcd ∧ efεabcdf − iξ(R

ab ∧Rcd ∧ efεabcdf ). (2.36)

Using the equations of motion and the gauge-covariant Lie derivative of ω given in equation

(2.29) we see that j is again an exact, and hence closed form, j = dQ, where

Q = −2 ∇aξb Rcd ∧ efεabcdf . (2.37)

Integrating Q over the bifurcation surface SB and using the fact that on SB the Riemann

tensor with all its indices projected on SB is equal to the intrinsic Riemann tensor of SB we

get, after restoring α′,

∫
SB

Q = −8α′κ

∫
SB

√
σ (3)R. (2.38)

Hence the contribution of the GB term to the black-hole entropy depends upon the intrinsic

Ricci curvature of the horizon,

S = −16πα′
∫
SB

√
σ (3)R, (2.39)

which is the correct expression for the black-hole entropy in Gauss-Bonnet gravity (Jacobson

& Myers, 1993).
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Chapter 3

Holography

3.1 Introduction

The holographic principle states that a quantum theory of gravity in d+ 1 dimensions is

dual to a non-gravitational quantum field theory in d dimensions (Susskind, 1995, ’t Hooft,

2001). The AdS/CFT correspondence, where AdS stands for Anti-de Sitter space and CFT

stands for Conformal Field Theory, is a concrete realization of the holographic principle

(Gubser et al., 1998a, Maldacena, 1998, Witten, 1998a). The correspondence relates type

IIB string theory on AdS5 × S5 to N = 4 Super Yang-Mills theory on a four-dimensional

Minkowski spacetime. The strong form of the conjecture states the equality between the

partition function of the two theories (Aharony et al., 2000).

The field theory has two parameters: the number of colors Nc and the gauge coupling

gYM. When the number of colors is very large, the perturbation theory is governed by the ’t

Hooft coupling, λt = g2
YMNc. On the string side of the duality there are three parameters:

the string coupling gs, the string length (or inverse square-root of tension) ls and the radius

of curvature of the Anti-de Sitter space, RAdS. The dimensionless parameters of the two

theories are related by

g2
YM = 4πgs (3.1)

and λt = g2
YMNc =

R4
AdS

l4s
. (3.2)
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We see from (3.1) that when the gauge theory coupling is small then the string theory is

weakly interacting. The useful limit comes from the equation (3.2), which says that for

small gYM (to be consistent with the weakly-interacting strings) and large Nc such that the

t‘Hooft coupling λt is large, the AdS radius is much larger than the string length. In this

limit the string theory can be approximated by supergravity or gravity. Therefore we learn

that the holograpic duality is a strong/weak duality in the sense that when the string is

weakly coupled and the AdS radius is large, such that classical gravity is a good description,

the gauge theory is strongly coupled and vice versa. In fact, most of the applications of

holography in condensed matter physics and hydrodynamics rest upon this crucial feature

of the holographic duality.

The relation between the partition functions of the two theories in Euclidean space is

〈e
∫

d4xφ0O〉CFT = Zstring

[
φ(~x, z)|z=0 = φ0(~x)

]
, (3.3)

where on the left-hand side we have the generating functional for the correlation functions

in the field theory. Here φ0 is an arbitrary function (or source in the language of field

theory) and we can calculate the correlation functions of O by functionally differentiating

the left-hand side with respect to φ0. The right-hand side has the partition function of

the string theory in AdS containing a bulk field φ(~x, z) with a boundary value φ0(~x). The

correspondence in equation (3.3) is summarized by saying that the boundary value of the

bulk field φ(~x, z) acts a source for the operator O in the field theory.

A very fruitful limit of the correspondence is obtained by considering the field theory to

be strongly coupled so that classical gravity would be a good approximation for the string

theory. In this case, the right-hand side of (3.3) can be calculated using the saddle-point

approximation and one obtains

〈e
∫

d4xφ0O〉CFT = e−Sgrav[φ(z→∞)=φ0]. (3.4)
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Therefore the prescription is to find the classical solution for φ in the bulk which has a

boundary value φ0. Derivatives of the on-shell gravity action with respect to φ0 will give

the correlators of O. In particular, noticing that the derivative of the classical action with

respect to the boundary value of the field is equal to the canonical momentum conjugate to

the field evaluated at the boundary, we get for the one-point function,

〈O(~x)〉 = lim
z→∞

Π(~x, z). (3.5)

Although AdS/CFT was the first example of holography to be discovered, there is a widespread

belief that the holographic principle itself transcends the particulars of any string or gauge

theory (Heemskerk & Polchinski, 2011, Sundrum, 2011). There exists a general holographic

dictionary that is valid irrespective of whether we know the gauge theory side of the duality

or not. It says that every d-dimensional CFT is dual to some AdSd+1 theory.

3.2 Linear response theory

It seems intuitively reasonable that if we perturb a system in equilibrium very slightly

then it will deviate very slightly from the equilibrium configuration and it would relax

back to the equilibrium. It also seems reasonable that the response of the system to a

small perturbation will be linear in the perturbation. What is non-trivial is that this non-

equilibrium behavior of the system, while it is relaxing back to the equilibrium, is in fact

governed by the equilibrium correlation functions (see equation (3.16)). In this section we

use linear response theory to deduce this fact and we show how the linear response of the

boundary gauge theory can be calculated holographically using classical gravity. A good

discussion of linear response theory is in the review by Kadanoff & Martin (1963). We here

follow a shorter route to the same results as discussed in Gubser et al. (2008).

Consider a system at a finite temperature which at equilibrium is described by the

hamiltonian H0 and the density matrix ρ0. Now perturb the system at time t = 0 with a
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time-independent Schrödinger operator O so that the new Hamiltonian becomes

H =H0 + V, where (3.6)

V =− εO δ(t), (3.7)

where ε is a small parameter and δ(t) is the Dirac delta function. The equation of motion

for the full density matrix ρ = ρ0 + δρ, where ρ0 is the unperturbed density matrix at

equilibrium, is given by

i
∂ρ

∂t
= [H, ρ] . (3.8)

We can solve for the time dependence of the density matrix using time-dependent pertur-

bation theory. To linear order in the perturbation, the result is

δρ(t) = iθ(t)e−iH0t [εO, ρ0] eiH0t. (3.9)

For any other operator B, its expectation value at time t, 〈B(t)〉, is given by

〈B(t)〉 = tr{ρ(t)B} (3.10)

= tr{ρ0B}+ δ〈B(t)〉, (3.11)

where δ〈B(t)〉 is given by

δ〈B(t)〉 = iθ(t) tr{e−iH0t [εO, ρ0] eiH0tB}. (3.12)
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Now using the cyclic property of the trace and changing to the Heisenberg picture we obtain

δ〈B(t)〉 = iθ(t)tr{ρ0 [B(t), εO(0)]} (3.13)

= iθ(t)〈[B(t), εO(0)]〉. (3.14)

Since small perturbations add linearly we can now generalize the above result from the

perturbation localized at t = 0 to perturbations sourced by a spacetime-dependent field φ0

as

δ〈B(~x, t)〉 = i

∫
dt′d~x′θ(t− t′)〈[B(~x, t), εO(~x′, t′)]〉φ0(~x′, t′). (3.15)

In particular, in the context of AdS/CFT when the operator O is sourced by the boundary

value φ0 of the bulk field φ, we can write the linear change in the expectation value of O as

δ〈O(x)〉 =

∫
x′

dx′Gret(x− x′)φ0(x′), (3.16)

where Gret(x− x′) is the retarded Green’s function

Gret(x− x′) = iθ(t− t′)〈[O(~x, t),O(~x′, t′)]〉. (3.17)

In the Fourier space, equation (3.16) becomes

δ〈O(ω,~k)〉 = −Gret(ω,~k)φ0(ω,~k). (3.18)

In the limit of long wavelength and low frequency when the hydrodynamic description of

the field theory is valid, the retarded Green’s function defines a transport coefficient (called
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susceptibility in general) as

χ = − lim
ω→0

lim
~k→0

ImGret(ω,~k)

ω
. (3.19)

For example, if one takes for O the off-diagonal component of the stress-energy tensor then

the transport coefficient is called the shear viscosity. The meaning of χ is that in the limit

of low frequency, χ is the coefficient of proportionality between the linear response of the

system to the applied source and the time rate of change of the source,

〈O〉 = −χ∂tφ0. (3.20)

Comparing equation (3.18) with equation (3.5) we deduce a very useful expression

Gret(ω,~k) = − lim
z→∞

Π(ω,~k, z)

φ(ω,~k, z)
, (3.21)

where it is understood that one first evaluates the ratio of the conjugate momentum and

the field in the bulk at a cut-off surface close to the boundary and then one takes the limit

z →∞, where z is the coordinate in the bulk. Here ~k and ω are the Fourier frequencies cor-

responding to the field theory coordinates which are on the boundary of the bulk geometry,

ω corresponds to time and ~k corresponds to space. The susceptibility can now be written as

χ = lim
ω,~k→0

lim
z→∞

Π(ω,~k, z)

iωφ(ω,~k, z)
. (3.22)

It must be noticed that the left-hand side of equation (3.21) is calculated in the strongly

coupled quantum field theory while the right-hand side is calculated in the dual classical

gravity, and through the holographic principle the values must match. This is the power of

holography. Calculations in strongly coupled quantum field theories are notoriously difficult.

Through holography, the results of these calculations are matched to certain results which
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involve much simpler calculations in a classical gravitational theory.

A crucial point involved in the above manipulations is that they are all done in the

Euclidean signature. In particular, in equation (3.21) the bulk solution of the classical

field equations is calculated in the Euclidean signature. While this works perfectly at zero

temperature, at a finite temperature this prescription runs into difficulties. For example,

in Euclidean formalism the horizon of the black hole is the end of spacetime and one does

not need to impose any conditions on the bulk field at the horizon. But in the Lorentzian

signature horizon is not the end of spacetime and one needs to impose boundary conditions

at the horizon in order to solve the classical field equation for φ. That is not difficult, though.

Incoming boundary conditions at the horizon make perfect physical sense. However, we are

interested in the hydrodynamic limit, so we need the limit of the retarded Green’s functions

as ω → 0 and ~k → 0. But in the Euclidean formalism the frequencies ω are discrete (these

are called the Matsubara frequencies) and it is not clear how to take the limit ω → 0.

In order to deal with these difficulties it is important to have a real-time prescription to

calculate the correlators in the field theory. This is the topic of the next section.

3.3 Real-time holography at finite temperature

The prescription to calculate the retarded two-point function at finite temperature in

the Lorentzian signature was first proposed by Son & Starinets (2002) and then justified by

Herzog & Son (2003). In the holographic correspondence the states of the boundary gauge

theory are mapped to the states of the bulk gravitational theory. At a finite temperature,

the gravitational state dual to the thermal vacuum of a field theory is a black hole. Now,

for the bulk field in addition to the appropriate boundary conditions at infinity one also

needs to worry about the regularity conditions at the horizon. The real-time prescription

to calculate the retarded two-point function in the field theory in the presence of an inner

boundary goes as follows:
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• Find the solution to the equations of motion that is infalling at the horizon and ap-

proaches a constant φ0(~x) at the outer boundary.

• Plug this solution into the action and integrate by parts. The action becomes a bound-

ary term containing contributions both from the outer boundary and the horizon,

S =
1

2

∫
ddp

(2π)d
φ0(−p)f(p, z)φ0(p)

∣∣∣z=zhor
z=∞

. (3.23)

• The retarded Green’s function is now given by

Gret(p) = − lim
z→∞

f(p, z). (3.24)

On very general grounds one expects that any interacting quantum field theory at a finite

temperature, when viewed at sufficiently long length scales, should be described by hy-

drodynamics (Son & Starinets, 2007). The UV/IR connection implied by the holographic

duality then suggests that the behaviour of the thermal quantum field theory at very large

length scales must be captured by the behaviour of the bulk geometry near the horizon. In

particular, the hydrodynamic limit of the field theory at a finite temperature must have a

description in terms of the physics close to the black-hole horizon (Kovtun et al., 2003).

In the next section we will see that the real-time prescription to calculate the Green’s

function gives the same result as that calculated in the Euclidean AdS/CFT prescription at

the level of linear response.

3.4 Lorentzian versus Euclidean prescription

In this section, we will closely follow Iqbal & Liu (2009) and Faulkner et al. (2011). We

will see how at the level of the linear response the Lorentzian and Euclidean prescriptions give

the same result. Moreover, we will see how in the long-wavelength limit the renormalization
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group flow of the susceptibility becomes trivial. This will provide the essential link between

the horizon membrane fluid and the fluid description of the boundary gauge theory.

3.4.1 First look at the black-hole membrane

Consider a massless bulk field on a black-hole background. The bulk metric of the black

hole is given by

ds2 = grrdr
2 − gttdt2 + gijdx

idxj. (3.25)

The action of the scalar field is given by

Sout = − 1

2α

∫
r>rh

dd+1x
√
−g(∇aφ)(∇aφ), (3.26)

where α is a coupling constant. The integration is restricted to the region outside the

time-like surface r = rh + ε = r0 called the stretched horizon. This will be discussed more

completely in the later chapters. But the idea is simply that for the outside observers the

black-hole horizon acts as a causal boundary and nothing comes out of it. Therefore the

observers should be able to discuss physics without knowing about the region interior to the

horizon. The absorptive nature of the horizon is then modelled by endowing the horizon

with membrane-like properties.

The momentum canonically conjugate to φ with respect to the r-foliation is given by

Π =
δSout

δ∇rφ
= − 1

α

√
−ggrr∇rφ. (3.27)

Variation of this action with respect to φ gives

δSout =
1

α

∫
r>rh

dd+1x
√
−g∇2φδφ− 1

α

∫
r=r0

ddx
√
−ggrr∇rφδφ. (3.28)
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Up to the bulk term which yields the equation of motion, the variation of the action is a

total boundary term which can be written on shell as

δSout = −
∫
r=r0

ddxΠ(r0, x)δφ(r0, x). (3.29)

In order to have a viable variational principle for the outside observers we then have to add

a surface term to the action which would yield the negative of the δSout upon variation.

This surface term is given by

Ssurface =

∫
r=r0

ddx
√
−h
(

Π(r0, x)√
−h

)
φ(r0, x), (3.30)

and the total action is now Seff = Sout + Ssurface. Equation (3.30) says that the observers

hanging out close to the stretched horizon (called fiducial observers or FIDOs) feel that the

horizon is endowed with a scalar charge given by

Qφ =
Π(r0, x)√
−h

= − 1

α

√
grr∇rφ. (3.31)

The condition that the horizon should be a regular place for a freely falling observer implies

that the field φ should be non-singular on the horizon. Thus φ can only depend on the

coordinates t and r in the form of the ingoing Eddington-Finkelstein coordinate v, which is

defined by solving dv = dt+
√
grr/gttdr. This relates the radial and time derivatives of the

field on the horizon as

∇rφ =

√
grr
gtt
∇tφ. (3.32)
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Thus the scalar charge perceived by the FIDOs is

Qφ = − 1

α

√
gtt∇tφ(r0). (3.33)

Writing this in the orthonormal frame as Qφ = − 1
α
∇

t
φ we see from equation (3.20) that

the observers outside the horizon endow the horizon with a fluid-like behavior described by

a transport coefficient χ = 1/α.

3.4.2 Equivalence at the linear level

According to the real-time prescription of the holographic calculation of the retarded

Green’s function summarized in equation (3.24), we first need to calculate the on-shell value

of the effective action for φ. This can be obtained by integrating by parts Sout and adding

the surface term Ssurface. This gives

Seff = − 1

2α

∫
r∞

ddx
√
−gφgrr∇rφ−

1

2α

∫
r0

ddx
√
−gφgrr∇rφ. (3.34)

Now writing φ(r, p) = F (r, p)φ(r0, p) such that F (r → ∞, p) = 1 we get for the real time

Green’s function

Gret(p) =
1

α

√
−ggrr∇rF (r, p). (3.35)

However, from the linear response theory and the Euclidean prescription for calculating the

correlator in equation (3.21) we can calculate the imaginary time correlator by plugging in

the value of Π from equation (3.27) and we get

Gret(ω,~k) = − lim
r→∞

Π(ω,~k, r)

φ(ω,~k, r)
(3.36)

=
1

α

√
−ggrr∇rF (r, ω,~k) (3.37)
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which is precisely the same as equation (3.35). The only difference is in the notation where

p earlier stands for (ω,~k) now.

To summarize, we have seen that the real-time prescription to calculate the retarded

Green’s function gives the same result as that calculated in the Euclidean AdS/CFT pre-

scription at the level of linear response. This equivalence is crucial to relate the transport

coefficients calculated in the membrane paradigm for black holes with the physical quantities

describing the hydrodynamic behaviour of the boundary gauge field theory.

3.5 Hydrodynamic limit

We saw in Section 3.4.1 that a scalar field in the bulk induces a scalar charge at the hori-

zon and the FIDOs perceive the horizon to have a linear response given by the susceptibility

χ = 1/α. On the other hand, the linear response of the boundary gauge theory, when it is

perturbed by a source which is the boundary value of the scalar field, is given by equation

(3.22) as

χ = lim
ω,~k→0

lim
z→∞

Π(ω,~k, z)

iωφ(ω,~k, z)
(3.38)

Note that these two quantities are calculated by the same formula, one is evaluated on the

horizon while the other is evaluated at the boundary at ∞. Now we will see that in the

hydrodynamic limit, i.e., in the limit that ω,~k → 0, equation (3.38) can in fact be evaluated

at any value of the radial coordinate r. To this end, let us write down the Hamilton equations

of motion for φ,

Π = − 1

α

√
−ggrr∇rφ

and ∇rΠ =
1

α

√
−ggrrgµνkµkνφ, (3.39)
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where kµ = (ω,~k). Now in the limit that ω,~k → 0 we see from equations (3.39) that

∇rΠ ∼ 0 (3.40)

and ∇r(ωφ) ∼ 0. (3.41)

Thus in the limit that ω,~k → 0 equation (3.38) can be evaluated at any radial coordinate.

Therefore the hydrodynamic transport coefficients for the boundary gauge theory can be

holographically calculated from the membrane at the black-hole horizon.

This indicates the importance of the membrane paradigm in the classical gravity the-

ories. The hydrodynamic transport coefficients describing the evolution of the horizon in

the membrane paradigm, through holography, also describe the hydrodynamic limit of the

boundary gauge theory at the linear response level.
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Chapter 4

Hydrodynamics

In this chapter, we use the action-principle formalism of the membrane paradigm as

constructed by Parikh & Wilczek (1998) and we extend it to the simplest generalization

of general relativity which is quadratic in the curvature tensor called the Einstein-Gauss-

Bonnet (EGB) gravity. We derive the membrane stress-energy tensor on the stretched

horizon for EGB theory. After regularization and restriction to the linearized perturbations

of static black-hole backgrounds with horizon cross-sections of constant curvature, we express

the membrane stress tensor in the form of a Newtonian viscous fluid described by certain

transport coefficients.

We find the ratio of the shear viscosity to the entropy density for the membrane fluid

corresponding to the black-brane solution in EGB theory with cosmological constant Λ =

−(D − 1)(D − 2)/2l2 to be

η

s
=

1

4π

[
1− 2

(D − 1)

(D − 3)

λ

l2

]
, (4.1)

where λ = (D−3)(D−4)α′ and α′ is the GB coupling constant. This matches with the result

found by Brigante et al. (2008b). Notice that the calculation of Brigante et al. (2008b) is

done at the boundary of the spacetime at infinity while our calculation refers to the horizon.

This naturally leads to the conclusion that in the EGB theory, as in general relativity, the

ratio η/s is universal, i.e., scale independent in the sense of Bredberg et al. (2011). That

this result is true is argued by Iqbal & Liu (2009), and our calculation combined with the

result of Brigante et al. (2008b) provides a support for their conclusion. The same result

was obtained by Banerjee & Dutta (2009), Myers et al. (2009), Paulos (2010) and it was
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also reported in a recent study of Cai et al. (2011) following the proposal of Bredberg et al.

(2011). Also, we will see that the presence of the GB term in the bulk gravitational theory

violates the KSS bound, η/s ≥ 1/4π, for any α′ > 0.

Besides the black brane, our method also provides the value of this ratio for the five

dimensional spherically symmetric AdS black hole in EGB gravity,

η

s
=

r4
h

4π (r2
h + α′) (r2

h + 3α′)

(
1− 2α′

l2

)
, (4.2)

where rh is the radius of the horizon and l is related to the cosmological constant by Λ =

−6/l2. As far as we are aware of this is a new result. Our method thus predicts that the

hydrodynamic limit of the conformal field theory (CFT) state dual to the 5D-spherically

symmetric AdS black hole in EGB theory with AdS boundary conditions has the viscosity-

to-entropy ratio given by equation (4.2), where rh is understood to be a function of the

Hawking temperature of the black hole. As in the case of the black brane, the KSS viscosity

bound is violated for any α′ > 0. The difference between the black-brane and black-hole

results is further discussed in section 4.7.

This chapter is organized as follows: we first review in Section 4.1 Damour’s derivation

of the equations describing the evolution of the horizon and their hydrodynamical interpre-

tation. Then in Section 4.2 we present the geometric setup of the membrane paradigm. In

Section 4.3 we furnish a simple example of the stretched horizon and the FIDOs in Rindler

space. In Section 4.4 we review the action-based membrane paradigm approach for the

black holes in general relativity. This construction is then generalized in Section 4.5 where

we construct the membrane paradigm for the black objects in EGB gravity. In this section

we obtain the stress tensor for the membrane fluid and we derive the expressions for the

transport coefficients of the fluid. In Section 4.6 we evaluate these transport coefficients for

some specific black geometries. Finally, we conclude with a summary and discussion in Sec-

tion 4.7. An elementary introduction to the basic equations of the first-order hydrodynamics
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is given in Appendix B.

All the symbols that we will be using in this chapter are defined when introduced for the

first time. For the convenience of the readers we have also included Table 4.1 at the end of

this chapter to summarize these symbols and their meanings.

4.1 Horizon hydrodynamics à la Damour

In this chapter we will derive the equations governing the dynamics of the horizon as was

first done by Damour in his prescient thesis in 1979. We will closely follow the derivation

given by Damour (1978), Damour & Lilley (2008). A very good reference on the geometry

of null hypersurfaces is a review by Gourgoulhon & Jaramillo (2006).

Let la denote the null geodesic generator of the horizon, H, in a d-dimensional spacetime.

Introduce a null rigging vector field na transverse to H such that it is nowhere vanishing and

lana = −1. Since H is a null hypersurface, the spacetime metric gab induces a degenerate

metric on H, la being the degenerate direction of the induced metric. Define a transverse

projector γab as

γab = gab + nalb + lanb. (4.3)

It is easy to see that γab projects the indices in a direction transerse to both na and la. The

failure of the geodesic deviation vector to be parallel transported along the null geodesic

congruence is captured by a tensor called the Weingarten map and it is simply defined as

the covariant derivative of the horizon generator,

χa
b = ∇al

b. (4.4)

The Weingarten map, χa
b, is orthogonal to the null generator lb in the upper index but it has

components in the direction of na. Information contained in χa
b is captured in its various
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components as

χa
bla = κlb, (4.5)

χa
blb = 0, (4.6)

χa
bγacnb =: Ωc, (4.7)

where κ is a function on H that measures the non-affinity of la and Ωc is a measure of

rotation of the generators as time evolves.

Let us now define the purely transverse part of χ by projecting both of its indices

transverse to the two null vectors,

θab := γcaγ
d
bχcd. (4.8)

The purely transverse tensor θab can be decomposed into its irreducible parts as

θab = σab +
1

(d− 2)
θγab + ωab, (4.9)

where σab is symmetric traceless, θ is the trace and ωab is the antisymmetric component of

θab, respectively,

θ = θabγ
ab = ∇cl

c − κ,

σab = θ(ab) −
1

(d− 2)
θγab,

ωab = θ[ab]. (4.10)

For future reference we note that ωab can be written as

ωab = χ[ab] + ncχc[bla] + l[bχa]cn
c, (4.11)
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which can be used to show that if la is hypersurface orthogonal then the Frobenius theorem

implies that ωab vanishes.

We are interested in the equations governing the evolution of θ and Ωc. These equations

will then be interpreted as describing the hydrodynamics of a fictitious fluid living on the

horizon. To this end, let us first calculate the evolution of θ.

Llθ = la∇aθ

= la∇a (∇cl
c − κ) .

The order of the two derivatives on lc can be reversed using the Riemann tensor. A simple

calculation then gives

Llθ = −Rabl
alb + κ(κ+ θ)− χbaχab. (4.12)

One can prove the following identity in order to simplify the last term, θabθ
ba = χabχ

ba−κ2.

Making this replacement and writing θab in terms of its irreducible components we get the

null focussing equation

Llθ = κθ − θ2

(d− 2)
− σabσab + ωabω

ab −Rabl
alb. (4.13)

Derivation of the equation governing the evolution of Ωc is much more complicated and we

refer the reader to Damour’s thesis (Damour, 1978). It is given by

LlΩa = −Ωaθ −Daκ+
(3− d)

(d− 2)
Daθ + Dcσ

c
a −Rcdγ

c
al
d, (4.14)

where D is the (d− 2) dimensional covariant derivative compatible with γab on the horizon

cross-sections. If we identify −θ as the energy-density ρ and lµ as the fluid velocity field uµ

then (4.13) can be recognized as the continuity equation and (4.14) as the non-relativistic
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Navier-Stokes equation that we have reviewed in Appendix B (see 5.2). Transport coefficients

of the fluid can be read off from any of these equations and we get

Pressure : p =
κ

8π
(4.15)

Shear viscosity : η =
1

16π
(4.16)

Bulk viscosity : ξ =
(3− d)

8π(d− 2)
. (4.17)

It should be noted that the bulk viscosity has a negative value for d ≥ 4. For normal

fluids the negative bulk viscosity would mean that the fluid is unstable to perturbations and

would never relax to the equilibrium configuration once it suffers even a slight deviation.

The reason for the horizon to have this feature can be traced back to its teleological nature.

The future boundary conditions have to be imposed in order to have the horizon relax to a

final stationary state.

We will obtain the results quoted in this section using the membrane paradigm, to which

we turn to now. This is based upon the present authors original work (Jacobson et al.,

2011).

4.2 Geometric setup

In this section we elaborate on the geometric setup necessary to construct the membrane

paradigm. The interested reader can find a detailed discussion in the monograph by Thorne

et al. (1986).

The event horizon, H, of the black hole in D spacetime dimensions is a (D−1)-dimensional

null hypersurface generated by the null geodesics la. We choose a non-affine parameterization

such that the null generators satisfy the geodesic equation la∇al
b = κ lb, where κ is a constant

non-affine coefficient. For a stationary spacetime, la coincides with the null limit of the

timelike Killing vector and κ can then be interpreted as the surface gravity of the horizon.
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Next we introduce a timelike surface positioned just outside H which is called the

stretched horizon and denoted by Hs. One can think of Hs as the world-tube of a fam-

ily of fiducial observers (FIDOs) just outside the black-hole horizon. The four-velocity of

these fiducial observers is denoted by ua. Just as H is generated by the null congruence la,

Hs is generated by the timelike congruence ua. The unit normal to Hs is denoted by na and

is taken to point away from the horizon into the bulk. We relate the points on Hs and H

by ingoing light rays parametrized by an affine parameter γ, such that γ = 0 is the position

of the horizon and (∂/∂γ)a la = −1 on the horizon. Then, in the limit γ → 0, when the

stretched horizon approaches the true one, ua → δ−1la and na → δ−1la, where δ =
√

2κγ

(Thorne et al., 1986).

The induced metric hab on Hs can be expressed in terms of the spacetime metric gab and

the covariant normal na as hab = gab−nanb. Similarly, the induced metric γab on the (D−2)-

dimensional spacelike cross-section of Hs orthogonal to ua is given by γab = hab + uaub. The

extrinsic curvature of Hs is defined as Ka
b = hcb∇cn

a. Using the limiting behavior of na and

ua it is easy to verify that in the δ → 0 limit various components of the extrinsic curvature

behave as follows (Thorne et al., 1986):

As δ → 0 : Ku
u = Ka

b uau
b = g ∼ κ

δ
,

Ku
A = Ka

b uaγ
b
B = 0,

KA
B = Ka

b γ
A
a γ

b
B ∼

kAB
δ
,

K = Kabg
ab ∼ (θ + κ)

δ
, (4.18)

where θ is the expansion scalar of la and kAB is the extrinsic curvature of the (D− 2)-

dimensional space-like cross-section1 of the true horizon H. Note that a priori the projection

of the extrinsic curvature ofHs on the cross-section ofHs has nothing to do with the extrinsic

1A,B denote the indices on the cross-section of the horizon.
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curvature of the cross-section (orthogonal to ua) as embedded in Hs, i.e., there is, in general,

no relationship between the pull-back of ∇anb and ∇aub to the cross-section of the stretched

horizon. However, in the null limit (δ → 0) both ua and na map to the same null vector la

and we have KA
B → δ−1kAB. Finally, we decompose kAB into its trace-free and trace-full part

as

kAB = σAB +
1

(D − 2)
θ γAB, (4.19)

where σAB is the shear of la. It is clear from equation (4.18) that in the null limit, various

components of the extrinsic curvature diverge and we need to regularize them by multiplying

by a factor of δ. The physical reason behind such infinities is that, as the stretched horizon

approaches the true one, the fiducial observers experience more and more gravitational blue

shift; on the true horizon, the amount of blue shift is infinite.

This completes the description of the geometric setup of the membrane paradigm. Before

reviewing the derivation of the black-hole membrane paradigm in standard Einstein gravity

we pause to study a simple example of the stretched horizon and how is it that both ua and

na map to la in the limit that the stretched horizon goes to the true horizon.

4.3 The stretched horizon

We now study a simple example of the stretched horizon in 1+1 dimensions. A Rindler

observer in the Rindler spacetime provides a good example of the FIDO. We will see explicitly

how the FIDO’s velocity vector and the vector normal to her world-line both approach the

null generator of the Rindler horizon in an appropriate limit. We follow the discussion of

Rindler spacetime given by Wald (1995).
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4.3.1 Rindler space

Consider a 2-dimensional spacetime whose metric in Cartesian coordinates is given by

ds2 = −x2dt2 + dx2, (4.20)

where 0 < t < ∞ and 0 < x < ∞. Null geodesics are obtained by putting ds2 = 0, which

gives

t = ± lnx. (4.21)

Now define the ingoing & outgoing null coordinates as

u = t− lnx,

v = t+ lnx, (4.22)

where u is the parameter along the ingoing null geodesic (−∞ < u < ∞) and v is the

parameter along the outgoing null geodesic (−∞ < v < ∞). In terms of these coordinates

the metric becomes

ds2 = −e(v−u)dvdu. (4.23)

The vector field tangent to the outgoing null geodesic is ( ∂
∂v

)a and the corresponding integral

curves are u = constant. The vector field tangent to the ingoing null geodesic is ( ∂
∂u

)a and

the corresponding integral curves are v = constant. These vector fields are not affinely
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parametrized. The affinely parametrized null geodesics are

ka = e−v
(
∂

∂v

)a
=

(
∂

∂λout

)a
,

na = eu
(
∂

∂u

)a
=

(
∂

∂λin

)a
, (4.24)

where λout = ev and λin = −e−u are the affine parameters of the outgoing and ingoing null

geodesics, respectively. These affine parameters cover only half of the real line, which shows

that the spacetime is geodesically incomplete. Now, define the new coordinates U = −e−u

and V = ev so that U and V become the affine parameters of the ingoing and outgoing null

geodesics, respectively. We can then analytically extend the range of U and V from −∞

to ∞, thus making the resulting spacetime geodesically complete. The metric in the new

coordinates is

ds2 = −dUdV. (4.25)

Now define the new Cartesian coordinates

T =
(V + U)

2
,

X =
(V − U)

2
, (4.26)

in terms of which the metric is recognized to be a Minkowski space,

ds2 = −dT 2 + dX2, (4.27)
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and both the coordinates T and X range from −∞ to∞. The relation between the original

coordinates x and t and the new coordinates X and T is

x =
√
X2 − T 2,

t = tanh−1

(
T

X

)
. (4.28)

We see that the old coordinates cover only a part of Minkowski spacetime: the right wedge

in the right quadrant (see Figure 4.1).

4.3.2 Rindler observer

In order to understand better the meaning of the Rindler spacetime as a wedge in

Minkowski spacetime let us do a simple exercise. We want to know the trajectory of an

observer undergoing a uniform acceleration in the Minkowski spacetime. Let us parametrize

the worldline of the observer with a parameter λ which is a function of the proper time τ

along the trajectory of the observer

xµ(λ) = (T (λ), X(λ)) , (4.29)

where λ ≡ λ(τ). The four-velocity of the observer is given by

uµ =
dxµ

dτ

=

(
dλ

dτ

dT

dλ
,
dλ

dτ

dX

dλ

)
. (4.30)

Normalizing uµuµ = −1 we get

(
dλ

dτ

)2
[
−
(

dT

dλ

)2

+

(
dX

dλ

)2
]

= −1. (4.31)
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Figure 4.1. Rindler space is the right wedge of Minkowski Space. The observer following the
integral curve x = 1/a is undergoing a constant acceleration a.
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Therefore we can write the tangent vector in terms of the hyperbolic functions as

dT

dλ
=

coshλ

(dλ/dτ)
,

dX

dλ
=

sinhλ

(dλ/dτ)
, (4.32)

in terms of which the four-velocity of the observer becomes uµ = (coshλ, sinhλ). The

acceleration of the observer is given by

aµ =
duµ

dτ

=

(
dλ

dτ
sinhλ,

dλ

dτ
coshλ

)
. (4.33)

Requiring that the magnitude of acceleration be constant, i.e.,
√
aµaµ = constant ≡ a then

gives dλ/dτ = a. Therefore the parameter λ along the trajectory of a uniformly accelerated

observer is given by λ = aτ and the trajectory can be described by

xµ(τ) =
1

a
(sinh aτ, cosh aτ) ,

uµ(τ) = (cosh aτ, sinh aτ) ,

aµ(τ) = (a sinh aτ, a cosh aτ) . (4.34)

From the parametrization of the trajectory, T (τ) = (1/a) sinh aτ , X(τ) = (1/a) cosh aτ , we

read that X2 − T 2 = 1/a. Then from the relation between the Rindler coordinates and the

Cartesian coordinates we get that the observer undergoing a constant acceleration a is at a

constant Rindler coordinate x = 1/a. This gives physical meaning to the Rindler spacetime.

The Rindler coordinate x is the worldline of an observer in flat space undergoing a constant

acceleration and the Rindler spacetime is a right wedge of Minkowski spacetime bounded

by the two null lines. The null line U = 0 acts as the future causal horizon for the Rindler
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observer and the null line V = 0 acts as the past causal horizon.

4.3.3 The singular limit

Consider a congruence of the Rindler observers in Minkowski spacetime who are under-

going a constant acceleration, a.2 These Rindler observers are then the FIDOs we alluded

to above and their worldtube is the stretched horizon Hs. The normalized vector normal to

the worldtube of FIDOs, i.e., normal to Hs is given by

nµ = (sinh aτ, cosh aτ) . (4.35)

Now consider the timelike Killing vector field in the Rindler space, ξµ = (∂/∂t)µ. In the

(T,X) coordinates it is given by

ξµ =
dT

dt

(
∂

∂T

)µ
+

dX

dt

(
∂

∂X

)µ
= X

(
∂

∂T

)µ
+ T

(
∂

∂X

)µ
, (4.36)

which shows that the timelike Killing vector field of the Rindler space is the boost Killing

vector field of Minkowski space. In the second step of this equation we have used the relation

between different coordinates

X =
V + U

2
=

ev − e−u

2
=

et+lnx − e−t+lnx

2
= x

et − e−t

2

T =
V − U

2
=

ev + e−u

2
=

et+lnx + e−t+lnx

2
= x

et + e−t

2
. (4.37)

At any point on the trajectory of a particular FIDO parametrized by its proper time τ and

2In 2-dimensional spacetime this congruence consists of a tangent vector to one curve. But one can easily
imagine a 4-dimensional spacetime with S2 as the other two spatial dimensions in which case it really is a
congruence, say constant r surfaces in Schwarzchild spacetime.
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acceleration a, ξ can be written as

ξµ =
1

a
(sinh aτ, cosh aτ) . (4.38)

Now in the a → ∞ limit the stretched horizon Hs approaches the causal horizon H. Since

sinh aτ → cosh aτ as a→∞ , it is clear from the equations (4.34),(4.35) and (4.38) that

lim
a→∞

uµ

a
= lim

a→∞

nµ

a
= lim

a→∞
ξµ, (4.39)

which is precisely the condition that we require in Section 4.2 with δ = 1
a
. Therefore in the

limit that the stretched horizon Hs reaches the true horizon H, both the tangent and normal

to Hs approach the non-affinely parametrized null geodesic generator of the true horizon H.

4.4 The membrane paradigm in Einstein gravity
In this section we construct the membrane paradigm in Einstein gravity in four spacetime

dimensions. Our construction will closely follow the action approach of Parikh & Wilczek

(1998). Our purpose is to fix the notation and emphasize the points in the construction

which will be of importance for the corresponding construction in the EGB gravity. We

will highlight the steps which will be different in the EGB case and where one has to make

assumptions. For the construction of the membrane stress tensor we will work exclusively

with differential forms and only in the end do we go back to the metric formalism.

In the rest of this chapter, unless otherwise explicitly written, we will work with units

such that 16πG = 1. The small Roman letters on the differential forms are the Lorentz

indices while in the spacetime tensors we will not differentiate between the Lorentz and

the world indices, this being understood that one can always use the vierbeins to convert

between the Lorentz and the world indices.

In the Cartan formalism, the Einstein-Hilbert Lagrangian is written in terms of the

vector-valued vierbein one-form ea, related to the metric by g = ηabe
a⊗ eb, and the Lorentz
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Lie-algebra valued torsion-free connection one-form ωab(e) defined by the equation Dea =

dea + ωab ∧ eb = 0. The action is then

SEH =
1

2!

∫
M

Ωab ∧ ec ∧ edεabcd ±
1

2!

∫
∂M

θab ∧ ec ∧ edεabcd, (4.40)

where Ωab is the curvature of the torsion-free connection given by Ωab = dωab + ωac ∧ ωcb,

and θab is the second fundamental form on the boundary ∂M of M (Myers, 1987).3 It is

related to the extrinsic curvature by

θab = (n.n)(naKb
c − nbKa

c )ec. (4.41)

In our case, the boundary ∂M of M consists of the outer boundary at spatial infinity and

the inner boundary at the stretched horizon, Hs. The variation of the action with respect to

ea can be separated into the contribution from ω(e) and the rest. The variation with respect

to ω of the bulk part of the action yields a total derivative which, after integration by parts,

gives a contribution identical to the negative of the variation of the boundary part. Thus

the variation of the action with respect to ω vanishes identically. In the absence of the inner

boundary, variation of SEH with respect to the vierbein, ea, under the Dirichlet boundary

condition (holding the vierbein fixed on the outer boundary) yields the equation of motion

for the vierbein. But when the inner boundary is present, there is no natural way to fix the

vierbein there. The physical reason for this is simply that the horizon acts as a boundary

only for a class of observers, and surely the metric is not fixed there. However, because it is

a causal boundary the dynamics outside the horizon is not affected by what happens inside.

Hence, for the consideration of the outside dynamics one can imagine some fictitious matter

living on the stretched horizon whose contribution to the variation of the action cancels that

3Our sign convention is such that the plus (minus) signs apply to a timelike (spacelike) boundary. It
should be noted that this is different from the convention in Myers (1987) because their definition of extrinsic
curvature differs from ours by a negative sign.
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of the inner boundary. This is the basic idea of the construction of stress-tensor à la Brown

& York (1993). Since we will be interested in the boundary term on the stretched horizon

which is a timelike hypersurface, from now on we will put n · n = 1.

Hence, variation of the action with respect to the vierbein gives

δSEH =

∫
M

Ωab ∧ ec ∧ δedεabcd +

∫
∂M

θab ∧ ec ∧ δedεabcd. (4.42)

The bulk term just gives the equation of motion. Using the Dirichlet boundary condition on

the outer boundary and the expression of θ given in equation (4.41), the surviving contri-

bution of the variation of the total action Stotal = SEH + Smatter comes solely from the inner

boundary and is given by

δStotal =

∫
Hs
Kb
me

m ∧ ec ∧ δedεbcd, (4.43)

where εbcd = −naεabcd. This surviving contribution can be interpreted as due to a fictitious

matter source residing on Hs whose stress tensor is given by

tab = 2(Khab −Kab). (4.44)

In terms of tab the on-shell variation of SEH becomes

δSEH = −1

2

∫
Hs
tabδh

ab +
1

2

∫
M

Tabδg
ab, (4.45)

where Tab = (−2/
√
−g)(δSmatter/δg

ab) is the external matter’s stress energy tensor. Now

consider the variation δξ induced by a vector field ξ which is arbitrary in the bulk and

behaves in a prescribed fashion on the boundary. We take ξ to be such that it is tangential

to the inner-boundary and vanishes on all the other boundaries. Then the diffeomorphism
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invariance of the theory ensures that

δξSEH = −1

2

∫
Hs
tabδξh

ab +
1

2

∫
M

Tabδξg
ab = 0,

⇒ −
∫
Hs
tabD

aξb +

∫
M

Tab∇aξb = 0, (4.46)

where Da is the covariant derivative of the induced metric on the inner boundary Hs, and

∇a is the covariant derivative of the spacetime metric. Using integration by parts and the

afore-mentioned conditions on ξa, equation (4.46) gives

Datab = −Tacnahcb, (4.47)

where the negative sign on the right-hand side arises because we have chosen na as pointing

away from the stretched horizon into the bulk. The right-hand side of this equation can be

interpreted as the flux of external matter crossing the horizon from the bulk. Then equation

(4.47) has the interpretation of the continuity equation satisified by the fictitious matter

living on the stretched horizon.

At this stage, we would like to point out a difference between our approach and that of

Parikh & Wilczek (1998). In Parikh & Wilczek (1998), the Gibbons-Hawking boundary term

is considered to be only on the outer boundary. Therefore, one needs to show that a certain

contribution containing the derivatives of the variation of the metric on the stretched horizon

vanishes in the limit as the stretched horizon reaches the true horizon. In our approach there

is no such requirement because we have the boundary term on the entire boundary, which

includes the stretched horizon. Since both the approaches finally yield the same horizon

stress tensor, there is no difference in the physics in our approach and that of Parikh &

Wilczek (1998). However, an added advantage of our approach is that it also works beyond

general relativity and, in particular, in any Lovelock gravity. If one does not include the

Gibbons-Hawking term for Lovelock gravity, one needs to show that all the extra terms in
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the variation of the action vanish when the limit to the true horizon is taken. We have

simply avoided this difficulty by adding the boundary term on the stretched horizon as well.

Consequently, although our approach and that of Parikh & Wilczek (1998) ultimately give

the same result for the horizon stress tensor, we believe the inclusion of the Gibbons-Hawking

term makes the calculations easier. Also, it is worth pointing out that if we were to put

the membrane at some finite distance from the horizon then we need the Hawking-Gibbons

term in order to derive the stress tensor and the approach of Parikh & Wilczek (1998) just

won’t work. We believe that our approach is conceptually transparent and computationally

simpler than the one by Parikh & Wilczek (1998).

We have derived the form of the membrane stress tensor for the particular case of D = 4

spacetime dimensions, but it is easy to check that the form of the stress tensor in equation

(4.44) remains unchanged for a general D-dimensional spacetime. Then the components of

the membrane stress tensor tab, evaluated on the stretched horizon in the basis (ua, xA) are

given by

tuu = ρ = −2θs,

tAB = 2

(
−σABs +

(D − 3)

(D − 2)
θsγ

AB + g γAB
)
, (4.48)

where g = κ/δ. In deriving this expression, we have replaced KAB by the expression:

σABs + θs
(D−2)

γAB , where θs is the expansion and σABs is the shear of the congruence generated

by the time-like vector field ua on Hs. As pointed out by Damour (1978) and Thorne et al.

(1986), this replacement is valid only up to O(δ). Since we are ultimately interested in the

limit δ → 0, any O(δ) error does not contribute. Although this is certainly true for general

relativity, in EGB gravity such O(δ) terms will play an important role and they actually

contribute in the limit that the stretched horizon becomes the true horizon.

The particular form of the components of the membrane stress tensor in equation (4.48)

has an interpretation: the fictitious matter on the stretched horizon can be regarded as a
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(D − 2)-dimensional viscous fluid (Landau & Lifshitz, 1959) with the energy density and

transport coefficients given by

Energy density : ρs = −2θs,

Pressure : ps = 2g,

Shear Viscosity : ηs = 1,

Bulk Viscosity : ζs = −2

(
D − 3

D − 2

)
.

Hence the entire tab on the stretched horizon can be expressed as

tab = ρsuaub + γAa γ
B
b (psγAB − 2ηsσsAB − ζsθsγAB) . (4.49)

Substituting these quantities in the conservation equation (4.47) then gives the evolution

equation for the energy density,

Luρs + ρsθs = −psθs + ζsθ
2
s + 2ηsσ

2
s + Tabn

aub. (4.50)

The evolution equation matches exactly with the energy conservation equation of a viscous

fluid. We stress the fact that equation (4.50) is a direct consequence of the conservation

equation (4.47) and the form of the stress tensor in equation (4.49). In fact, in any theory of

gravity once we can express the stress tensor of the fictitious matter obeying the conservation

equation on the stretched horizon in a form analogous to the one in equation (4.49), the

conservation equation will automatically imply an evolution equation of the form (4.50).

Notice that the conservation equation is only valid on shell, which means that the equations

of motion of the theory have to be satisfied for it to hold.

From the analysis of Section 4.2 it is evident that as the stretched horizon approaches

the true horizon the membrane stress tensor in equation (4.48) diverges as δ−1 due to the
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large blueshift near the horizon. This divergence is regulated by simply multiplying it by δ.

This limiting and regularization procedure then yields a stress tensor of a fluid living on the

cross sections of the horizon itself in terms of the quantities intrinsic to the horizon. This

stress tensor is

t
(H)
AB = (pγAB − 2ησAB − ζθγAB) , (4.51)

and the energy density and the transport coefficients become

Energy density : ρ = −2θ,

Pressure : p = 2κ,

Shear Viscosity : η = 1,

Bulk Viscosity : ζ = −2

(
D − 3

D − 2

)
,

where θ is the expansion of the null generator of the true horizon as discussed in section 4.2.

Similarly, the regularization of the evolution equation (4.50) gives

Llρ+ ρθ = −pθ + ζθ2 + 2ησ2 + Tabl
alb, (4.52)

which is just the Raychaudhuri equation of the null congruence generating the horizon. It

should be noted that our approach for deriving the evolution equation is different from the

one of Parikh & Wilczek (1998). In principle, one can just take the Lie derivative of the

energy density with respect to the generator of the horizon to obtain the Raychaudhuri

equation as in Parikh & Wilczek (1998) and then use the Einstein equation to replace the

curvature dependence in terms of the matter energy-momentum tensor. We have followed

an indirect approach in which we derive the evolution equation via the continuity equation

(4.47) which is valid on shell, i.e., the equation of motion has already been used in its deriva-
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tion. This approach is particularly useful when the equations of motion are complicated as

in the EGB gravity and it becomes difficult to replace the curvature dependence in terms of

the matter energy-momentum tensor.

For general relativity, the Bekenstein-Hawking entropy of the horizon is 4πA, where A

is the area of the horizon, hence the ratio of the shear viscosity to the entropy density is,

η

s
=

1

4π
. (4.53)

Note that this is a dimensionless constant independent of the parameters of the horizon.

Comparing this with the KSS bound, η/s ≥ 1/4π, we see that the bound is saturated in

general relativity. Interestingly, for any gravity theory with a Lagrangian depending on the

Ricci scalar only, the value of this ratio is the same as that in general relativity and therefore

the KSS bound is saturated in these theories (Chatterjee et al., 2012).

Another important fact is that the bulk viscosity associated with the horizon is negative.

Clearly, the fluid corresponding to the horizon is not an ordinary fluid and, as explained in

Thorne et al. (1986), the negative bulk viscosity is related to the teleological nature of the

event horizon.

4.5 The membrane paradigm in Einstein-Gauss-Bonnet gravity
EGB gravity is a natural generalization of general relativity which includes terms of

higher order in the curvature, but in just such a way that the equation of motion remains

second order in time.

The action of the theory is given by

Stotal = SEH + α′SGB + Smatter (4.54)

where SEH and Smatter are the contribution of the Einstein-Hilbert and the matter, respec-

tively, while SGB is the Gauss-Bonnet addition to the action. From the analysis in Section
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4.4 we know how to take care of the SEH term. So, we can exclusively work with the GB

term now. The GB contribution to the total action, in D = 5, is given by4 (Myers, 1987)

SGB =
∫
M

Ωab ∧ Ωcd ∧ efεabcdf + 2
∫
∂M

θab ∧ (Ω− 2
3
θ ∧ θ)cd ∧ efεabcdf . (4.55)

As in the case of general relativity discussed in Section 4.4 the variation of SGB with respect

to the connection ωab vanishes identically. The variation with respect to vierbein ea under the

Dirichlet boundary condition yields the equation of motion. Using the torsion-free condition

Dea = 0 on the connection, this equation can be shown to be the same as that obtained in

the metric formalism. In the presence of the inner boundary at the stretched horizon, Hs,

we need the variation of the boundary part of the SGB due to the variation of the vierbein

on the inner boundary. This is obtained from equation (4.55), which after variation with

respect to ea and then using the relations θab = (naKb
c − nbKa

c )ec and Ωab = 1
2
Rab

mne
m ∧ en,

gives

δSGB|bndy = 4

∫
∂M

Ks
a

(
1

2
hcp h

d
q h

r
m h

s
nR

pq
rs

+
2

3
Kc
mK

d
n

)
4! δ

[amnb]
s c d f δ e

f
b . (4.56)

The projections of the spacetime Riemann tensor can be written in terms of the Riemann

tensor intrinsic to Hs and the extrinsic curvature of Hs using the Gauss-Codazzi equation

hcph
d
qh

r
ah

s
bR

pq
rs

= R̂cd
ab −Kc

aK
d
b +Kc

bK
d
a , (4.57)

where R̂cd
ab is the Riemann tensor intrinsic to Hs. Thus the variation of the boundary term

4For general D ≥ 4, GB action is given by SGB =
∫
M
Lm ±

∫
∂M
Qm, where m is the greatest integer

≤ D/2, Lm = Ωa1b1 ∧ ...∧Ωambm ∧Σa1b1...ambm and Qm = m
∫ 1

0
ds θa1b1 ∧Ωa2b2

s ∧ ...∧Ωambm
s ∧Σa1b1...ambm .

Here, Σa1b1...ambm = 1
(D−2m)!εa1b1...ambmc1...cD−2m

ec1 ∧· · ·∧ecD−2m and Ωs is the curvature of the connection

ωs = ω−sθ, Ωs = dωs +ωs∧ωs. The sign of the surface term depends upon the timelike or spacelike nature
of the boundary. The surface term was first constructed in Myers (1987) and more details can be found
there. The GB coupling in the total action is still denoted by α′.
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can be written in terms of quantities intrinsic to the boundary,

δSGB|bndy = 4

∫
∂M

Ks
a

(
1

2
R̂cd

mn −
1

3
Kc
mK

d
n

)
4! δ

[amnb]
s c d f δe

f
b . (4.58)

This can be evaluated to be

δSGB|bndy = 4

∫
∂M

(
2KmnP̂

amn
b − Jab +

1

3
Jδab

)
δeba, (4.59)

where we have defined,

P̂ amn
b = R̂amn

b + 2R̂n[mh
a]
b + 2R̂

[a
b h

m]n + R̂hn[ah
m]
b , (4.60)

Jab = K2Ka
b −KcdKcdK

a
b + 2Ka

cK
c
dK

d
b − 2KKa

cK
c
b , (4.61)

J = K3 − 3KKcdKcd + 2Ka
bK

b
cK

c
a. (4.62)

As in the case of general relativity, we can interpret the variation δStotal as due to a fictitious

matter living on the membrane whose stress-energy tensor is given by the coefficient of δeab .

Thus from the equation (4.59) we can read off the membrane stress tensor due to the GB

term (now including the GB coupling α′ and a negative sign arising from the fact that we

are defining the stress tensor with covariant indices) and we get

tab|(GB) = −4α′
(

2KmnP̂a
mn

b − Jab +
1

3
Jhab

)
. (4.63)

Adding to this the contribution coming from the Einstein-Hilbert action we get the total

stress tensor for the membrane,

tab = 2 (Khab −Kab)− 4α′
(

2KmnP̂a
mn

b − Jab +
1

3
Jhab

)
. (4.64)

Although we have derived the membrane stress tensor for the particular case of D = 5,
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the result can be easily generalized to arbitrary dimensions and the form in equation (4.64)

remains unchanged. By the same arguments as discussed in the case of general relativity,

this tab also satisfies the continuity equation (4.47). This can also be verified explicitly by

taking the divergence of tab and using the appropriate projections of the equation of motion

(Davis, 2003).

Note that a crucial difference between the membrane stress tensors for general relativity

and EGB gravity is that in the former the stress tensor is linear in the extrinsic curvature

while in the latter the stress tensor contains terms cubic in the extrinsic curvature of the

stretched horizon. Since, as we take the limit to the true horizon, the extrinsic curvature

of the stretched horizon diverges as δ−1, one would expect higher-order divergences in the

case of EGB gravity coming from the contribution of the GB term to the stress tensor. The

regularization procedure used to tame the divergence coming from the Einstein-Hilbert term

involves multiplication with δ, which does not tame the cubic order divergence coming from

the GB term. Clearly one needs either a new regularization procedure or some well-motivated

prescription which justifies neglect of the terms that lead to higher-order divergences in the

limit when the stretched horizon approaches the true one. In this paper, we will adopt the

latter approach.

We will restrict attention to background geometries which are static so that the expansion

and the shear of the null generators of the true horizon are zero. Next, we will consider some

arbitrary perturbation of this background which may arise due to the flux of matter flowing

into the horizon. As a result, the horizon becomes time dependent and acquires expansion

and shear. We will assume this perturbation of the background geometry to be small so

that we can work in the linear order of perturbation and ignore all the higher-order terms.

Essentially, our approximation mimics a slow-physical-process version of the dynamics of

the horizon (Jacobson & Parentani, 2003). This essentially means that we are restricting

ourselves to the terms proportional to the first derivative of the observer’s four velocity

ua, which plays the role of the velocity field for the fluid. We will discard all higher-
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order derivatives of the velocity except the linear one so that we can write the membrane

stress tensor as a Newtonian viscous fluid. In this limited setting we will see that the only

divergence that survives is of O(δ−1) which can be regularized in the same fashion as in the

case of general relativity. Therefore, when we encounter a product of two quantities X and

Y , we will always express such a product as

XY ≈ X̊ Y̊ + X̊ δY + Y̊ δX, (4.65)

where X̊ is the value of the quantity X evaluated on the static background and δX is the

perturbed value of X linear in the perturbation.

In order to implement this scheme, we first define a quantity Qab, whose importance will

be apparent later, as

Qab = KKab −KacK
c
b , (4.66)

in terms of which we write

Jab = KabQ− 2KacQ
c
b, (4.67)

where Q is the trace of Qab.

Now we observe the following facts. First, the components of the extrinsic curvature

of Hs in the backgrounds that we are interested in are O(δ). In particular, for the static

spacetimes one can choose the cross-sections of theHs such that the pull-back of the extrinsic

curvature to these cross-sections is KAB = δ
r
γAB. Secondly, for these backgrounds Qab and

Q defined as above are finite on Hs and remain finite in the limit as Hs reaches the true

horizon. In fact, QAB for the background, in the limit that Hs approaches the true horizon,

is simply QAB = κ
r
γAB. Finally, the most singular terms of the linearized QAB and Q are
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given by

δQAB ∼ 1

δ2
κ

(
σAB +

θ

(D − 2)
γAB

)
, (4.68)

δQ ∼ 1

δ2
2κθ. (4.69)

Notice that the perturbation of the non-affine coefficient κ can always be gauged away by

choosing a suitable parametrization of the horizon. This remark means that we can put δκ

equal to zero. So, without any loss of generality, we set κ equal to the surface gravity of the

background black geometry. Now, as an illustration of the perturbation scheme mentioned

in equation (4.65) and the reason for the definition of the Qab, we use the facts mentioned in

the previous paragraph to evaluate a term KACQ
C
D contributed by JAD which we encounter

in the projection of tab on the cross-section of Hs. We evaluate this term as follows :

KACQ
C
D ≈ K̊ACQ̊

C
D + δKACQ̊

C
D + K̊ACδQ

C
D

=
δ

r
γACQ̊

C
D +

1

δ

(
σAC +

θ

(D − 2)
γAC

)
Q̊C
D +

δ

r
γAC

1

δ2
κ

(
σCD +

θ

(D − 2)
γCD

)
∼ 1

δ

(
σACQ̊

C
D +

θ

(D − 2)
Q̊AD +

κ

r
σAD +

κ

r

θ

(D − 2)
γAD

)
∼ 1

δ

(
κ

r
σAD +

θ

(D − 2)

κ

r
γAD +

κ

r
σAD +

κ

r

θ

(D − 2)
γAD

)
. (4.70)

In the steps above we have dropped the terms which are of O(1) or O(δ) because after

regularization (i.e., multiplying by δ) those terms will make no contribution. In this way

one sees that our method of approximation is consistent. At linear order in the perturbation

the only divergence that comes up in the membrane stress-energy tensor is of O(δ−1) and

therefore the whole stress tensor can be regularized simply by multiplying with δ exactly

as in general relativity. The sample calculation above elaborates on how it is done for one

particular term. Using the Gauss-Codazzi equation and the Raychaudhuri equation it can

be shown that the projection of the curvature of the Hs on the cross-section of Hs is equal
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to the curvature of the cross-section in the limit δ → 0.

Before writing down the stress tensor there is one more restriction that we are going to

put on the background geometry. We require that the cross-section of the horizon of the

background geometry be a space of constant curvature, i.e., (D−2)R̊ABCD = c (γACγBD −

γADγBC), where c is a constant of dimension length−2 which is related to the intrinsic Ricci

scalar of the horizon cross-section as

c =
(D−2)R̊

(D − 3)(D − 2)
. (4.71)

This assumption regarding the intrinsic geometry of the horizon cross-section is necessary

for the stress tensor to be of the form of an isotropic viscous fluid. Using these observations

and approximations the contribution of different terms in the membrane stress-energy tensor

due to the GB term in the action are obtained as :

KmnP̂a
mn

bγ
a
Aγ

b
B ∼ −

1

δ

(D − 3)(D − 4)

2
cκγAB +

1

δ

(D − 5)(D − 4)

2
c

[
σAB −

(D − 3)

(D − 2)
θγAB

]
,

Jabγ
a
Aγ

b
B ∼

1

δ
σAB(D − 4)

2κ

r
+

1

δ
γAB

(D − 3)

(D − 2)

4κθ

r
,

J ∼ 1

δ
(D − 3)

6κθ

r
,

KmnP̂a
mn

bu
aub ∼ −1

δ

(D − 3)(D − 4)

2
cκθ,

Jabu
aub ∼ −1

δ
(D − 3)

2κθ

r
. (4.72)

All the steps required to obtain the regularized membrane stress tensor are laid out now.

Our perturbative strategy and the restriction that the horizon’s cross-section be a space of

constant curvature then yield the membrane stress tensor as

t
(H)
AB = pγAB − 2ησAB − ζθγAB, (4.73)
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where

p = 2κ+ 4α′κc(D − 4)(D − 3), (4.74a)

η = 1− 4α′
[
−(D − 5)(D − 4)

2
c+ (D − 4)

κ

r

]
, (4.74b)

ζ = −2
(D − 3)

(D − 2)
+ 4α′

[
−(D − 5)(D − 4)(D − 3)

(D − 2)
c+

(D − 4)(D − 3)

(D − 2)

2κ

r

]
. (4.74c)

We stress that while we are working only at the linear order in the perturbations, the α′

corrections in the transport coefficients given in equations (4.74) are non-perturbative. This

simply means that the theory is exactly the EGB theory and the background spacetimes

of interest are exact static solutions of this theory. We are perturbing these backgrounds

slightly and therefore we care about only the linear order terms in the perturbations. This

approach differs from some of the other work in the literature, see for example Brustein

& Medved (2009), where one considers the effect of the GB term in the action as a small

perturbation of general relativity. Also, note that the bulk viscosity ζ and shear viscosity η

of the membrane fluid are related as

ζ = −2
(D − 3)

(D − 2)
η. (4.75)

This relationship holds in general relativity and interestingly enough it survives in EGB

gravity. In fact, this relationship is also true for any gravity theory with a Lagrangian which

is an arbitrary function of the Ricci scalar (Chatterjee et al., 2012) and it shows that the

bulk viscosity of the membrane fluid is always negative as long as the shear viscosity is

positive.

The energy density of the fluid is given by regularizing (i.e., multiplying by δ) the com-

ponent of tab along fiducial observers,

ρ = −2θ − 4α′θ [(D − 4)(D − 3)c] . (4.76)
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The continuity equation (4.47) yields the equation describing the evolution of the energy

density along the null generators of the horizon. Note that we are actually applying the

linearized continuity equation and in order to derive the evolution equation we have to keep

the induced metric on the stretched horizon fixed. As in the case of general relativity, we

first write down the equation on the stretched horizon keeping the terms which are linear

in perturbations and have O(δ−1) divergence in tab, which gives a O(δ−2) divergence in the

continuity equation. This is regularized by multiplying the whole equation by δ2. This again

has the same form as in the equation (4.50) with p, η and ζ now given by the equations

(4.74).

4.6 Specific background geometries

In this section we will study some specific static background geometries. We will calculate

the transport coefficients and the ratio η/s for the membrane fluid.

4.6.1 Black-brane background

The D-dimensional black-brane solution of EGB gravity is given by (Brigante et al.,

2008b, Cai, 2002)

ds2 = −f(r)dt2 +
1

f(r)
dr2 +

r2

l2

(
D−2∑
i=1

dx2
i

)
, (4.77)

where the function f(r) is given by

f(r) =
r2

2λ

[
1−

√
1− 4λ

l2

(
1−

(rh
r

)D−1
)]

, (4.78)

with λ defined in terms of the Gauss-Bonnet coupling α′ as λ = (D − 3)(D − 4)α′. The

location of the horizon is denoted by rh, in terms of which the Hawking temperature and
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the entropy density (in units 16πG = 1)5 are given by

T =
(D − 1)rh

4πl2
, (4.79)

s = 4π. (4.80)

Note that the intrinsic curvature of the cross-section of the planar horizon is zero, i.e., c = 0.

Also, the entropy density of the planar horizon in EGB theory is the same as that in general

relativity (Jacobson & Myers, 1993). From equation (4.76), the energy density for the fluid

is just −2θ which is same as that in general relativity, i.e., there is no correction in the

energy density due to the Gauss-Bonnet coupling. The transport coefficients for the fluid

description of the horizon can now be obtained from the equations (4.74) as

p = (D − 1)
rh
l2
, (4.81)

η = 1− 2
(D − 1)

(D − 3)

λ

l2
, (4.82)

ζ = −2
(D − 3)

(D − 2)
+

4(D − 1)

(D − 2)

λ

l2
. (4.83)

The dimensionless ratio η/s is

η

s
=

1

4π

[
1− 2

(D − 1)

(D − 3)

λ

l2

]
. (4.84)

We see that the value of η/s calculated from the membrane paradigm matches the one found

by other methods in the literature, for example Brigante et al. (2008b), where one of the

calculations utilizes the Kaluza-Klein reduction to express the transverse metric perturbation

in D dimensions as the vector potential in (D− 1) dimensions and then uses the membrane

paradigm results for the electromagnetic interaction of the black hole in (D−1) dimensions.

5Note that our notation is different from Brigante et al. (2008b). We define the entropy density as the
entropy per unit cross-section area of the horizon. For planar black holes the total entropy is infinite because
the horizon cross-section has an infinite area, but the entropy density is well defined.
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It is evident that the KSS bound is violated for any λ > 0. Also, the bulk viscosity becomes

positive when λ/l2 > (D − 3)/2(D − 1) and for the same range of λ the shear viscosity

is negative. In fact, as pointed out in Brigante et al. (2008b) and Iqbal & Liu (2009),

the gravitons in the theory become strongly coupled as λ/l2 → (D − 3)/2(D − 1). For

λ/l2 > (D − 3)/2(D − 1) the theory becomes unstable.

4.6.2 Boulware-Deser black-hole background

The Boulware-Deser black hole (Boulware & Deser, 1985, Myers & Simon, 1988) is a

spherically symmetric, asymptotically flat solution of the vacuum EGB theory. It is a

natural generalization of the Schwarzschild spacetime in general relativity. The metric is

given by

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2, (4.85)

where dΩ2 is the metric on a (D − 2)-dimensional sphere and6

f(r) = 1 +
r2

2λ

[
1−

√
1 +

4λM

rD−1

]
. (4.86)

The constant M is proportional to the ADM mass of the spacetime. This spacetime is

asymptotically flat and reduces to the D-dimensional Schwarzschild solution when α′ → 0.

The location of the horizon is obtained from the solution of the equation

rD−3
h + λ rD−5

h = M. (4.87)

6The spherically symmetric solution of Einstein-Gauss-Bonnet gravity in vacuum admits two different
branches. For our purposes, we are only interested in the branch which has a general-relativity limit when
λ→ 0.
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The surface gravity of the horizon is obtained as κ = f ′(rh)/2, which gives the Hawking

temperature of the horizon as (Myers & Simon, 1988)

T =
(D − 3)

4πrh

[
r2
h + (D−5)

(D−3)
λ

(r2
h + 2λ)

]
. (4.88)

For the Boulware-Deser black hole, the entropy associated with the horizon is no longer

proportional to the area A but is given by (in the units 16πG = 1) (Myers & Simon, 1988),

S = 4πA
[
1 +

(D − 2)

(D − 4)

λ

r2
h

]
. (4.89)

We can now evaluate the transport coefficients of the membrane fluid when the background

is chosen as the D-dimensional Boulware-Deser black hole. Note that, unlike the black-brane

case, here the curvature of the horizon cross-section is non-zero and will contribute to the

transport coefficients. Using equation (4.74), these coefficients are calculated to be

p =
(D − 3)

rh
+

(D − 5)

r3
h

λ, (4.90)

η = 1− 4

(D − 3)

λ

(r2
h + 2λ)

+
2(D − 5)

(D − 3)

λ2

r2
h(r

2
h + 2λ)

, (4.91)

ζ = −2
(D − 3)

(D − 2)

r2
h

(r2
h + 2λ)

− 4(D − 5)

(D − 2)

λ

(r2
h + 2λ)

− 4(D − 5)

(D − 2)

λ2

r2
h(r

2
h + 2λ)

. (4.92)

The ratio of the shear viscosity to the entropy density is

η

s
=

(D − 4)

4π(D − 3) (r2
h + 2λ)

[
(D − 3)r4

h + 2λ(D − 5)r2
h + 2λ2(D − 5)

(D − 4)r2
h + 2(D − 2)λ

]
. (4.93)

For λ = 0 this reduces to the familiar result found in general relativity in equation (4.53).

The ratio violates the KSS bound for any λ > 0.
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In the particular case of D = 5, the transport coefficients and the ratio η/s are

p =
2

rh
, η =

r2
h

(r2
h + 2λ)

, and ζ = − 4r2
h

3(r2
h + 2λ)

, (4.94)

η

s
=

r4
h

4π (r2
h + 2λ) (r2

h + 6λ)
. (4.95)

4.6.3 Boulware-Deser-AdS black-hole background

The spherically symmetric solution of EGB gravity with a negative cosmological constant

Λ = −(D − 1)(D − 2)/2l2 is given by (Cai, 2002)

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2, (4.96)

where dΩ2 is the metric on a (D − 2)-dimensional sphere and

f(r) = 1 +
r2

2λ

[
1−

√
1 +

4λM

rD−1
− 4λ

l2

]
. (4.97)

The position of the horizon is determined by the equation

rD−3
h + λ rD−5

h +
rD−1
h

l2
= M. (4.98)

The Hawking temperature associated with this horizon is

T =
1

4πrhl2 (r2
h + 2λ)

[
(D − 1)r4

h + (D − 3)r2
h l

2 + (D − 5)λ l2
]
, (4.99)

and the entropy density is given by

s = 4π

[
1 +

(D − 2)

(D − 4)

λ

r2
h

]
. (4.100)
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Using equations (4.74), the various transport coefficients are obtained as

p =
(D − 3)

rh
+

(D − 1)

l2
1

rh
+

(D − 5)

r3
h

λ, (4.101)

η = 1− 4

(D − 3)

λ

(r2
h + 2λ)

− 2(D − 1)

(D − 3)

λ r2
h

l2(r2
h + 2λ)

+
2(D − 5)

(D − 3)

λ2

r2
h(r

2
h + 2λ)

, (4.102)

ζ = −2
(D − 3)

(D − 2)

r2
h

(r2
h + 2λ)

− 4(D − 5)

(D − 2)

λ

(r2
h + 2λ)

−4(D − 5)

(D − 2)

λ2

r2
h(r

2
h + 2λ)

+
4(D − 1)

(D − 2)

λ r2
h

l2(r2
h + 2λ)

. (4.103)

Note that in the limit Λ→ 0, i.e., l→∞, these coefficients reduce to those for the vacuum

case discussed in the Section 4.6.2.

The ratio of shear viscosity and entropy density is

η

s
=

(D − 4)

4π(D − 3)l2 (r2
h + 2λ)

×[
(D − 3)l2r4

h + 2λ(D − 5)l2r2
h + 2λ2l2(D − 5)− 2λ(D − 1)r4

h

(D − 4)r2
h + 2(D − 2)λ

]
. (4.104)

In particular, for D = 5 the ratio is

η

s
=

r4
h

4π (r2
h + 2λ) (r2

h + 6λ)

(
1− 4λ

l2

)
. (4.105)

The ratio is positive and violates the KSS bound as long as 0 < λ < l2/4.

The result in equation (4.105) can be viewed as a prediction that the long-wavelength

hydrodynamic limit of the dual CFT (at the temperature given by (4.99) in terms of rh)

living on the boundary S3 × R has the ratio η/s given by (4.105). Here we are assuming

that the ratio η/s has a trivial renormalization group flow even for the Boulware-Deser-AdS

background.7 Also, in the limit of high black-hole temperature (which corresponds to the

7We thank R. Myers for pointing out that the triviality of the flow on this background does not obviously
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limit rh →∞), the ratio η/s for Boulware-Deser-AdS black hole reduces to the ratio for the

black brane (4.84).

4.7 Summary and Discussion

In this chapter we have discussed our proposal of a perturbative scheme to derive the

membrane stress tensor and the transport coefficients for the membrane fluid in Einstein-

Gauss-Bonnet gravity. We used the action principle formalism to determine the membrane

stress tensor on the stretched horizon. Our derivation is slightly different from the one

given in Parikh & Wilczek (1998), since we include the Gibbons-Hawking boundary term at

infinity as well as on the stretched horizon. As a result, all the contribution from the bulk

part under the variation with respect to ω vanishes automatically. (It was argued by Parikh

& Wilczek (1998) that without the Gibbons-Hawking term, these contributions vanish in the

limit when the stretched horizon approaches the true horizon.) Our method can be easily

generalized to the higher-order Lovelock theories.

The membrane stress tensor in EGB gravity has terms cubic in the extrinsic curvature

and in the limit that the stretched horizon approaches the true horizon these terms are

cubically divergent in δ−1. In order to tame these divergences we studied only the per-

turbations about static black geometries. We found that restricting to the linear order in

perturbations on the stretched horizon, the membrane stress tensor is in fact only linearly

divergent. Therefore, at the linear order the divergence structure of the GB contribution to

the stress tensor is identical to that of the Einstein contribution. Hence the whole membrane

stress tensor could be regularized in the same way as in general relativity: simply absorb

one power of the divergent factor in the definition of the stress tensor. We expect that this

method can be generalized to the higher-order Lovelock theories. We also believe that our

method to obtain the evolution equation for the energy density is particularly easy to adapt

to the Lovelock theories because it avoids manipulating the equation of motion in order to

follow from the triviality of flow on the black brane background.
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write the curvature term in the Raychaudhuri equation in terms of the energy-momentum

tensor of the matter.

In order to write the membrane stress tensor in the form of that of an isotropic viscous

fluid we had to restrict the background geometries to those which have a constant-curvature

horizon cross-section. This looks like a severe restriction, and it should be possible to bypass

this requirement by modelling the horizon as an anisotropic fluid with tensorial transport

coefficients. But even with this restriction we are able to study interesting cases discussed

in section 4.6. Nevertheless, it would be interesting to study the more general case by lifting

this restriction and study backgrounds with non-constant curvature horizon cross-section.

The transport coefficients of the membrane fluid for the horizon in EGB gravity are given

in equations (4.74). We notice a relation between the shear viscosity and the bulk viscosity,

ζ = −2
(D − 3)

(D − 2)
η,

which says that if the shear viscosity is positive then the bulk viscosity is negative and vice-

versa. The negative value of ζ of the membrane fluid is related to the teleological nature

of the horizon. This relation also gives a consistency check that the allowed range of the

GB coupling for the fluid description to make sense is the same whether calculated from

the positivity of η or the negativity of ζ. It is quite possible that the same relationship

between these two transport coefficients holds for the higher-order Lovelock theories and

this question is worth investigating.

Some particular static spacetimes are analyzed in Section 4.6. For the black-brane solu-

tion of EGB gravity, the membrane paradigm calculation gives a value of η/s which agrees

with that found in the literature; see for example Brigante et al. (2008b), which calculates

the ratio from both linear response theory and a Kaluza-Klein compactified version of the

membrane paradigm. The KSS bound is violated for any positive value of the GB coupling.

From the other cases we have studied it appears that the violation of the KSS bound is
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a generic feature of EGB gravity except for the case of an extremal (κ = 0) black-brane

solution, where all the GB corrections vanish.

From the purely classical point of view via the membrane paradigm and an input from

black-hole thermodynamics, we have seen that in general relativity the values of viscosity

and entropy density are constants independent of the solution. In particular, they are the

same for the black brane and the Boulware-Deser-AdS black hole. When the α′ corrections

are taken into account, the entropy density for the black brane does not change (because the

horizon is flat), but the entropy density for the black hole increases (see (4.89)). Also, the

viscosity of both the black brane (4.82) and the black hole (4.102) decreases as α′ is turned

on. Consequently, in both cases α′ affects the ratio η/s and causes it to fall below 1/4π, the

value in general relativity.

Let us try to understand the reason for the difference between the black-brane and black-

hole entropy densities and shear viscosity from a dual CFT viewpoint. If a dual CFT exists,

it is not the same one that is dual to Type IIB string theory, since in that case the leading

correction to the gravitational action is an O(α′3R4
Ads) term (Gubser et al., 1998b), not an

O(α′) Gauss-Bonnet term. But let us suppose that some dual CFT does exist. The black

hole in the bulk is then dual to a finite-temperature CFT on the conformal boundary S3×R

of the bulk, and the black brane in the bulk is dual to the same CFT on R4 ⊂ S3 × R and

is thermal with respect to a different conformal Killing generator.

The α′ corrections to entropy density and shear viscosity presumably correspond to

corrections due to finite ’t Hooft coupling λt (or something analogous) in the dual CFT. In

the limit of infinite λt (i.e., when the holographic dual to the boundary theory is just classical

general relativity8), the hydrodynamic limit of the boundary theory has the same entropy

density and viscosity for both the black-hole and the black-brane duals. When the effects

due to finite λt are taken into account they become different. Evidently the corrections due

8We assume that, if the duality entails other fields in the bulk, those fields do not affect the black branes
and black holes, at least at the order we are working.
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to finite ’t Hooft coupling must be sensitive to whether the dual CFT is on S3 × R or R4.

Why might that be?

First note that even with infinite ’t Hooft coupling, there is a difference, in that on S3×R

there is a critical temperature, set by the radius of the S3, below which the CFT is confining

and is dual to AdS without a black hole (Witten, 1998b). However, once above the critical

temperature, the leading order entropy density and viscosity are strictly identical to those

on R4. Perhaps we may interpret this as being due to an infinitely sharp phase transition

in the presence of an infinite ’t Hooft coupling.

Now consider the situation at finite ’t Hooft coupling. When rh � l, the black-hole

temperature (4.99) is T ∼ rh/l
2 � 1/l. (Here we use the fact that for a stable theory we

must have λ < l2/4, so also rh �
√
λ.) In this high-temperature regime, s and η become

indistinguishable from their values for the black brane. In the dual CFT, this is to be

expected since the thermal wavelength is much smaller than the size ∼ l of the S3. Away

from this limit, the thermal state on S3 × R is different, in its local properties, from the

thermal state dual to the black brane.

It remains somewhat puzzling however, from the dual CFT viewpoint, that there would

be no α′ correction to the entropy density of the black brane, given that there is such a

correction to its viscosity. In fact, in the case of the Super-Yang-Mills theory dual to Type

IIB string theory, there is indeed an α′3 correction to the black-brane entropy, seen from

an O(α′3R4
AdS) correction to the gravitational action (Gubser et al., 1998b). While it has

not been computed in the dual CFT, the duality asserts that this correction arises from a

finite ’t Hooft coupling effect in the CFT. By contrast, the absence of an α′ correction to

the black-brane entropy in EGB theory suggests that, if there indeed is a field theory dual

to EGB gravity, for some reason it has no O(α′), finite ’t Hooft coupling correction to the

thermal entropy on R4.

Let us spell this out a little more explicitly. To obtain the CFT entropy density from

the horizon entropy density one must multiply by (rh/l)
D−2, the ratio of horizon ‘area’ to
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spatial volume (
∫

ΠD−2
i=1 dxi) of the CFT. Although the black-brane metric (4.78) receives

corrections from α′, the ratio rh/l = 4πT l/(D − 1) in equation (4.79) is independent of

α′ when expressed in terms of T . Thus, for D = 5, the entropy density of the CFT is

∝ (T l)3(lP )−3 = T 3(l/lP )3, where lP is the 5-dimensional Planck length. For the black hole,

by contrast, equation (4.99) shows that rh/l depends on α′ at fixed temperature, and also

the horizon entropy receives an α′ correction. Hence, the entropy density in the CFT must

also receive an α′ correction. This discrepancy is puzzling, since although the finite size of

the S3 could naturally affect the temperature dependence of the entropy at low temperature,

it would seem that the mere presence or absence of finite-coupling effects in the CFT entropy

density should be independent of the finite size of the S3.

As far as other transport coefficients are concerned, the relation between the bulk viscos-

ity of the membrane fluid and that of the dual gauge theory is not clear. The bulk viscosity

of the membrane fluid is negative while for the gauge theory it is necessarily non-negative

(and is zero if the gauge theory is conformal). It might be tempting to conjecture that the

bulk viscosity undergoes a non-trivial renormalization group flow as one takes the cutoff

surface from the membrane to infinity (where the gauge theory lives). But the calculation

depicting the relation between bulk viscosity and the flux of gravitons (Gubser et al., 2008)

suggests that this flow is trivial. In fact, that this flow is trivial has very recently been shown

in Eling & Oz (2011). It would be interesting to see what exactly, if any, is the relation

between the bulk viscosity of the membrane fluid and the dual gauge-theory fluid.

We reiterate before closing that our results are derived for linear-order perturbations of

the static background geometries where the cross-section of the horizon is a space of constant

curvature, and we have evaluated only the first-order transport coefficients keeping only the

terms of first order in derivatives of the velocity. It would be interesting to generalize this

procedure to calculate the higher-order transport coefficients.
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Table 4.1. Symbols and their meanings

Symbol Meaning
H True horizon, a (D − 1)-dimensional null hypersurface
Hs Stretched horizon, a (D − 1)-dimensional timelike hy-

persurface with tangent ua and normal na

(a, b, c, ...) Spacetime indices
(A,B,C, ...) Indices on the (D − 2)-dimensional cross-section of the

true/stretched horizon
la Null generator of the true horizon parametrized by a

non-affine parameter. Obeys the geodesic equation:
la∇al

b = κ lb

hab Induced metric on the stretched horizon
γab Induced metric on the cross-section of the stretched hori-

zon, which in the null limit is identified with the metric
on the cross-section of the true horizon

Kab Extrinsic curvature of the stretched horizon, defined as
Kab = 1

2
Lnhab

kAB Extrinsic curvature of the cross-section of the true hori-
zon, defined as kAB = 1

2
LlγAB

θ, θs Expansion of the true/strectched horizon
σab, σabs Shear of the true/stretched horizon

R̂abcd Riemann tensor intrinsic to the stretched horizon
(D−2)R̊ABCD Intrinsic Riemann tensor of the (D − 2)-dimensional

cross-section of the stretched horizon in the background
geometry, which in the null limit is identified with the
intrinsic Riemann tensor of the cross-section of the true
horizon

(D−2)R̊ Intrinsic Ricci scalar of the (D − 2)-dimensional cross-
section of the stretched horizon in the background geom-
etry, which in the null limit is identified with the intrinsic
Ricci scalar of the cross-section of the true horizon

δ The parameter which measures the deviation of the
stretched horizon from the true horizon

c Defined as c =
(D−2)R̊

(D−3)(D−2)
(For the planar horizon, c = 0)

α′ Gauss-Bonnet coupling constant

λ Constant of dimension length2 related to the Gauss-
Bonnet coupling α′ as λ = (D − 3)(D − 4)α′
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Chapter 5

Appendix

5.1 A: Useful identities

D is a connection on a G-bundle E. A is the connection one-form and F denotes its

curvature two-form.

η and ρ are E-valued differential forms with degrees p and q, respectively.

ω and µ are end(E)-valued differential p and q forms, respectively.

The Graded Commutator is defined as [ω, µ] = ω ∧ µ− (−1)pqµ ∧ ω.

• Dη = dη + ω ∧ η.

• Dω = dω + [A, ω].

• D2η = F ∧ η.

• D2ω = [F, ω].

• tr(ω ∧ µ) = (−1)pq tr(µ ∧ ω). (graded cyclic property).

• tr[ω, µ] = 0.

• tr D(ω) = d tr(ω).

•
∫
M

tr(Dω ∧ µ) =
∫
∂M

tr(ω ∧ µ) + (−1)p+1
∫
M

tr(ω ∧Dµ).

•
∫
M

tr(ω ∧ ∗µ) =
∫
M

tr(µ ∧ ∗ω).
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• iξ(η ∧ ρ) = iξη ∧ ρ+ (−1)pη ∧ iξρ.

• iξ[µ, ω] = [iξµ, ω] + (−1)p[µ, iξω].

• LξA = iξF + D(iξA).

• Lξη = iξDη + Diξη − iξA ∧ µ.

• Lξµ = iξDµ+ Diξµ− [iξA, µ].
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5.2 B: Review of hydrodynamics

We give here a concise but useful tutorial on the basic equations of hydrodynamics. For

this discussion we have mainly relied on Romatschke (2010) and Rangamani (2009).

5.2.1 Non-relativistic fluid dynamics

The degrees of freedom for an ideal, neutral, uncharged one-component fluid are: velocity

v(t, ~x), pressure p(t, ~x) and mass density ρ(t, ~x). The dynamics is governed by the Euler

equation, which is the hydrodynamic version of Newton’s second law, and the continuity

equation, which is the hydrodynamic version of conservation of energy,

∂t~v + (~v · ~∂)~v = −1

ρ
~∂p Euler equation (5.1)

∂tρ+ ~∂ · (ρ~v) = 0 Continuity equation (5.2)

The number of unknown variables is 3+1+1 = 5, while the number of equations is 3+1 = 4.

In order to close the system we need one more relation, namely the equation of state p ≡ p(ρ).

Then we have a complete description of the fluid dynamical system.

For a non-ideal, i.e., dissipative fluid the Euler equation generalizes to the Navier-Stokes

equation

∂tv
i + vk∂kv

i = −1

ρ
∂ip−

1

ρ
∂kΠ

ki, (5.3)

where the dissipative term Πki is given by

Πki = −2η

(
∂(kvi) − 1

3
δik∂jv

j

)
− ξδik∂jvj. (5.4)

The term in the parenthesis is just the symmetric traceless part of ∂ivk and its coefficient

η is called the shear viscosity of the fluid. The coefficient of the trace part, ξ, is called the

bulk viscosity of the fluid.
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5.2.2 Relativistic fluid dynamics

The variables for the relativistic fluid are the energy density ρ(x) and a velocity field

uµ = dxµ

dτ
. From the metric dτ 2 = ηµνdx

µdxν = −dt2 + d~x2 we get

uµ =
dxµ

dτ
=
dxµ

dt

dt

dτ
=

1√
1− ~v2

(1, ~v) = γ(~v)(1, ~v). (5.5)

In the non-relativistic limit uµ ∼ (1, ~v).

Let us first construct the ideal relativistic fluid dynamics. In this case the stress-energy

tensor of the fluid contains no derivatives of the fluid velocity uµ. The most general sym-

metric and generally covariant tensor that one can build is

T µν = ρuµuν + phµν (5.6)

where hµν is the projector on the hypersurface orthogonal to the velocity uµ, such that

uµh
µν = uνh

µν = 0. The projector is given by

hµν = gµν + uµuν . (5.7)

The equations of fluid dynamics are nothing but the statement of the conservation of the

stress energy tensor (and charges in the case of a non-zero chemical potential) of the fluid,

∇µT
µν = 0. (5.8)

Using the ideal form of the stress tensor in equation (5.6) and taking the projection of

equation (5.8) parallel to uµ, uµ∇νT
µν , gives

(ρ+ p)∇µu
µ + uµ∇µρ = 0, (5.9)
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and taking the projection orthogonal to uµ, hµβ∇λT
βλ, gives

(ρ+ p)uλ∇λu
µ + hµλ∇λp = 0. (5.10)

In order to have a compact notation we define the derivative operator on the hypersurface

orthogonal to uµ as Dα = hµα∇µ, where it is assumed that Dα acts only on tensors whose

components are tangential to the hypersurface orthogonal to uµ. Also, the derivative along

uµ will be denoted by D, i.e., uµ∇µ = D. Using these operator definitions, equation (5.9)

can be written as

Dρ+ (ρ+ p)∇µu
µ = 0, (5.11)

and equation (5.10) can be written as

(ρ+ p)Duµ +Dµp = 0. (5.12)

Equation (5.11) is the relativistic version of the continuity equation and equation (5.12) is

the relativistic version of the Euler equation.

Away from the ideal limit the fluid does have energy dissipation. This is because of the

internal friction and is phenomenologically due to the different fluid elements moving with

different velocities. Thus the dissipative effects are due to the velocity gradients. This can be

incorporated in the stress tensor of the fluid by introducing terms containing the derivatives

of the velocity and respecting the symmetries of the system. In general the stress tensor can

be written as

T µν = ρuµuν + phµν + Πµν . (5.13)

where Πµν is the viscous contribution to the stress tensor. When there are no conserved
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charges we can assume that the momentum density is due to the flow of energy density, i.e.,

uµT
µν = ρuν . This implies that uµΠµν = 0. This really amounts to a choice of rest frame of

the fluid. In general, one can choose the velocity of the fluid to be either in the direction of

energy flow (Landau frame) or in the direction of charge flow (Eckart frame). One can then

show that the charge diffusion in one frame is related to the heat flow in the other frame.

Here we don’t have any conserved charges so the Landau frame is the only possibility.

As before, taking the projection of the conservation equation of the stress tensor (5.8)

in the direction parallel and orthogonal, respectively, to the fluid velocity we get

Dρ+ (ρ+ p)∇µu
µ + ΠµνDµuν = 0, (5.14)

(ρ+ p)Duµ +Dµp+ hµλ∇νΠ
νλ = 0. (5.15)

We still need to find what the dissipative contribution Πµν to the stress tensor is. So far we

have not used the fact that we are dealing with the fluids which are in local thermodynamic

equilibrium. Local energy density ρ, local pressure p and local temperature T of the fluid

are related to its entropy density s by the following thermodynamical relations,

sT = ρ+ p,

Tds = dρ. (5.16)

We can derive what the viscous stress Πµν looks like by asserting that the fluid should

follow the second law of thermodynamics, i.e., defining the entropy current in equilibrium

as sµ = suµ, we demand that ∇µs
µ ≥ 0. Using equation (5.16) in (5.14) gives

∇µ (suµ) = − 1

T
ΠµνDµuν (5.17)
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Now decompose Πµν into it’s trace-free and the trace parts as

Πµν = πµν +
1

3
Πhµν , (5.18)

where Π = Πµνhµν is the trace of Πµν . Now define an operator P µν
αβ that projects a tensor

of second rank to its symmetric traceless part as

P µν
αβ tµν =

(tαβ + tβα)

2
− 1

3
hαβt

λ
λ. (5.19)

Thus the divergence of the equilibrium entropy current can be written as

∇µ (suµ) = − 1

T
πµνPαβ

µν Dαuβ −
1

T
ΠDαuα. (5.20)

The second law of thermodynamics ∇µs
µ ≥ 0 will be ensured if

πµν = − 2ηP µν
αβD

αuβ and

Π = − ξDαuα,

with η ≥0 , ξ ≥ 0. (5.21)

Comparing with the non-relativistic case discussed earlier, we recognize η and ξ as the

coefficients of shear and bulk viscosity, respectively. The entropy balance law can now be

written as

∇µ (suµ) =
2η

T
Pαβ
µν DαuβDµuν +

ξ

T
(Dαuα)2 . (5.22)
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