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Hey what else can we do now
Except roll down the window
And let the wind blow back your hair
Well the night’s busting open
These two lanes will take us anywhere
We got one last chance to make it real
To trade in these wings on some wheels
Climb in back, heaven’s waiting on

down the tracks
Come take my hand
We’re riding out tonight to case the

promised land.

Bruce Springsteen





Abstract

According to the currently accepted paradigm, astrophysical black holes are described by the
vacuum solutions of the Einstein equations of general relativity that were first obtained by
Kerr (1963). Surprisingly, astrophysical black holes are very simple objects, characterized by
only two parameters: their mass M and their angular momentum (or spin) χ. Observations
suggest that black holes exist only in two well separated mass ranges: stellar-mass black
holes with M ∼ 10M� and supermassive black holes with M ∼ 106− 1010M�. Stellar-mass
black holes result from the gravitational collapse of the most massive stars: when nuclear
reactions exhaust the available fuel, these stars explode as Supernovae, leaving black holes
as remnants. On the other hand, supermassive black holes are hosted by galaxies in their
central bulges: their origin is probably cosmological and their growth is due to accretion and
repeated merging events. In both mass ranges, black holes can form binary systems. If the
separation between the two black holes is small enough (a . 0.001 pc in the supermassive case
and a . 50R� for stellar-mass black holes, where a is the binary separation), the evolution
of the binary is ruled by gravitational-wave emission, that carries energy away from the
system leading to a merger. At wider separation the evolution is dominated by interactions
with the astrophysical environment, which can alter the black-hole parameters: mass, spin
magnitude and spin orientation. In this thesis we study the impact of the astrophysical
environment on the orientation of spins in black-hole binaries, both in the stellar-mass and
in the supermassive range. The physical interactions of the binary with its environment are
very different in these two ranges. Stellar-mass black-hole binaries result from the evolution
and explosion of stars in binary systems; supermassive black-hole binaries are the result
of galaxy mergers, and in general they interact with huge amounts of gas in the form of
accretion discs.

After a black-hole merger, the final black hole will have a recoil velocity (or kick) due to
the non-isotropic emission of linear momentum during the inspiral and merger phase. Kicks
can be as large as ∼ 4000 km/s (González et al. 2007a; Campanelli et al. 2007a) if the black
holes have nonzero spin. This could be particularly critical in the case of supermassive
black holes: kicks of this magnitude can exceed the escape velocity of even the most
massive galactic bulges (Merritt et al. 2004), opening the possibility that black holes could
be expelled from their galaxies. The key element to determine the likelihood of superkicks is
the alignment between the individual black-hole spins before merger and the orbital angular
momentum of the binary, since the recoil velocity depends strongly on the spin orientation: in
particular, superkicks will be less likely in the case of partial alignment. Black-hole mergers
are expected to occur in gas-rich environments, where circumbinary discs play a key role
in bringing the binary to separations close enough for gravitational-wave emission to drive
the final coalescence. Accretion discs affect also the mutual orientation of each black-hole
spin through Lense–Thirring precession and viscous torques (Bardeen and Petterson 1975;
Rees 1978). If the spin is initially misaligned with the angular momentum of the disc, the
inner disc is efficiently aligned by the presence of the black holes, while the outer disc retains
its initial orientation: the disc is now warped (Pringle 1992), and the propagation of these
warps can alter the orientation of the spin. If the alignment timescale is at least comparable
with the merger timescale, the black holes retains a certain misalignment, which can produce
large recoil velocities.
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The alignment timescale was found by Natarajan and Pringle (1998) in the case of small-
amplitude (linear) warps and used in detailed analyses by Perego et al. (2009) and Dotti
et al. (2010). We generalize their results using the non-linear theory of warp propagation
developed by Ogilvie (1999) and verified numerically by Lodato and Price (2010). Large ini-
tial misalignments in the Bardeen–Petterson geometry would inevitably produce discs with
a sizable warp, for which the linear approximation is inappropriate. The non-linear theory
predicts lower values for the warp-propagation coefficient α2, and introduces a new key de-
pendence on the initial misalignment. We perform Monte Carlo simulations of randomly
distributed spin directions and accretion rates, varying the viscosity of the disc and the
magnitude of the black-hole spin. We consider both co- and counter-aligned discs, by care-
fully modeling the accretion efficiency (Bardeen 1973; King et al. 2008). As the spin grows,
the alignment timescale becomes comparable with typical merger timescales (∼ 107 yrs; Es-
cala et al. 2005; Dotti et al. 2009b): highly spinning black holes are more likely to receive
superkicks and to be expelled by galaxies. From this point of view, the current lack of
observational recoiling candidates (Komossa 2012) could indicate that black-hole spin mag-
nitudes are low, as suggested by the chaotic-accretion scenario (King and Pringle 2006) and
by predictions based on the Soltan argument (Soltan 1982; Yu and Tremaine 2002). Our
assumptions have been tested against the Scheuer and Feiler (1996) disc solution, which
however relies on the assumptions that warps propagate linearly. Steady-state solutions
which account for the non-linear theory in a self-consistent way are not available at the
moment. We hope our work could stimulate further studies in this direction.

Our main motivation for studying spin alignment of stellar-mass black-hole binaries
consists in the imminent birth of gravitational-wave astronomy. Ground-based gravitational-
wave detectors such as Advanced LIGO and Virgo are expected to perform the first direct
detection (of gravitational waves) in the next few years. Gravitational-wave signals need
to be extracted from noisy data using matched filtering, which consists of computing the
cross-correlation between the output coming from the detector and a predicted theoretical
waveform, or template. Detection rates increase by a factor ∼ 30 to ∼ 100 if matched filter-
ing is used, but a detailed knowledge of the incoming waveform is required (Sathyaprakash
and Schutz 2009). A template bank for efficient gravitational-wave detection of a black-hole
binary depends in general on 17 different parameters, 4 of which define the spin orientations.
If the evolution of the binary can cluster the spin parameters in certain regions of the pa-
rameter space, gravitational-wave data analysts could place more templates in these regions,
thus increasing the efficiency of possible detections. In the slow-motion/weak-field regime
(i.e. from a ' 1000GM/c2 to a ' 10GM/c2, where M is the total mass of the binary), the
evolution of the binary can be followed by solving the Einstein field equations using a series
expansion in v/c (where v is the orbital velocity and c is the speed of light). This post-
Newtonian approximation is currently used to build LIGO and Virgo templates (Buonanno
et al. 2009). A leading effect in post-Newtonian evolution was discovered by Schnittman
(2004) and developed by Kesden et al. (2010a,b) and Berti et al. (2012b). During the post-
Newtonian inspiral, black-hole binaries can transition through coplanar equilibrium solutions
of the post-Newtonian equations and remain locked in these resonant configurations. The
presence of such resonances is a natural physical mechanism to cluster samples of binaries
with well defined spin orientations: both the spins and the orbital angular momentum tend
to lie in the same plane just before merger. The effect of resonances strongly depends on the
initial conditions of the post-Newtonian inspiral, i.e. on the formation history of the binary.
A unified treatment is therefore necessary.

Here we study the interplay between astrophysics (at large separations) and general rel-
ativity (at small separations) to determine the spin configurations when binaries become
detectable. We develop a simple astrophysical model to investigate the influence of astro-
physical formation scenarios on the precessional dynamics of spinning black-hole binaries,
focusing on resonant effects. Stellar-mass black holes are formed from the core collapse of
massive stars. Asymmetric supernova explosions in binaries tilt the orbital plane, therefore
modifying the spin orientations (Kalogera 2000). Once spin-orbit misalignments are intro-
duced, the direction of the spins is further modified by tidal interactions (Hurley et al. 2002;
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Figure 0.1: Schematic summary of our predictions for the spin orientation of stellar-mass
black-hole binaries as they enter the Advanced LIGO/Virgo band.

Dominik et al. 2012). Tides are critical when the system is formed by a black hole and
a stellar companion. Since the physical dimensions of the black hole are negligible, tides
tend to align only the spin of the star, introducing a critical asymmetry between the two
binary members. We generate samples of binaries using different formation scenarios, and
we evolve them numerically by integrating the post-Newtonian equations of motion (Kidder
1995; Arun et al. 2009). Under the assumption that tidal interactions are efficient, we find
that spin-orbit resonances should efficiently lock black-hole binaries in a "resonant plane" by
the time they become detectable by gravitational-wave interferometers. This resonant plane
is identified by the conditions ∆Φ = 0◦ or ∆Φ = ±180◦, where ∆Φ is the angle between the
components of the black-hole spins in the plane orthogonal to the orbital angular momen-
tum. If tides are artificially removed from our simulations, binaries do not lock into resonant
configurations, but rather their spins freely precess during the whole inspiral. Precessional
motion slows down when ∆Φ = ±90◦, so binaries tend to pile up in these configurations.
We also find that spin orientations encode information on mass-transfer events. If mass
transfer between the binary members has been strong enough to produce mass-ratio rever-
sal (so that the heavier black hole is produced by the initially lighter stellar progenitor),
when black-hole binaries enter the sensitivity band of gravitational-wave detectors the two
spins are aligned with each other, i.e. θ12 ∼ 0◦. On the other hand, if mass transfer is
not efficient, binaries are expected to retain larger spin-spin misalignment angles even in
the late inspiral. If the angles ∆Φ and θ12 can be accurately measured for a large sample
of gravitational-wave detections, their distribution will constrain models of compact-binary
formation. In particular, it will tell us whether tidal interactions and mass transfer in mas-
sive binary stars are efficient (Fig. 0.1). Therefore our model offers a concrete observational
link between gravitational-wave measurements and astrophysics. We also hope that it will
stimulate further studies of precessional dynamics, gravitational-wave template placement
and parameter estimation for binaries locked in the resonant plane.

This thesis has led to two scientific publications (Lodato and Gerosa 2013; Gerosa et al.
2013).

We organize our presentation as follows. Chapter 1 is dedicated to a review of the main
properties of astrophysical black holes, focusing on spin effects. Supermassive black-hole
mergers are introduced in Chapter 2, while in Chapter 3 we treat accretion discs around black
holes and we discuss different warp-propagation theories. The alignment timescale between
the spin of a supermassive black hole and its surrounding accretion disc is the main subject
of Chapter 4, where we also present results from our Monte Carlo simulations. In Chapter
5 we show that a unified treatment is needed to model the evolution of the spins during
the inspiral of stellar-mass black-hole binaries. We review the main properties of spin-orbit
resonance in Chapter 6, where some test simulations are also presented. Finally, Chapter
7 discusses the predictions of our astrophysical model for the formation and evolution of
stellar-mass black-hole binaries.
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Chapter 1

Spinning black holes

Initially introduced as pure mathematical solutions of the Einstein field equations, black
holes (BHs) are observed in the Universe only in two well separated mass ranges1: stellar-
mass BHs with M ∼ 1 − 100M� and supermassive black holes (SMBHs) with ∼ 106 −
1010M�. Theoretical predictions do not restrict in any way BH masses to be in these two
mass range: primordial BHs (Carr 2005) and intermediate-mass BHs (Miller and Colbert
2004) have also been predicted, but their existence is still a controversial topic. Even if their
interactions with the astrophysical environment can be extremely complicated, astrophysical
BHs are surprisingly simple objects defined by only two parameters: their mass and their
angular momentum.

In this Chapter we introduce the main properties of astrophysical BHs, focusing on their
spin effects. The Schwarzschild and the Kerr metrics are firstly introduced, together with
the precessional motion of particles in their spacetimes. We then describe the experimental
evidence for the existence of BHs in the Universe and the current measurements of their
masses and spins. Gravitational-wave (GW) searches are introduced as promising channel
to detect weak- and strong-field effects from compact objects (and BHs in particular). As
relativists usually do, in this Chapter we will often use geometrical units G = c = 1. We
will occasionally restore the fundamental constants to show some physical quantities.

1.1 Spin effects in black hole spacetimes

We introduce the Schwarzschild and the Kerr metrics to describe astrophysical BHs. Ef-
fects related to BH spin and/or the spin of a test particle orbiting around a BH are briefly
described: these include the Penrose process, geodetic precession and Lense-Thirring pre-
cession.

1.1.1 Schwarzschild metric
Within Einstein’s theory of general relativity (GR), the spacetime is assumed to be a 4-
dimensional Lorentzian manifold. The spacetime outside a spherically symmetric body was
first described by Schwarzschild (1916), only a few months after the publication of the
Einstein field equations. In a suitable set of coordinates (t, r, θ, φ), the line element of the
Schwarzschild geometry is (for a formal derivation, see e.g. Wald 1984)

ds2
Sch = −

(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 dφ2) . (1.1)

It has the following important properties (e.g. Misner et al. 1973; Carroll 1997):
11M� ' 1.989× 1033 g and 1R� ' 6.955× 1010 cm are the mass and the radius of the Sun, respectively.
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• Asymptotically flat. The Schwarzschild metric reduces to Minkowski’s flat spacetime
in the limit r →∞. The set of coordinates (t, r, θ, φ) has ben chosen precisely to stress
this property: they reduce to the canonical polar coordinates centered on the object
position.

• Time-independent. The metric is invariant under time translations.

• Spherically symmetric. the geometry of a two-dimensional surface of constant r and
t in the 4-dimensional Schwarschild metric describes a sphere of radius r in a flat
3-dimensional spacetime.

• Mass. The only free parameter of the Schwarzschild metric M can be associated
with the mass of the body considered. At large distances r → ∞, the gravitational
interaction described with (1.1) reduces to Newtonian gravity with a static potential

φ = −M
r
. (1.2)

• Schwarzschild radius. The geometry presents an event horizon at r = 2M , which is
called the Schwarzschild radius. It can be shown (Kruskal 1960) that the singularity
of the metric (1.1) at

r =
2GM

c2
' 3

(
M

M�

)
Km , (1.3)

is only a coordinate singularity and it turns out to be an event horizon, i.e. the
boundary of two detached spacetime regions (for a mathematical definition of event
horizon, see Townsend 1997). A curvature singularity is present at r = 0, but it is
screened by the event horizon and thus inaccessible from our Universe.

• Uniqueness. Any spherically symmetric solution of the Einstein vacuum field equations
must be static and asymptotically flat (Birkhoff and Langer 1923), and it is necessarily
equivalent to the Schwarzschild metric (Israel 1967). This result basically generalizes
Gauss’s theorem to GR; a complete proof is reported in Hawking and Ellis (1973).

1.1.2 Kerr metric

The assumption of spherical symmetry underlying the Schwarzschild geometry can be re-
laxed to axial symmetry, which is more appropriate for rotating objects. The related metric
was first written down by Kerr (1963)

ds2
Kerr = −r

2 − 2Mr + χ2M2 − χ2M2 sin2 θ

r2 + χ2M2 cos2 θ
dt2 +

r2 + χ2M2 cos2 θ

r2 − 2Mr + χ2M2
dr2

+
(r2 + χ2M2)2 − (r2 − 2Mr + χ2M2)χ2M2 sin2 θ

r2 + χ2M2 cos2 θ
sin2 θ dφ2

+ (r2 + χ2M2 cos2 θ)dθ2 − 4χM2r sin2 θ

r2 + χ2M2 cos2 θ
dtdφ ,

(1.4)

The Kerr metric has two free parameters, M and χ. We chose the set of coordinate
proposed by Boyer and Lindquist (1967), for which it is straightforward to obtain the
Schwarzschild metric in the limit χ = 0, and the Minkowski spacetime if r → ∞. As in
the Schwarzschild case, M is the mass of the object, while χ is related to the total angular
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momentum of the spacetime J

J = χ
GM2

c
Ĵ , (1.5)

where Ĵ in a unit vector along the θ = 0 direction. The Kerr solution thus describes the
spacetime structure around a rotating BH: J is commonly called the "spin" of the BH and
χ is the "dimensionless spin". The polar axis of the coordinates coincides with the rotation
axis.

The solution(1.4) presents two horizons at

r± = M
(

1±
√

1− χ2
)
, (1.6)

while r = 0 is a curvature singularity. It is believed that every singularity in nature must
be screened by an event horizon (cosmic censorship conjecture, Penrose 1969): this restricts
the parameter χ to the range

0 ≤ χ ≤ 1 , (1.7)

in order to have at least one real solution of Eq. (1.6). Moreover, it can be shown that Kerr
solutions with χ > 1 are unstable (e.g. Pani et al. 2010). The condition χ ≤ 1 has also a
heuristic explanation: equality corresponds to the maximum (Newtonian) angular frequency
for a body of mass M , radius R ∼ GM/c2 and moment of inertia ∼ MR2. The solution
with χ = 0 corresponds to the non-rotating case, while the one with χ = 1 is called "extreme
Kerr BH".

The Kerr metric can be expanded as a Taylor series around χ = 0 to describe slowly
rotating bodies. To first order in χ we have

ds2
Kerr = ds2

Sch −
4χM2

r
sin θ2dφdt+O(χ2) , (1.8)

where ds2
Sch is the non-rotating metric (1.1).

1.1.3 Penrose process
While a static observer can get arbitrarily close to a Schwarzschild BH, this is not possible
for a Kerr BH. The effect is known as "frame dragging" (Thirring 1918; Lense and Thirring
1918; Thirring 1921). An observer located at separations r < re, where re is the ergosphere
boundary

re = M
(

1±
√

1− χ2 cos2 θ
)
, (1.9)

must move in the direction of the rotation of the BH. The spacetime is dragged by the BH
rotation, along with all observers in it. Since re > r+, the ergosphere is a region outside the
event horizon, and thus accessible from our Universe. In other words, an observer should
move faster than the speed of light to remain stationary with respect to another observer at
r =∞. It can be shown that test particles orbiting in this region must have negative energy
and negative angular momentum.

Penrose (Penrose 1969; Penrose and Floyd 1971, see also Wagh and Dadhich 1989; Schutz
2009) pointed out how the existence of an ergosphere allows energy and angular momentum
extraction from a spinning BH. Imagine dropping an unstable particle toward a Kerr BH,
with zero orbital angular momentum. Inside the ergosphere it decays into two particles.
One of the two particles falls into the BH, caring its negative angular momentum across
the event horizon. If the other particle can escape from the ergosphere, it must then have
positive angular momentum. Since the total angular momentum of the spacetime must be
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conserved, the process necessarily involves a decrease in the BH spin.The same argument is
valid for the energy of the particles, decreasing the BH mass. This conservation process can
reduce the BH mass up to a final irreducible mass (Christodoulou 1970)

M2
irr =

1

2
M2

(
1 +

√
1− χ2

)
(1.10)

by the time all the angular momentum is extracted.

1.1.4 Geodetic precession

Besides gravitational attraction, BHs can act on their astrophysical environment by mod-
ifying the angular momentum of the surrounding particles. We review here two different
effects, both of which cause a precessional motion of a test gyroscope in a BH spacetime.
Derivations are carried out exactly only in simple cases, following Weinberg (1972) and
Hartle (2003): we will refer to the complete results throughout this work when necessary.

Geodetic precession (de Sitter 1916b) is a consequence of the presence of a conserved
space-like vector around a BH. Let us consider a test gyroscope or test spin in the Schwarzschild
metric (1.1); a generalization to the Kerr metric can be found in Tsoubelis et al. (1986),
Semerák (1999) and Kyrian and Semerák (2007).

In a frame where the test particle is at rest, the gyroscope spin is described by a space-like
vector sα = (0, s) moving in the background metric with a timelike 4-velocity uα = (1,0).
Thus the conditions uαsα = 0 holds, which must be true in any frame. We call S the
magnitude of the s vector, S ≡ √sαsα.

In a coordinate basis where the metric is (1.1), the GR equations of motion for the test
spin read

dsα

dτ
+ Γαβγs

βuγ = 0 , (1.11)

where τ is the proper time (i.e. the time in the local inertial frame) and the Γs are the
Christoffel symbols (cf. Eq. 1.31) of the Schwarzschild metric. For simplicity we restrict
to the case where the test spin is moving on a circular orbit of radius R on the equatorial
plane (θ = π/2). The only non-vanishing spatial part of uα = dxα/dτ is in the φ-direction,
uφ = Ωut. The angular frequency Ω, formally defined as Ω ≡ dφ/dt, is related to the BH
mass M and to the orbital radius R through Kepler’s third law, which is still valid for
circular orbits around a Schwarzschild BH (e.g. Hartle 2003): Ω2R3 = M .

We will solve now Eq. (1.11) for the four components of s = (st, sr, sθ, sφ), taking as
initial condition a test spin pointing in the r-direction. Initially sθ = 0, and sθ must remain
zero because the problem is symmetric with respect to the equatorial plane. The equation
uαsα = 0 can be solved for st, yielding

st = R2Ω

(
1− 2M

R

)−1

. (1.12)

The gyroscope equation (1.11) can then be expanded on the coordinate basis, and it results
in two differential equations for sr and sφ:

dsr

dt
− (R− 3M)Ωsφ = 0 , (1.13)

dsφ

dt
+

Ω

R
sr = 0 , (1.14)

where we used dt = utdτ . The solution of the above equations with the initial condition
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sφ = 0 is

sr(t) = S

(
1− 2M

R

)1/2

cos(ΩGP t) , (1.15)

sφ(t) = −S
(

1− 2M

R

)1/2(
Ω

Ω′R

)
sin(ΩGP t) , (1.16)

where

ΩGP =

(
1− 3M

R

)1/2

Ω ' Ω− 3

2

M

R
Ω . (1.17)

The first factor is the revolutionary motion around the BH mass M , the second terms is a
new general relativistic effect: the spin components precess in the equatorial plane. After
an orbital period P = 2π/Ω, the test spin will return to the initial spatial position rotated
by an angle

∆Φ = 2π − PΩGP = 2π

[
1−

(
1− 3M

R

)1/2
]
, (1.18)

which reduces to 3πM/R in the weak-field limit (M/R� 1).

1.1.5 Lense-Thirring precession

Besides geodetic precession, a new effect arises if a test spin is orbiting around a Kerr
BH. Lense-Thirring precession (Thirring 1918; Lense and Thirring 1918; Wilkins 1972) is
produced by the coupling between the angular momentum of the particle and the BH spin.
The following derivation is carried out in the slowly-rotating regime (Hartle 2003); the
general case can be found e.g. in Merloni et al. (1999).

In the previous Section we studied geodetic precession by solving the geodetic equations
(1.11) in the Schwarzschild metric, i.e. we considered the zeroth order in an expansion
around χ = 0 of the Kerr metric. Let us now consider now correction linear in χ. It is
convenient to express the Kerr metric in the small-χ limit (1.8) using Cartesian coordinates
(t, x, y, z), related to the previous ones (t, r, θ, φ) by the familiar relations

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ ,

(1.19)

so that the rotation axis θ = 0 corresponds to the z axis. The metric (1.8) becomes

ds2
Kerr = ds2

Sch −
4χM2

r2

xdy − ydx
r

dt+O(χ2) . (1.20)

We are interested in solving the gyroscope equation (1.11) only at the dominant post-
Newtonian (PN) order. We postpone the treatment of the PN approximation to Sec. 6.1,
because it will be one of the main topics of the second part of this work. Loosely speaking,
physical quantities in GR can be expanded as a series in v/c (where v is the orbital angular
velocity and c the speed of light), and only the leading-order terms are considered. New-
tonian gravity is obtained to zeroth order in this expansion. In geometrical units, circular
orbits v2/c2 = M/r. The spin χ appears in (1.20) multiplied by a factor M2, thus the linear
order in χ correspond to a PN order M2/r2. All the terms containing M/r in ds2

Sch will
be coupled to χ in terms like χM3/r3, which are not the dominant (first) PN order. As a
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consequence, the calculation can be carried out setting M = 0 in ds2
Sch, i.e. using the flat

metric in cartesian coordinates

ds2
flat = −dt2 + dx2 + dy2 + dz2 , (1.21)

which simplifies the algebra.
We consider for simplicity a test particle freely falling along the z axis, with its spin lying

the xy plane. The only non-vanishing components of uα and sα are respectively ut, uz, sx
and sy. Eq. (1.11) restricted on the z axis leads to

dsx

dt
= −2χM2

z3
sy , (1.22)

dsy

dt
=

2χM2

z3
sx , (1.23)

which is equivalent to a precession equation for the 3-dimensional vector s

ds

dt
= ΩLT × s . (1.24)

The frequency of the Lense-Thirring precession is therefore

ΩLT =
2G2χM2

c3z3
Ĵ , (1.25)

where z is the distance between the test spin and the mass M .
Geodetic precession (1.17) is an effect of order R(ΩGP−Ω) ∼M/r, while Lense-Thirring

precession is a higher-order PN corrections RΩLT ∼M2/r2. We will find the same terms in
the PN evolutionary equations treated in Sec. 6.2.

Both effects are present in general around a rotating body, and they combine in the total
precession rate (Schiff 1960). Even if very small, both geodetic and Lense-Thirring preces-
sional angles due to the Earth gravity have been measured. Measurements carried on with
the LAGEOS (Laser Geodynamics Satellites) found precessional rates which agrees within
10% with the values predicted in GR (Ciufolini and Pavlis 2004). The Gravity Probe B

Figure 1.1: Gravity Probe B final results (Everitt et al. 2011). The Gravity Probe B exper-
iment measured both geodetic precession and Lense-Thirring precession on four gyroscope
around the Earth. Results are in spectacular agreement with the general relativistic predic-
tions.
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experiment (Everitt et al. 2011; Will 2011) carried four precision gyroscopes for 16 months
on a polar orbit at 642 Km above the Earth surface (Fig. 1.1). Gravity Probe B results are
a spectacular experimental confirmation of GR predictions in the weak-field limit. Analysis
of the data gave a geodetic drift rate of 6601.8 ± 18.3 mas/yr and a frame-dragging drift
rate of 37.2 ± 7.2 mas/yr, to be compared with the GR predictions of 6606.1 mas/yr and
39.2 mas/yr, respectively2.

1.2 Black holes revealed

We briefly outline here the main astrophysical evidence for the existence of BHs. More details
can be found in the review articles by Blandford (1987), Celotti et al. (1999), Narayan (2005),
Berti et al. (2009) and references therein.

The main evidence that BHs are really present in our Universe comes from mass measure-
ments, both for stellar-mass BHs (Sec. 1.2.1) and SMBHs (Sec. 1.2.2). Some spin estimates
are also available today. However, the difficulty of such measurements and the strong depen-
dence on the underlying astrophysical models make spin estimates still very controversial
(Sec. 1.2.3).

1.2.1 Stellar-mass black holes in X-ray binaries
Stellar-mass BHs are extremely important in astronomy, because they are thought to the
be one of the evolutionary endpoints for massive stars, and the collapse of their progenitor
stars enriches the Universe with heavy elements (e.g. Woosley et al. 2002). Since neutron
stars (NSs) cannot be more massive than about 3M� (e.g. Rhoades and Ruffini 1974),
mass measurements of compact objects above this limit are indirect observations of BHs.
The first observation of a stellar-mass BH was announced in 1972 using X-ray and optical
observations of the source Cygnus X–1 (Bolton 1972; Webster and Murdin 1972). Today
∼ 50 systems are known to host a compact object too massive to be a neutron star (Özel
et al. 2010). This is a small sample of a total number of ∼ 108 to 109 stellar-mass BHs that
are believed to exist in the Milky Way (Brown and Bethe 1994; Timmes et al. 1996). All
those candidates have been identified in X-ray binaries, i.e. binary systems with an unusual
strong X-ray emission. The X luminosity (often close to Ledd ∼ 1038erg) and their short
time variability (∼ ms), support a model where X rays are supplied by accretion onto a
compact object from a stellar companion. The key measurement to identify Cygnus X–1
and the other candidates as BHs was an estimate of its mass. Broad reviews on X-ray
binaries can be found in Remillard and McClintock (2006) and Psaltis (2006).

The main observable used to measure the mass of X-ray sources is the radial velocity
of the optical counterpart. Let us suppose we are observing a binary system made up by
an X emitter (the BH) of mass Mx and an optical companion of mass Mc. When the
optical companion is identified, e.g. the supergiant HD226868 associated with Cignus X-1,
the radial velocity curve is obtained through Doppler measurements. The orbital period P
and the radial velocity amplitude vr of the optical companion combine in the mass function
equation

f(Mx) =
P

2πG
vr =

M3
x sin3 i

(Mc +Mx)2
. (1.26)

If an estimate of the companion star massMc is available, e.g. from stellar structure analysis,
a lower limit on the mass of the X emitter Mx can be obtained. The main uncertainty here
arises from the (usually unknown) inclination angle i.

We report in Fig. 1.2 experimental results for the stellar-mass BH population in the
Milky Way. Many X-ray binaries present a compact object with a measured (or estimated)
mass beyond 3M�, which is commonly interpreted as a stellar-mass BH.

21 mas = 4.848× 10−9 rad.
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Figure 1.2: Observed stellar-mass BHs in the Milky Way (left panel, Casares 2007) and
BH mass distribution compared with the core collapse model by Fryer and Kalogera (2001)
(right panel, Casares 2007).

1.2.2 Supermassive black holes in AGNs and the case of SgrA*

Evidence of the existence of SMBHs comes from several energetic phenomena involving
galactic cores, globally referred to as active galactic nuclei (AGNs) (for historical remarks
on SMBH discoveries, see Melia 2003). In general, if the luminosity emitted by a source
varies coherently on a given timescale timescale T , the different parts of the source must
have had enough time to communicate with each other on that timescale. Causality implies
that any signal within the source cannot propagate faster than the speed of light: this sets
an upper limit on the physical dimensions of an astrophysical source of L < Tc. The main
feature of the AGN phenomenon is the inferred compactness of the sources: luminosities
of the order of ∼ 1048erg/s are emitted from regions smaller than a light-year (∼ 1018cm).
The tighter constraint is set by X-ray radiation variability, which in some cases can occur
in less than one hour.

Two main facts suggest that AGNs could be powered by BHs (e.g. Begelman et al.
1984). First, efficient mass-to-light conversion is required to satisfy the observed luminosities:
nuclear fusion has an efficiency of only 0.7%, while accretion onto BHs could reach even
40% (Sec. 3.2.1). Single super-massive objects with a mass in the range ∼ 106 − 1010M�
can explain the observed luminosities easier than any other hypothesis, such as compact
star clusters. Second, collimated structures (jets) are often associated with AGNs: the
existence of jets requires the presence of a stable axis. Spinning BHs are therefore a promising
hypothesis to explain these phenomena, with jet emission occurring along the spin axis.

Blandford and Znajek (1977) suggested that the Penrose process (Sec. 1.1.3) could be
invoked to explain the presence of jets in AGNs. They consider a spinning BH surrounded
by an accretion disc containing a magnetic field. The magnetic field facilitates the creation
of positron/electron pairs inside the ergosphere, thus extracting energy from the BH by
means of the Penrose process. A particle of each pair escapes, forming the energetic jets. In
this way, AGN jets might be powered by energy extracted from the BH rotation (Rawlings
and Saunders 1991; Nagar and Wilson 1999; Armitage and Natarajan 1999; Kinney et al.
2000; Tchekhovskoy et al. 2011). The issue is currently debated. Jet drivers might be the
disc accretion energy rather than the BH spin (Blandford and Payne 1982; Livio et al. 1999;
and Sec. 3.2.1). Jets are indeed observed in protostellar discs, where no BHs are present
(Herbig-Haro objects, see Reipurth and Heathcote 1997 for a review).

SMBHs are today thought to be present at the center of most, if not all, galaxies (Kor-
mendy and Richstone 1995; Magorrian et al. 1998; Ferrarese and Ford 2005) including our
Milky Way. The most convincing proof of the existence of BHs comes precisely from the
SMBH at the Galactic center, associated with the radio source Sgr A*. The Milky Way
SMBH is an enormous source of discoveries and progress in astrophysics (e.g. Melia and
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Falcke 2001; Genzel 2007; Reid 2009; Genzel et al. 2010). Since the distance to the Galactic
Center is about 105 times closer than the nearest quasar, high-resolution observations of
the Milky Way nucleus yield much more details and specific information than possible in
any other galaxy nucleus. The central few parsecs of our Milky Way contain a dense and
luminous star cluster, as well as several components of neutral, ionized gas. The discovery
of the radio source SgrA* was made by Balick and Brown (1974) with the National Radio
Astronomy Observatory and later confirmed using the Westerbork Radio Telescope (Ekers
et al. 1975) and the Very Large Baseline Interferometry (VLBI; Lo et al. 1975). Three main
line of evidence reinforce the case for the BH nature of SgrA*:

i) Evidence from gas motion. The first dynamical evidence for a central mass concentra-
tion emerged using the radial velocities of ionized gas (Wollman et al. 1977). Applying
a virial analysis to these gas velocities, Lacy et al. (1980, 1982) suggested the presence
of a central mass concentration of 2−4×106M� in the central parsec: they concluded
that this mass might be a massive BH, plausibly associated with the compact radio
source Sgr A*.

ii) Constraints from stellar orbits. Besides stellar velocity dispersion measurements (Gen-
zel et al. 1996; Haller et al. 1996a,b), the main evidence of the nature of SgrA* comes
from observations of single star orbits, which are perfectly compatible with the motion
induced by a Keplerian gravitational field from a point mass of 4.4× 106M� placed in
SgrA* (Schödel et al. 2002, 2003; Ghez et al. 2003, 2005, 2008; Eisenhauer et al. 2005;
Gillessen et al. 2009a,b). The stars closest to the Galactic center are called S-stars:
nowadays 30 orbits have been well determined (Gillessen et al. 2009b), and for one of
them (the star S2) a complete orbit is now available (Gillessen et al. 2009a). S2 is or-
biting with a period of 15.8 years, on a highly eccentric orbit around SgrA* (e = 0.88).
Its pericenter distance from Sgr A* is 17 light-hours, or 1400 Schwarzschild radii for a
4.4× 106M� BH.

iii) VLBI observations. VLBI performed the highest-resolution imaging and astrometry
measurements of the Galactic center, which places strong additional constraints on the
properties of Sgr A* (Bower et al. 2004, 2006; Shen et al. 2005; Doeleman et al. 2008).
The currently best determinations of the intrinsic size of the radio source is 0.37mas,
which corresponds to 3.7 Schwarzschild radii for a 4.4 × 106M� BH at the Galactic
center distance.

We strongly believe that BHs exists in nature because they are the only plausible way
to explain these mass measurements. However, the first direct evidence for a BH event
horizon is yet to come. An indirect argument has been proposed by Broderick and Narayan
(2006) and Broderick et al. (2009), precisely in the case of SgrA*. Matter accreting onto
a hypothetical hard surface lying outside the Schwarzschild radius, but within the upper
limit of 3.7 Schwarzschild radii set by the VLBI images, will emit some of its gravitational
energy as non-thermal radiation on the way. Once the matter hits the surface, it will shock,
thermalize, and emit all its remaining energy as black-body radiation. Since this component
is not observed, it sets an upper limit on the mass accretion rate. This limit is so low
that the observed (non-thermal) emission from the infalling gas would require an accretion
efficiency of nearly 100%. To avoid this unphysical conclusion, the central object cannot
have a physical surface, but rather an event horizon.

1.2.3 Spin measurements
Precise measurements of BH spin magnitude are a major challenge for modern astrophysics.
Four methods to measure BH spins have been proposed so far (Abramowicz and Fragile
2013):

i) fitting the continuum spectra of observed BH candidates using disc emission models
(Davis et al. 2006; Middleton et al. 2006; Shafee et al. 2006; Remillard and McClintock
2006; McClintock et al. 2006, 2011);
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ii) fitting the broadened iron line profiles with general relativistic predictions (Fabian
et al. 1989, 2000; Karas et al. 2000; Wilms et al. 2001; Fabian 2002; Miller et al. 2002,
2004; Reynolds and Fabian 2008);

iii) in the case of quasi-periodic tobjects, matching the observed frequencies to those
predicted by theoretical models (Cui et al. 1998; Abramowicz and Kluźniak 2001;
Remillard et al. 2002; Török et al. 2005);

iv) analyzing the "shadow" cast by the BH on the surface of an accretion disc (Takahashi
2004a).

The continuum fitting and the iron line methods are perhaps the best developed to date.
The former applies only to stellar-mass BH, while the latter con be applied to both classes.

In the continuum fitting method, one identifies the inner edge of the accretion disc
with the radius of the innermost stable orbit Risco, which is estimated by fitting the X-ray
continuum spectrum. Since Risco is a function of the BH spin parameter χ (Eq. 3.27-3.29),
knowing its value allows one to infer the value of χ. The following measurement however
is model-dependent, since hypotheses on the disc structure (typically Shakura and Sunyaev
1973, or Novikov and Thorne 1973) are required to carry out this procedure. It is also
essential to have accurate measurements of the distance to the source, the disc inclination,
and the BH mass (Orosz et al. 2007, 2009, 2011; Cantrell et al. 2010). The main issue of the
continuum fitting method is the uncertainty introduced by the inclination angle. The effect
of the spin on the spectrum is indeed degenerate with the effect of the inclination angle (Li
et al. 2009), that must therefore be measured independently (Steiner and McClintock 2012).

Accreting BHs present an iron line (Fe Kα) which is intrinsically narrow in frequency.
The observed energy profile of the line is shaped by both special relativistic (i.e. light
beaming and Doppler shifting) and general relativistic (i.e. gravitational redshifting) effects
into a characteristic profile which can be used to infer the properties of the BHs. Fig. 1.3
shows these effects in a schematic way.

In a nonrelativistic disc, each radius of the disc produces a symmetric double-horned
line profile. Emission comes from both approaching (blueshifted) and receding material
(redshifted) (e.g. Marsh and Horne 1988). Relativistic effects arise near the BH, where
the orbital velocities are higher. Special relativistic beaming enhances the emission of the
incoming mass, i.e. the blue peak. Two effects then contribute to the redshifting of the
line: transverse Doppler effect from the time dilation in special relativity, and gravitational
redshift from the spacetime curvature around the BH. All these effects together cause an
asymmetric broadened line profile. A sum over all the disc rings is required to obtain a final
prediction to be compared with observations. This clearly requires to adopt a model of the
disc structure upon which the Fe Kα results would depend. Predictions in the Schwarzschild
case were first made by Fabian et al. (1989), while the Kerr case is reported in Laor (1991),
Bromley et al. (1998) and Martocchia et al. (2000). The blue extent of the line is almost
entirely a function of the inclination, thereby providing a way to measure the inclination of
the disc. On the other hand, the redward width of the line is a sensitive function of the
inner radius of the line-emitting annulus Risco, which encodes the information about the spin
magnitude (Fanton et al. 1997; see also Eq. 3.27-3.29). The main issue is therefore to obtain
a proper measurement of the red wing of the line. This wing extends to lower energies for
a rapidly rotating BH because gas in this case can get closer to the event horizon, deep in
the potential well of the BH. The Fe Kα method has also the virtue of being independent of
the mass of the BH and the distance to the source.

This procedure was firstly applied by Tanaka et al. (1995) to the Seyfert Galaxy
MCG-6-30-15. Broad emission lines are today the only viable tool to measuring SMBH
spins. SMBH spin measurements seem to support a high-spin picture with χ ∼ 0.6 to
χ > 0.98. A summary of SMBH spin measurements published by January 2013 has been
collected by Reynolds (2013), and it is reported in Table 1.1. However, it is critical to note
that such observations regard only a handful of cases, and they are naturally biased in favor



1.2 Black holes revealed 25

0.5 1 1.5

Line profile

Gravitational redshiftGeneral relativity

Transverse Doppler shift

Beaming

Special relativity

Newtonian

B
R

O
A

D
IR

O
N

L
IN

E
S

IN
A

G
N

s
1149

FIG. 3.ÈThe proÐle of the broad iron line is caused by the interplay of Doppler and transverse Doppler shifts, relativistic beaming, and gravitational redshifting. The upper panel shows
the symmetric double-peaked proÐles from two narrow annuli on a nonrelativistic disk. In the second panel the e†ects of transverse Doppler shifting and relativistic beaming have been
included, and in the third panel gravitational redshifting has been included. These give rise to a broad, skewed line proÐle, such as that shown in the lower panel. A more detailed discussion
of this Ðgure is given in ° 2.2.

2000
P

A
SP

,112
:1145È1161

red νobs/νem blue

Newtonian: emission in a non-
relativistic accretion discs comes
from both approaching (blueshifted)
and receding material (redshifted) in
the same way, resulting in symmetric
a double-horned profile.

Special relativity: special rela-
tivistic light beaming increases the
number of photons coming from the
approaching material (the blue wing)
and transverse doppler shift causea a
slight global redshift.

General relativity: gravitational
redishift from particles close to
the event horizon cause further
frequency-dependent redshift. The
red wing encodes information about
RISO and thus about χ.

Line profile: contributions coming
from all the disc annuli must be con-
sidered to predict the final line pro-
file.

Figure 1.3: Broadening of the Fe Kα line profile (adapted by Fabian et al. 2000). Panels
show the observed flux as a function of the ratio between the observed frequency νobs and
the emitted frequency νem. The first three panels shows the contributions produced by two
disc rings in Newtonian gravity, considering only special relativity corrections and finally in-
cluding the general relativistic gravitational redshift. The latest panel shows an hypothetical
line profile obtained considering the emission coming from all the rings of the disc.



26 Spinning black holes

O
bject

M
/10

6M
�

χ
M
ass

R
eference

Spin
R
eference

M
rk335

1
4
.2±

3.7
0.8

3
+

0
.0

9
−

0
.1

3
P
eterson

et
al.(2004)

W
alton

et
al.(2013)

IR
A
S
00521–7054

—
>

0.8
4

—
T
an

et
al.(2012)

T
ons180

∼
8.1

0
.9

2
+

0
.0

3
−

0
.1

1
Zhou

and
W
ang

(2005)
W
alton

et
al.(2013)

Fairall9
2
5
5±

56
0.5

2
+

0
.1

9
−

0
.1

5
P
eterson

et
al.(2004)

Lohfink
et

al.(2012)
M
rk359

∼
1.1

0
.6

6
+

0
.3

0
−

0
.5

4
Zhou

and
W
ang

(2005)
W
alton

et
al.(2013)

M
rk1018

∼
14

0
0
.5

8
+

0
.3

6
−

0
.7

4
B
ennert

et
al.(2011)

W
alton

et
al.(2013)

1H
0419-577

∼
34

0
>

0.8
9

Zhou
and

W
ang

(2005)
W
alton

et
al.(2013)

A
rk120

1
5
0±

19
0.6

4
+

0
.1

9
−

0
.1

1
P
eterson

et
al.(2004)

W
alton

et
al.(2013)

Sw
ift

J0501.9-3239
—

>
0.9

9
—

W
alton

et
al.(2013)

1H
0707-495

∼
2.3

>
0.9

7
Zhou

and
W
ang

(2005)
Zoghbiet

al.(2010)
M
rk79

52
.4±

14
.4

0
.7±

0.1
P
eterson

et
al.(2004)

G
allo

et
al.(2011)

M
rk110

2
5
.1±

6.1
>

0.8
9

P
eterson

et
al.(2004)

W
alton

et
al.(2013)

N
G
C
3783

2
9
.8±

5.4
>

0.8
8

P
eterson

et
al.(2004)

B
rennem

an
et

al.(2011)
N
G
C
4051

1
.91±

0
.7

8
>

0.9
9

P
eterson

et
al.(2004)

P
atrick

et
al.(2012)

R
B
S1124

—
>

0.97
—

W
alton

et
al.(2013)

R
A
S13224–3809

∼
6.3

>
0.9

8
7

G
onzález-M

artín
and

V
aughan

(2012)
Fabian

et
al.(2013)

M
C
G
–6-30-15

2
.9

+
1
.8

−
1
.6

>
0.9

8
M
cH

ardy
et

al.(2005)
B
rennem

an
and

R
eynolds

(2006)
M
rk841

∼
7
9

>
0
.5

2
Zhou

and
W
ang

(2005)
W
alton

et
al.(2013)

Sw
ift

J2127.4+
5654

∼
1.5

0
.6±

0.2
M
alizia

et
al.(2008)

M
iniuttiet

al.(2009)
A
rk564

∼
1.1

0
.9

6
+

0
.0

1
−

0
.1

1
Zhou

and
W
ang

(2005)
W
alton

et
al.(2013)

Table 1.1: Summary of published AGN/SMBH spin measurements that pass the quality-
criteria described in Reynolds (2013). Masses are quoted with 1σ error bars whereas spins are
quoted with 90% error ranges. Many of these measurements are still debated: for instance,
the SMBH in NGC3783 has been found to have a prograde spin of χ > 0.88 by Brenneman
et al. (2011), while the analysis of Patrick et al. (2012) gives a retrograde spin of χ > 0.35.
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of large values of χ. This is because astronomers can distinguish only lines with significant
broadening.

Alternative models for the production of broad Fe Kα lines were considered by Fabian
et al. (1995), including lines from mildly relativistic outflows, the effect of absorption edges
on the observed spectrum, and broadening of the line via Compton scattering. The idea
of producing a broad line via Comptonization (Misra and Sutaria 1999) relies on the possi-
bility that the spectrum initially consists of a narrow iron line superposed on a power-law
continuum. Comptonization in a surrounding cloud with optical depth τ ∼ 4 can produce
the broad line. The cloud must be both cold (kT < 0.5 keV in order to predominatly down-
scatter rather than upscatter the incoming photons) and fully ionized. The cloud is kept
fully ionized and yet cool by postulating that the continuum source has a very luminous
optical/UV component. In another alternative model, Skibo (1997) has proposed that en-
ergetic protons transform iron in the surface of the disc into chromium and lower-Z metals,
which then enhances their fluorescent emission. With limited spectral resolution, such a line
blend might appear as a broad skewed iron line. These alternative models have been ruled
out very recently at least for the case of NGC 1365 (Risaliti et al. 2013), which is found to
host a spinning BH with χ = 0.97+0.01

−0.04.
To summarize, BH spin measurements are currently an open and very controversial topic

in modern astrophysics in both the stellar-mass and the SMBH case. A case in point is Cyg
X-1, which was initially estimated to be non-rotating (χ = 0.05 ± 0.01; Miller et al. 2009)
and later to be almost maximally spinning in a follow-up analysis performed by the same
group (χ > 0.95; Fabian et al. 2012); as well as the SMBH in NGC3783, where even the
direction is unclear: Brenneman et al. (2011) claim prograde accretion from a spinning BH
with χ > 0.88 , and Patrick et al. (2012) found a χ > 0.35 BH counter-aligned with the
accretion material.

1.3 Gravitational waves

Observational evidence for spinning BHs should come soon not only from the indirect de-
tection of light emitted via interactions with their astrophysical environment, but also from
GWs. GWs will provide a new window to Universe, that is intrinsically different from the
electromagnetic one. The Big Bang, supernova (SN) explosions, perturbed BHs and com-
pact binaries are all GW sources: the Universe is expected to be full of gravitational signals
that have not been detected yet. GW observations are very important to characterize the
spin properties of astrophysical BHs. The SMBH spin distribution could be measured very
accurately with future space-based interferometers (see e.g. Lang and Hughes 2006, 2008),
and provide precious information on how SMBHs are formed and evolve (see Hughes and
Blandford 2003, Berti and Volonteri 2008 and our discussion in Sec. 2.1.1).

We firs introduce the key ideas of GW emission, and in particular the famous quadrupole
formula first derived by Einstein himself. Then we briefly describe the Hulse-Taylor binary
pulsar as the first indirect proof of the existence of GWs. Finally we give a brief overview
of the main efforts towards direct detections.

1.3.1 Linearized gravity

GWs are ripples of curvature in the spacetime produced by the motion of massive bodies.
The existence of wavelike solutions of the GR equations was soon realized by Einstein himself
(Einstein 1916). Here and below, we use a metric signature (−,+,+,+); greek indeces vary
over the four spacetime dimensions (µ = 0, 1, 2, 3), while latin indeces vary over only the
three space dimensions (i = 1, 2, 3).

Propagation effects in the gravitational equations can be studied in the weak-field limit.
Given a metric tensor gµν and the stress-energy tensor Tµν , gravity is described by the
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Einstein field equations (in geometrical units G = c = 1)

Rµν −
1

2gµνR
= 8πTµν . (1.27)

The Ricci tensor Rµν and the scalar curvature R are defined as contractions of the Riemann
tensor Rνµρσ as follows:

Rνµρσ =
∂Γνµσ
∂xρ

− ∂Γνµρ
∂xσ

+ ΓνλρΓ
λµσ − ΓνλσΓλµρ , (1.28)

Rµν = gρσRρµσν , (1.29)

R = gµνRµν , (1.30)

where Γµνρ are the affine connections

Γµνρ =
1

2
gµλ

(
∂gλν
∂xρ

+
∂gλρ
∂xν

− ∂gνρ
∂xλ

)
. (1.31)

We assume that far from the source, gravitational effects are small, so we can write

gµν = ηµν + hµν , (1.32)

with ηµν = diag(−1,+1,+1) and |hµν | � 1. At linear order in hµν , the affine connections
and the Riemann tensor read

Γµνρ =
1

2
ηµλ

(
∂hλν
∂xρ

+
∂hλρ
∂xν

− ∂hνρ
∂xλ

)
, (1.33)

Rµνρσ =
1

2

(
∂2hµσ
∂xρ∂xν

+
∂2hνρ
∂xσ∂xµ

− ∂2hνσ
∂xρ∂xµ

− ∂2hµρ
∂xσ∂xν

)
. (1.34)

Let us now define the trace-reverse tensor

h̄µν = hµν −
1

2
ηµν (ηαβh

αβ) (1.35)

and impose the Lorenz gauge

∂h̄µν

∂xν
= 0 . (1.36)

Using (1.33) and (1.34), the Einstein field equations (1.27) can be written as(
ηρσ

∂

∂xρ
∂

∂xσ

)
h̄µν = −16πTµν , (1.37)

which is a wavelike equations with signals propagating at the speed of light. The general
solution can be built up by adding waves from δ-function sources with the standard Green-
functions method (e.g. Hartle 2003):

h̄µν = 4

∫
d3x′

Tµν(t′,x′)
|x− x′|

∣∣∣∣∣
t′=t−|x−x′|

. (1.38)

Let us now study the propagation of GWs in vacuum (Tµν = 0), for which (1.37) admits



1.3 Gravitational waves 29

plane-wave solutions: h̄µν ∝ cos [ω(t− z)] for a wave propagating along the z-axis. Being
a symmetric four-dimensional tensor, hµν has ten independent components. Four of these
are fixed by imposing the Lorenz gauge (1.36), leaving six independent components. Within
the Lorentz gauge, we can always consider a coordinate transformation xµ → xµ + ξµ such
that the four ξµ solve the wave equation without sources. There are therefore four more
conditions we can impose to simplify the metric perturbation h̄µν . More specifically, we
impose ηαβhαβ = 0 (and thus h̄µν = hµν) and hi0 = 0, working in the so-called transverse-
traceless gauge. The only two remaining independent components h+ and h× refer to the
two GW polarizations. Without loss of generality, we can consider a plane wave propagating
along the z-axis with frequency ω; then

hµν = h̄µν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 cos [ω(t− z)] , (1.39)

which can be used to construct the general solution of the linearized Einstein equations in
vacuum via a Fourier sum.

1.3.2 The quadrupole formula

We first introduce the momenta of the mass density T 00:

M =

∫
d3xT 00(t,x) , (1.40)

M i =

∫
d3xT 00(t,x)xi , (1.41)

M ij =

∫
d3xT 00(t,x)xixj . (1.42)

From the energy-momentum conservation ∂Tµν/∂xµ = 0, valid in linearized gravity, we have
that the mass M and the linear momentum ∂M i/∂t are conserved, i.e.

∂M

∂t
= 0 , (1.43)

∂2M i

∂t2
= 0 . (1.44)

Moreover we have (Buonanno 2007; Maggiore 2007)

∂2

∂t2
M ij = 2

∫
d3xT ij . (1.45)

Eq. (1.38) is the general solution of linearized gravity assuming outgoing waves. We
consider here the propagation of GWs at a space point far from a weak, slowly-moving
source. If R is the characteristic size of the source, we assume that the distance from the
source to the detector r � R and also that λ � R, where λ is the wavelength associated
with the characteristic frequency of variation of the source. In this limit, Eq. (1.38) reduces
to

h̄µν → 4

r

∫
d3x′Tµν(t− r,x′) . (1.46)

Over a limited range of angles about any direction, the wave described by equating (1.46)
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is approximately a plane wave at large r. In this limit we can apply the analysis performed
above for plane waves, where only the spatial part of h̄µν is important (cf. Eq. 1.39). From
(1.45) we have

h̄ij → 2

r

∂2

∂t2
M ij(t− r) . (1.47)

Eq. (1.43) shows that, as in the case of electromagnetic waves, where charge is conserved,
there are no monopole contributions to the radiation field. In other words, there are no
spherically symmetric waves in either electromagnetism or in gravity. However, while the
leading term in electromagnetism is electric dipole radiation, this also vanishes for gravity,
because linear momentum is conserved (cf. Eq. 1.44). The gravitational counterpart of
the magnetic moment is the angular momentum (an integral of one power of xi times the
mass/charge-current), which is also conserved. The leading multipolar order for gravitational
radiation is therefore the quadrupole term M ij , as illustrated by Eq. (1.47).

To lowest order, the form of the total power radiated in GWs can be guessed from simple
considerations (Hartle 2003). Being a wave propagation phenomenon, we expect the energy
flux (energy per unit time and unit surface) to be quadratic in the wave amplitude (1.47).
The power emitted (energy per unit time), must be quadratic in M ij and its derivatives.
The number of derivatives needed can be determined by dimensional analysis. Since in geo-
metrical units the emitted power is dimensionless, it can contain only third time derivatives
of M ij (which are also dimensionless). The only two possible quadratic terms are(

∂3

∂t3
Mij

)(
∂3

∂t3
M ij

)
and

(
∂3

∂t3
Mk
k

)2

. (1.48)

The right combinations can be guessed by the fact that energy cannot be radiated from a
spherically symmetric system, because this would violate mass conservation. For a spheri-
cally symmetric system the three axes x, y and z are all equivalent, thus

M ij
(sph) =

1

3
Mk
k δ

ij . (1.49)

The combination of the two terms Mij and Mk
k that vanishes for a spherically symmetric

system is therefore

Qij = M ij − 1

3
Mk
k δ

ij . (1.50)

In conclusion, the total power radiated P must be proportional to the quadratic contraction
of the third-time derivatives of Qij . A more careful analysis (e.g. Misner et al. 1973;
Buonanno 2007; Maggiore 2007) shows that the numerical factor is 1/5, i.e.

P =
G

5c5

〈
d3Qij
dt3

d3Qij
dt3

〉
, (1.51)

where we restored the physical units and 〈·〉 denotes the average over a period. This results
is called the "quadrupole formula".

1.3.3 The Hulse-Taylor binary pulsar
The binary pulsar B1913+16 was the first binary pulsar to be observed (Hulse and Taylor
1975). Hulse and Taylor won the 1993 Nobel prize "for the discovery of a new type of
pulsar, a discovery that has opened up new possibilities for the study of gravitation"3. The

3www.nobelprize.org/nobel_prizes/physics/laureates/1993

http://www.nobelprize.org/nobel_prizes/physics/laureates/1993/
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system is composed of two NSs, one of which is a pulsar with a flux density of about
10−26 erg s−1cm−2Hz−1 at 1400 Hz. PSR B1913+16 is the first (indirectly) measured source
of GWs; data from this source have now been available over a 35-year time span and they
are in perfect agreement with GR predictions in the weak-field limit (Weisberg and Taylor
2003, 2005).

The main observable of PSR B1913+16 are the arrival times of the pulses. Non-
relativistic analysis of arrival time data from this system yields five orbital parameters:
(i) the projected semimajor axis of the pulsar orbit a sin i, describing the dimension of the
orbit; (ii) the orbital eccentricity e, describing the shape of the orbit; (iii) the epoch of
periastron T0, describing the bodies position on the orbit; (iv) the orbital period P ; and (v)
the argument of periastron ω0, describing the orientation of the ellipse on the orbital plane.
Relativistic effects can give us three additional quantities: (vi) the mean rate of advance
of periastron 〈ω̇〉; (vii) a parameter linked to the GR time-dilation γ; and (viii) the orbital
period derivative Ṗ . The pulsar orbit is fully specified by only seven parameters, i.e six
Keplerian elements plus the total mass of the system. Taylor and Weisberg (1982, 1989)
provide the relevant formulae to compute all the orbital elements from the first seven observ-
ables just mentioned. For instance, the masses of the pulsar and companion are found to be
Mp = 1.4414± 0.0002M� and Mc = 1.3867± 0.0002M�. Note that a value for G is needed
in this evaluation, and its uncertainties are now comparable to the quoted uncertainties in
Mp and Mc (Weisberg and Taylor 2005).

The eighth measured orbital parameter Ṗ overdetermines the system dynamically, and
thus provides a test of the gravitation theory used to interpret the data. Using the quadrupole
formula (1.51), Peters and Mathews (1963) showed that at the lowest order in GR the rate
of period decrease is given by (see Sec. 5.2.1, and in particular Eq. 5.5)

Ṗ =
dP

dt
= −194π

5

G5/3

c5

(
P

2π

)−5/3

MpMc(Mp +Mc)
−1/3(1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4

)
.

(1.52)

Besides the fundamental constants G and c, all quantities in (1.52) can be either measured
or derived from the observations. The variation of the orbital period causes a secular shift
of the time at which the system is at periastron. The cumulative shift of the periastron
time is shown in Fig. 1.4, together with the theoretical predictions from Eq. (1.52). Similar
studies have also been performed other double NS systems (Lorimer 2008).

A small correction is needed to compare the measured value of Ṗ with the theoretical
value predicted in the weak-field limit of GR. This is due to the relative acceleration between
the Solar System and binary pulsar system projected onto the line of sight (Damour and
Taylor 1991), and it depends on several poorly known quantities, such as the distance and
proper motion of the pulsar and the radius of the Sun’s galactic orbit. The accuracy of the
test for gravitational radiation damping is now dominated by this correction term.

While we wait for spin effects to be detected in stellar-mass BH binaries (Sec. 5.1), the
Hulse-Taylor binary pulsar provides an indirect proof of the relativistic spin-orbit couplings.
Detailed predictions for PSR B1913+16 have been computed soon after its discovery by
Barker and O’Connell (1975b) and Esposito and Harrison (1975). As shown in Sec. 1.1, the
leading spin effect is geodetic precession, which for PSR B1913+16 has a period of ∼ 300 yr.
Assuming that the direction of the radio beam tracks the spin direction, geodetic precession
should cause a secular change in the pulse shape, as observed from Earth. Variations of
the pulse shape were reported by Weisberg et al. (1989) and these data were fitted by the
models developed by Kramer (1998) and Weisberg and Taylor (2002). Measurements are
compatible with geodetic precession as predicted in GR, with a misalignment between the
pulsar spin and the orbital angular momentum of ∼ 20◦. The theoretical calculations also
predicts that the pulsar beam will no longer intersect our line of sight by 2025.
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Figure 1.4: Orbital decay caused by GWs in the binary pulsar B1913+16 (Weisberg et al.
2010). The solid lines shows the expected shift of periastron time relative to an unchanging
orbit, according to GR at the lowest PN order. Data points represent radio measurements,
with error bars mostly too small to see.

1.3.4 Direct detections: methods and facilities
The direct detection of GWs is experimentally challenging. For example (Saulson 1994), a
pair of 1.4M� NSs near the center of the Virgo galactic cluster (15 Mpc away) in a circular
orbit of 20-km radius (i.e. with imminent coalescence) which have an orbital frequency of
400 Hz will emit gravitational waves at ∼ 800 Hz with an amplitude of the order

h ∼ 10−21

(
r

15 Mpc

)−1

. (1.53)

Therefore, GW detectors with characteristic length scales L ∼ 1 km (4 km for LIGO, 3 km for
Virgo) must perform length measurements with a precision ∆L = hL ∼ 10−18m in order to
detect GWs. This is an exceptional experimental challenge, but with the ongoing installation
and commissioning of the Advanced LIGO and Advanced Virgo detectors, direct discovery
of GWs may happen soon. Five approaches can be pursued to detect GWs in different part
of the GW spectrum (for recent reviews, see (Sathyaprakash and Schutz 2009) and Riles
2013):

i) Resonant bars. Joseph Weber (1961) pioneered design and implementation of GW
detectors, building the first resonant bar (Fig. 1.5). If two masses on a spring are mo-
mentarily stretched apart and then compressed by a GW, potential energy is imparted
to the spring. If the characteristic frequency of the wave is near the resonance fre-
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Figure 1.5: Joseph Weber working on an the very first GW detector, circa 1965 (Credit:
University of Maryland). When a GW passes through the bar, it changes the distance
between the two ends of the bar. The bar then absorbs energy from the wave, and this
makes it vibrate. Sensors around the bar detect the vibrations and turn them into electrical
signals that can be analyzed.

quency of the mechanical system, the response to the wave is magnified, and may thus
be detected. Since it is only the elastic energy that matters, the first GW detectors
were simple metal cylinders, where the energy converted to longitudinal oscillations
of the bar was measured via piezoelectric materials near the surface of the bar. The
severe technical challenges of bar detectors come fundamentally from their small size:
any detector based on the resonances of a metal object cannot be larger than a few
meters in size, and that seriously limits the size of the tidal stretching induced by
a GW. Laser interferometric detectors can instead be built on km-scales (or million
km-scale if in space). Moreover, bar detectors are sensitive only to GWs with frequen-
cies close to the fundamental frequency of the cylinder, while GW interferometers can
detect signals on a broader range of wavelengths.

Five major (cryogenic) bar detectors were operating in the late 1990s before GWs
interferometers came online (Astone et al. 2007, 2010), and only two of them are still
collecting data in 2013, since the interferometric detectors LIGO and Virgo reached
better sensitivities on a broader band.

ii) Interferometers. A simple right-angle Michelson laser interferometer is a natural GW
detector: a linearly polarized wave impinging normally to the interferometer with its
polarization axis aligned with the arms will alternately stretch one arm while con-
tracting the other. Interference patterns can then be analyzed and the properties of
the stretching GW reconstructed. The optical structure of modern interferometers
includes Fabry–Perot cavities for the interferometer arms to increase the time of ex-
posure of the laser light to GWs, introduction of a recycling mirror between the laser
and beam-splitter to increase effective laser power, and introduction of another mirror
between the beam splitter and photodetector to allow tuning of the interferometer’s
frequency response (Freise and Strain 2010; Pitkin et al. 2011). The great advantage of
GW interferometers is that a broader sensitivity band can be achieved, and thus more
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GW sources are potentially detectable. At low frequencies (. 45 Hz for the LIGO de-
tectors) the noise is dominated by seismic ground motion, despite the strong isolation
provided by the multiple stages of passive oscillators. At high frequencies (&100Hz),
quantum shot noise dominates, as determined by the Poisson statistics of photon de-
tection (Riles 2013). At intermediate frequencies important known contributions come
from the positions of the beam splitter and recycling mirrors, from thermal noise in the
suspension wires and from various sources of noise in the auxiliary electronics (Abbott
et al. 2009).

Besides the initial prototype interferometers used to demonstrate new technology de-
velopments (Saulson 1994), there are currently six major GW interferometer facili-
ties around the world: LIGO (Laser Interferometer Gravitational Wave Observatory),
which consists of two 4000-m arms interferometers and a third one with 2000-m arms,
located in the Washington and Louisiana states (Fig. 1.6; Abramovici et al. 1992;
Barish and Weiss 1999; Abbott et al. 2009; Smith 2009); Virgo a single 3000-m arms
interferometer near Pisa (Acernese et al. 2005); GEO-600 near Hannover (Willke et al.
2002) and TAMA near Tokyo (Takahashi 2004b), with arms of 600 m and 300 m re-
spectively. LIGO and Virgo scientists are currently working together on a joint col-
laboration (Abadie et al. 2012b,c; Aasi et al. 2013). The LIGO and Virgo detectors
are now undergoing major upgrades to become Advanced LIGO (Harry 2010) and
Advanced Virgo. These upgrades are expected to improve the broadband sensitivity
by about an order of magnitude, which would increase the accessible volume of the
Universe (and therefore the expected detection rate) by a factor 1000. One of the three
LIGO detectors should soon be moved to India, to improve the network baseline. An
underground 3-km interferometer (KAGRA; Somiya 2012) is under construction, and
a 10-km cryogenic underground trio of triangular interferometers (Einstein Telescope;
Sathyaprakash et al. 2012) is currently being planned.

Due to the frequency range involved, only stellar-mass BH binaries will be detected by
ground-based GW interferometers (cf. Eq. 5.10). Astrophysically interesting sensitiv-
ities to detect SMBH inspirals at lower frequencies (∼ 10−2 Hz) are unachievable on

Figure 1.6: Aerial view of the LIGO observatory in Livingston, Louisiana (USA). The large
corner building hosts the laser generator and one of the main mirror of each arm. The beam
pipes extend for 4 km in each direction covered by the arched, concrete enclosures seen in
this picture (Credit: LIGO Laboratory).
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Earth due to seismic noise. This will likely require placing interferometers in space.
The proposed LISA (Laser Interferometer Space Antenna) project foresees a triangular
configuration (roughly equilateral with sides of 5× 106 km) of three satellites. Timing
of lasers to and from each satellite would yield two linearly independent Michelson
interferometers.

iii) Pulsar timing arrays. Galactic millisecond pulsars are extremely regular clocks when
correcting for tiny, measurable spindows. Being a perturbation in the spacetime, if
GWs are present between the emitting pulsar and the observer, they will perturb the
regular structure of the pulse times. The basic concept is to treat the Earth and a
distant pulsar as opposite ends of an imaginary interferometer arm in space. The pulsar
acts as the reference clock at one end of the arm, sending out regular signals which
are monitored by an observer on the Earth over some time-scale T . The method is
thus sensitive to frequencies as low as 1/T . If more pulsars are considered, GW signals
can be separated from the timing noise of each pulsar, because the signal would be
common to all pulsars in the array. A very low-frequency (∼ several nHz) stochastic
background of GWs can therefore be detected by comparing the arrival times of many
pulsars (Lorimer 2008).

Efforts in the pulsar timing technique are currently pursued by several groups (Manch-
ester 2008; Janssen et al. 2008; Jenet et al. 2009) which are now collaborating on a
joint analysis to improve sensitivity, forming the International Pulsar Timing Array
(Hobbs et al. 2010). Recent stochastic background searches using the pulsar timing
array are reported by van Haasteren et al. (2011, 2012) and Demorest et al. (2013):
they achieve limits on a stochastic background GW amplitude h in the several-nHz
band of the order of 10−15. The important aspect is to identify systematic uncertain-
ties, some of which are instrumental (e.g., radio observatory clock synchronization)
while some are terrestrial (e.g., ionosphere effects) and some are astrophysical (e.g.,
plasma fluctuations in the intervening interstellar medium, variable pulsar torque, and
magnetospheric motions of emission regions).

iv) Spacecraft tracking. The idea is to look for anomalies in the communication data be-
tween Earth and interplanetary spacecraft. These anomalies can be due to interactions
with a GW between emission and reception of the radio signal. The sensitivity of these
searches is quite low because of atomic clock stability issue and delay caused by plasma
in the solar wind. Unlike searches performed with resonant bars and ground-based in-
terferometers, the spacecraft-tracking method applies to lower frequencies (∼ mHz)
(Armstrong 2006).

v) CMB. Signatures of gravitational waves from the Big Bang may be found in the cosmic
microwave background (CMB) temperature and polarization distributions. Detection
of these signatures is one of the main goals of the Planck mission. Since the CMB was
affected by GWs when the Universe was only a few hundred thousand years old, the
frequencies of those waves today are of order 10−16 Hz.

1.3.5 Matched filtering
Matched filtering is considered to be the optimal processing technique to detect GW signals.
We describe here the main ideas of this technique following Thorne (1987) and Owen and
Sathyaprakash (1999). In the frequency domain, a matched filter is a best-guess predicted
waveform (or template) of the expected signal divided by the interferometer’s spectral noise
density in order to emphasize those frequencies to which the interferometer is most sensitive.
The interferometer output is cross-correlated with the matched filter, and a signal-to-noise
ratio (SNR) is computed. The SNR is compared to a predetermined threshold to decide if
a signal is present in the noise. If the signal from which the matched filter was constructed
is present, then it will contribute coherently to the cross-correlation, while if only noise is
present the response is reduced.
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The task is therefore to find the way to maximize the SNR. Let us consider a GW detector
characterized by its noise spectral density Sh(f) (with dimension Hz−1), which describes the
sensitivity of the detector at a given GW frequency f . We assumed the detector output to
be x(t) = h(t) + n(t), so that a known waveform h(t) (with arrival time t0) is buried in the
instrumental noise n(t). The best possible SNR is computed in three steps:

i) One constructs the Wiener filter K(t), i.e. that function of time whose Fourier trans-
form4 is the same as the Fourier transform of the signal weighted by the noise density
of the detector, so that noisy frequencies are suppressed:

K̃(f) =
h̃(f)

Sh(f)
. (1.54)

ii) One computes the cross correlation between the output of the detector, which includes
noise and possibly a signal, and the filter:

W =

∫ +∞

−∞
K(t− t0)x(t)dt . (1.55)

iii) The previous integral can be worked out to separate into a contribution which depends
only on the noise N , and a remaining part S encoding the information from the signal
(i.e. W = N + S). The signal to noise ratio is defined as S/N , and turns out to be
(Thorne 1987) (

S

N

)2

=

∫ +∞

0

2|h̃(f)|2
Sh(f)

. (1.56)

The Wiener filter K(t) it that filter with the property to give the highest possible
SNR (Michelson and Taber 1984; Sathyaprakash and Schutz 2009).

This method of finding the highest SNR can be used only if the waveform h(t) is known, i.e.
if some previous knowledge of the GW signal is inserted in the search algorithm. Searches
are more efficient if the parameters of a filter and its shape are precisely matched with that
of a signal, as opposed to the case when no knowledge of the signal is available. If the
signal shape is completely unknown we can only Fourier transform the detector output and
compare it in a frequency bin to noise in that bin. For quasiperiodic signal (i.e. those coming
from compact binary inspirals), matched filtering can increase the SNR in proportion to the
square root of the number of signal cycles in the detector band. In typical interferometers,
matched filtering increases the detection rates by a factor 30 − 100 for compact binary
inspiral signals. A quick look at the expected rates in Table 5.2 (where the use of matched
filtering is considered) shows that the matched filtering technique is required to perform
efficient GW searches.

Detailed predictions of the incoming waveforms are needed to use the matched filtering
technique. It is therefore extremely important to model astrophysical GW sources and
predict their configurations by the time they enter the sensitivity band of the detectors
(Sec. 5.1.2).

4We define the Fourier transform of a quantity g(t) to be

g̃(f) =

∫ +∞

−∞
g(t)ei2πtf .







Part I

Spin-disc alignment
in supermassive

black-hole binaries

In my entire scientific life, extending over forty-five years, the
most shattering experience has been the realization that an exact so-
lution of Einstein’s equations of general relativity, discovered by the
New Zealand mathematician, Roy Kerr, provides the absolutely exact
representation of untold numbers of massive black holes that populate
the universe. This shuddering before the beautiful, this incredible fact
that a discovery motivated by a search after the beautiful in mathe-
matics should find its exact replica in Nature, persuades me to say
that beauty is that to which the human mind responds at its deepest
and most profound.

S. Chandrasekhar, Truth and Beauty:
Aesthetics and Motivations in Science (1987)





Chapter 2

Recoiling black holes

Numerical simulations in GR have found that spinning SMBHs could be ejected from their
host galaxies as a consequence of a merger. We firstly describe the different stages of BH
mergers and we later detail the superkick fitting formula to understand which BH spin
configurations are required to avoid BH ejections.

2.1 From galaxy to black-hole merger

The existence of scale laws suggests that a galaxy and the SMBH at its center should share
a common evolution. SMBH mergers are introduced and described as a direct consequence
of larger-scale galactic mergers.

2.1.1 Supermassive black-hole formation and scale laws

Observations show that most galaxies with bulges, if not all of them, host a central SMBH
(Kormendy and Richstone 1995; Magorrian et al. 1998; Ferrarese and Ford 2005). This
observational discovery prompts questions about the formation processes of such massive
objects in the Universe. Current modeling involves the growth of large-scale structures
from cosmological primordial perturbations. Simulations have been carried out using Press-
Schechter theory (Press and Schechter 1974; Lacey and Cole 1993), Monte-Carlo realizations
of merger trees (Kauffmann and Haehnelt 2000; Volonteri et al. 2003; Bromley et al. 2004)
and cosmological N-body simulations (Di Matteo et al. 2003, 2005).

SMBH seeds are often assumed to be remnants of the first stars formed in the Universe
at redshift z ∼ 20 (Haiman and Loeb 1998; Wyithe and Loeb 2005). Numerical simulations
suggests that stars at very early times are expected to be relatively massive, and thus
produce BH seeds with a mass of ∼ 100M� (Abel et al. 2000; Bromm et al. 2002). Optically
bright quasars have been detected up to z ∼ 6 (Fan et al. 2001, 2003, 2004, 2006) or even
z ∼ 7 (Mortlock et al. 2011) in the Sloan Digital Sky Survey. As we will see in Sec. 3.2.3,
spinning BH requires far more than 1 Gyr to reach typical SMBH masses (∼ 108M�) from
stellar-mass BH seed (∼ 100M�). These observations have prompted work on alternate
channels to explain SMBH mass build-up. Observations can be matched only if SMBHs
from stellar-mass seeds undergo brief but extremely strong growth episodes during which
the accretion rate onto them is well in excess of the Eddington rate (Sec. 3.2.2) (Volonteri
et al. 2003; Volonteri and Rees 2005; Begelman et al. 2006).

There are two possible ways to circumvent this issue: SMBH seeds are far more massive
than 100M� or in some way SMBHs grow quicker. The first possibility has been addressed by
Lodato and Natarajan (2006, 2007); Volonteri et al. (2008) and more recently by Johnson
et al. (2012). They propose a model in which SMBH seeds result from the central mass
concentrated via disc accretion in collapsed haloes at extremely high redshift ( z ∼ 10−15).
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Figure 2.1: SMBH masses are correlated with the properties of their galactic bulge. Heavier
BHs tend to be hosted by more massive galactic bulges (left panel, Häring and Rix 2004)
with larger dispersion velocity (right panel, Tremaine et al. 2002).

They found that the evolution of these discs is driven by angular momentum redistribution
induced by the development of gravitational instabilities. They predict ∼ 105M� initial
seeds, from which SMBHs with masses ∼ 109M� can be easily built up by z = 6 to power
the bright quasars observed. Alternatively, the only way to easily obtain fast-growing BHs
is to provide a mechanism according to which they can maintain low spins (see further
discussion in Sec. 3.2.3). Volonteri et al. (2005) found that SMBH mass growth is mainly due
to gas accretion rather than mergers (see below), and BH spin-up is a natural consequence
of prolonged accretion from gas-disc structures (Bardeen 1970; Thorne 1974). King and
Pringle (2006, 2007) argued that SMBHs could accrete through a sequence of randomly
oriented accretion events, rather than from a single prograde disc. If the angular momentum
of the accretion disc is misaligned with respect to the direction of the BH spin, accretion
of counter-rotating material can cause a spin-down of the hole and consequently a faster
growth.

Moreover, SMBHs and their host galaxies evolve together. Coupled evolution is suggested
by the presence of scale laws: the properties of SMBHs in galactic bulges are correlated with
the properties of the central region of their galaxies (Fig. 2.1). The mass of the BH MBH is
correlated both with the stellar dispersion velocity σ∗ within the galactic bulge (Ferrarese
and Merritt 2000; Gebhardt et al. 2000; Ferrarese et al. 2001; Tremaine et al. 2002; Gültekin
et al. 2009)

log

(
MBH

M�

)
= (8.13± 0.06) + (4.02± 0.32) log

(
σ∗

200km/s

)
; (2.1)

and with the mass of the bulge itself (Magorrian et al. 1998; Marconi and Hunt 2003; Häring
and Rix 2004)

log

(
MBH

M�

)
= (8.20± 0.10) + (1.12± 0.06) log

(
Mbulge

1011M�

)
. (2.2)

Whether they really form from stellar-mass seed or through a different mechanism,
SMBHs are hosted into galactic bulges out to large redshifts, at least z ∼ 6. In the early
Universe, galaxies have been observed to merge with each other (e.g. Barnes and Hernquist
1992; Kennicutt et al. 1996; Conselice 2007). Moreover, galaxy mergers are predicted to be
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frequent in the present models of large-scale structure formation. In the current ΛCDM cos-
mological scenario, the Universe evolution is described by the Einstein field equations with
a non-vanishing cosmological constant Λ and a matter content mostly under the form of
cold dark matter (CDM). The Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP)
observations (Bennett et al. 2012; Hinshaw et al. 2012) indicated that 71.4% of the energy-
matter content of the Universe is contained the cosmological constant term, while 24% is
under the form of cold (i.e. moving at non-relativistic speed) dark matter and only 4.6%
is made of visible (baryonic) matter. Structures in the ΛCDM cosmological model form
hierarchically: starting from primordial fluctuations, our Universe initially developed small
structures that later combined with each other growing in mass and size. Visible mass fol-
lows the potential wells created by the evolving dark matter distribution. Only low-mass
dark matter halos are present at early times, while higher mass dark matter structure are
formed by repeated merger of the smaller ones. Galaxies associated with these merging
structures should therefore merge too. Galaxies that we see today are the final outcome of
this hierarchical growth.

After a galaxy merger, one would expect a single larger galaxy hosting two SMBHs,
coming from the two progenitor spheroids. Observations are in clear contradiction with this
picture: only ∼ 20 SMBH binary candidates have been identified (Merritt and Milosavljević
2005; Colpi and Dotti 2009; Dotti et al. 2012). Objects have been discovered because of the
presence of two resolved X- ray sources wandering in the merged galaxy (Komossa et al.
2003; Hudson et al. 2006; Barth et al. 2008; Bianchi et al. 2008; Comerford et al. 2009;
Green et al. 2010a,b), or using radio interferometry measurements (Rodriguez et al. 2009;
Maness et al. 2004). Current lack of dual-AGN observations (Van Wassenhove et al. 2012)
suggests the SMBH may form from the merger of the lighter BHs in the progenitor galaxies.
SMBH mergers could be a direct consequence of larger scale galactic mergers. We mention
however, that sub-parsec binaries are not excluded by the present observations: if SMBH
binaries stall at very low separations, they would be detected as a single AGN (Volonteri
et al. 2009; Montuori et al. 2011, 2012).

2.1.2 Dynamical, gas-dominated and gravitational-wave inspiral

The merger of two SMBHs happens in three subsequent phases (Begelman et al. 1980; Yu
2002), as summarized in Fig. 2.2. After a galaxy merger, each BH sinks towards the center
of the newly formed galaxy through interactions with the stellar environment. If a black
hole of mass MBH moves in a stellar environment where the average stellar mass is m∗ and
the velocity dispersion is σ∗, it will lose energy and sink towards the center on the dynamical
friction timescale (Chandrasekhar 1943)

tdf =
σ3
∗

8πnG2MBHm∗ log Λ
, (2.3)

where n is the number of star per unit volume and log Λ is the Coulomb logarithm, which
encodes all the uncertainties about the impact parameter (for derivation and discussion, see
Bertin 2000).

The binary becomes "hard" when its binding energy is comparable with the kinetic
energy of the surrounding stars. This typically happens at separations close to

aH =
GM

σ2∗
' 10.8

(
M

108M�

)(
σ∗

200Km/s

)−2

pc . (2.4)

where M is the total mass of the binary. Dynamical interactions between the stars and
a single BH are negligible in this stage, but the binary can still get rid of energy and an-
gular momentum through three-body interactions (Frank and Rees 1976). A single stars
approaching the binaries is ejected with velocities comparable with the binary orbital speed
v ∼

√
GM/a. Since for a hard binary the orbital velocity is larger than the average veloc-
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ity of the surrounding stars, after the encounter the binary loses potential energy and the
separation decreases. However, as stars are ejected the available region of the phase space
(loss-cone) could be quickly depleted and the process may stall at separations close to 1 pc
(Milosavljević and Merritt 2001, 2003). SMBHs will actually merge only if some astrophysi-
cal mechanism can further shrink the binary orbit. Interactions with a gaseous environment
such as an accretions disc could in principle provide the necessary mechanism (Armitage and
Natarajan 2002; Cuadra et al. 2009). However, under more reasonable assumption, Lodato
et al. (2009) find that if the disc is massive enough to contribute to the inspiral, it will also
fragment, thus preventing further accretion. The issue is still open, and it is now known as
the final parsec problem.

The chaotic accretion picture proposed by King and Pringle (2006, 2007) could provide
a possible solution. Nixon et al. (2011a,b, 2012a,b) have shown that a sequence of accretion
episodes where the disc can be either co- or counteraligned with the binary could be much
more effective than a single disc to shrink the binary separation.

At smaller separations, GW emission becomes an efficient way to emit energy and angular
momentum. The inspiral timescale in this regime is given by (Peters and Mathews 1963;
Peters 1964; see Junker and Schaefer 1992 for higher order corrections)

tGW = 8.1× 1012

(
M

108M�

)−3(
a

pc

)4
(1 + q)2

q
f−1(e) yr , (2.5)

where q is the binary mass ratio and f(e) is a function of the eccentricity e which is equal to
1 for circular orbits (see Eqs. 5.8). The critical separation aGW that binaries have to reach
to coalescence in a Hubble time is given by

aGW = 6.3× 10−2

(
M

108M�

)3/4
q1/4

(1 + q)1/2
f1/4(e) pc . (2.6)

This estimate is obtained in the weak field limit and correctly gives the timescale of the
process. The detailed evolution when the binary approach the merger must be followed
using the full non-linear theory of GR.

2.2 Black hole recoils

The final stage of BH mergers involve highly curved, dynamical spacetime that can only
be simulated with fully numerical relativity. Simulating a curved spacetime is extremely
difficult and became possible only recently (Pretorius 2005; Baker et al. 2005; Campan-
elli et al. 2006). Numerical relativists can now accurately determine the evolution of the
spacetime, and the consequent emission of GWs, during the last orbits of black hole merg-
ers. Whenever the binary is asymmetric for some reason (different masses, or spin vectors),
GWs are preferentially emitted in one direction during a merger. Conservation of linear
momentum requires that the final black hole produced in that merger recoils in the oppo-
site direction. Recoil velocities, or kicks, were initially found to be of several hundreds of
km/s using various approaches (Fitchett 1983; Favata et al. 2004). More accurate simu-
lations of extremely asymmetric configurations recently found that the magnitude of the
recoil velocity is critically different if spinning BHs are considered. While simulations of
non-spinning BHs can only produce kicks of ' 200 km/s (González et al. 2007b), the merger
of two maximally spinning BHs can result in recoil velocities as large as 4000 km/s, that
have been called superkicks (González et al. 2007a; Campanelli et al. 2007a; Schnittman and
Buonanno 2007; Herrmann et al. 2007). Kicks this large exceed the escape velocities of even
the most massive galaxies (Fig. 2.3, Merritt et al. 2004), and would thus eject SMBHs from
their hosts. SMBH ejections would have both cosmological and astrophysical consequences.
Many galaxies could find themselves to be lacking a central SMBH, which is not considered
likely by current observational evidences (see Sec.1.2.2). Predictions of BH merger rates will
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Figure 2.2: SMBH binary shrinking history (Backer et al. 2004). At large separation the
two BHs sink toward the center of the merging galaxy via dynamical friction. As the binary
become "hard", the process becomes inefficient (increasing timescale). If only star-binary
collision are considered (red line), the process stalls at separation close to 1 pc. Other
processes are needed (blue line) to solve the final parsec problem and bring the binary to
separation where GW can finally drive the inspiral towards the merger.

also be affected (Madau and Quataert 2004; Volonteri 2007), with strong consequences on
both future GW and electromagnetic observations (Schnittman 2011). If the final SMBH is
not ejected, the recoil causes it to wander through the galaxy and the dark matter halo for
∼ 106−109yr, before settling back to the galactic centre (Blecha and Loeb 2008; Gualandris
and Merritt 2008; Guedes et al. 2011; Sijacki et al. 2011).

Strongly recoiling BHs present electromagnetic signatures, such as (i) broad emission-
line shifts, (ii) flaring accretion discs and (iii) hypercompact stellar systems (for a review
see Komossa 2012).

i) After the kick, the accretion disc and the surrounding matter typically remain bound to
the SMBH while the bulk of the host galaxy remains behind. The accreting recoiling
SMBH will therefore appear as an off-nuclear quasar as long as its accretion sup-
ply lasts. Precise observational signatures include the presence of blue-shifted broad
lines over a set of narrow lines from the galaxy (Bonning et al. 2007). The source
J092712.65+294344.0 has been discovered with this method within the Sloan Digital
Sky Survey data by Komossa et al. (2008), and it is probably the best recoiling SMBH
observational candidate known at time of writing. The case is still debated: the same
data have been interpreted as a superposition of two AGNs in the same galaxy cluster
(Heckman et al. 2009; Shields et al. 2009a) or as a close pre-merger SMBH binary
(Bogdanović et al. 2009; Dotti et al. 2009a). Less clean candidates have been reported
also by Shields et al. (2009b) and Robinson et al. (2010)

ii) In gas-rich mergers, an accretion disc is likely present. A prompt afterglow should
come from shocks induced in the circumbinary disc by the recoil, just after the merger
(Milosavljević and Phinney 2005). Lippai et al. (2008) developed a simple model by
simply adding a recoil velocity to the newly formed SMBH at the center of the disc
and found that the orbits of the fluid elements of the disc are thus perturbed and they
intersect with each other. The intersection of supersonic orbits induces shocks in the
disc that causes luminous flares. Further studies along this line have been performed
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Figure 2.3: Escape velocity (in unit of km/s) from stellar systems that could host BH
mergers as function of their absolute magnitude (Merritt et al. 2004). Escape velocities
vesc = (2φ0)1/2 are derived from estimation of the central gravitational potential of the
system φ0 estimated using stellar dynamics measurements. Observational data are taken
from: Faber et al. (1997) [E], Binggeli and Jerjen (1998) and Mateo (1998) [dE], Webbink
(1996) [GC,dSph]. The solid line show the prediction computed by Merritt et al. (2004)
modeling dark matter halos associated with the luminous stellar systems with the typical
profile predicted by Navarro et al. (1996).

by Shields and Bonning (2008); Schnittman and Krolik (2008); Rossi et al. (2010) and
Corrales et al. (2010). A late afterglow instead may result from the viscous refilling
of the inner disc (Loeb 2007). The role of the angle between the kick direction and
to the orbital angular momentum vector of the pre-kicked disc has been specifically
addressed by Ponce et al. (2012). Other signatures could be due to the reaction of
the disc to the mass reduction of the holes, because the merged BH will generally be
lighter than the total mass of the binary before the merger (Megevand et al. 2009;
Rosotti et al. 2012).

iii) Even in the absence of an accretion disc, ejected SMBHs will always carry out bound
stars. Merritt et al. (2009) related the properties of these hyper-compact stellar systems
to the structure of their host galaxies and to the amplitude of the kick. At least in
principle, future detections of these clusters could allow us to determine empirically the
kick velocity distribution. Moreover, luminous events may come from tidal disruptions
under recoil conditions (Komossa and Merritt 2008).

Particularly interesting is the recent case of the galaxy CID-42, which present an unusual
morphology with two apparent optical nuclei (Comerford et al. 2009). Civano et al. (2010,
2012) interpreted the source as a recoiling SMBH, or alternatively, an SMBH ejection follow-
ing 3-body interaction in a triple SMBH system. However, the hypothesis that the system
could be a binary BH cannot be ruled out with the present data (Blecha et al. 2013).

SMBH ejections are in clear contradiction with observations that all galaxies with bulges
appear to host a central SMBH (Ferrarese and Ford 2005), but whether strong BH recoils re-
ally happen in our Universe is currently an open issue both theoretically and
observationally.
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2.3 Superkick configurations

The goal of the first part of the present work is precisely to investigate theoretically the
likelihood of large SMBH recoils. To this purpose, it can be useful to adopt the opposite
point of view: how can SMBH ejection be avoided?

As discussed above, BH recoils have been predicted using fully non-linear numerical
relativity. Numerical simulations in GR are computationally very expensive, making it
impossible to explore the whole parameter space (Blanchet 2002; Buonanno et al. 2009).
Semi-analytic approaches have been developed to reproduce the numerical results using
fitting formulae (see Rezzolla 2009 for more details). To understand how galaxies can retain
their BHs, we present a closer look to the superkick fitting formula. We indicate with ‖ and
⊥ the vector components parallel and perpendicular to the orbital angular momentum of the
binary just before the merger. Given an orthonomal basis (e⊥1, e⊥2, e‖) the kick velocity v
is typically fitted with (Lousto et al. 2010a)

v = vme⊥1 + v⊥(cos ξ e⊥1 + sin ξ e⊥2) + v‖e‖ , (2.7)

vm = Aη2 1− q
1 + q

(1 +Bη) , (2.8)

v⊥ = Hη2 q

1 + q
(χ2 − χ1) · e‖ , (2.9)

v‖ = Kη2 q

1 + q
cos(Θ−Θ0) |χ2 − χ1|⊥ ; (2.10)

where η = q/(1+q)2 is the symmetric mass ratio; the vector χi (i = 1, 2) are defined having
magnitude χi and the same direction of the BH spins; and Θ is the angle between the vector
|χ2 − χ1|⊥ and the vector joining the two BHs. The remaining parameters are estimated
using best-fitted values from numerical simulations, in particular

• A = 1.2× 104 km/s (González et al. 2007b);

• B = −0.93 km/s (González et al. 2007b);

• H = (6.9± 0.5)× 103 km/s (Lousto and Zlochower 2008);

• K = (6.0± 0.1)× 104 km/s (Campanelli et al. 2007b);

• ξ = 135◦ (Lousto and Zlochower 2008);

• Θ0 depends only on the mass ratio q (Lousto and Zlochower 2009).

A slightly different parametrization has been adopted by Baker et al. (2008) and van Meter
et al. (2010). These studies have been addressed to bound encounters, likely to occur
in astrophysical environments. In unbound BH collisions, the kick velocity can exceed
15000 km/s (Sperhake et al. 2008b, 2011b, 2012; Healy et al. 2009).

The maximum kick velocity is obtained when |χ2 − χ1|⊥ is maximum, i.e. when maxi-
mally spinning BHs approach the merger with both the spins lying in the orbital plane and
counter-aligned with each other. From the fitting formula above, only two conditions can
be found to avoid kick velocity larger than ∼ 3000 km/s:

• BH are slowly spinning (both v‖ and v⊥ vanish if χ1 = χ2 = 0);

• both spins are aligned with the orbital angular momentum of the binary (only v⊥
vanishes if |χ1|⊥ = |χ2|⊥ = 0, but note that the coefficient H is almost an order of
magnitude smaller than K).
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BH ejections have not to be considered likely if astrophysical SMBHs are found in one of
these two categories.

Recent numerical simulations reported in Lousto and Zlochower (2011, 2012) and Lousto
et al. (2012) claimed that slightly different configurations could produce kicks as large as
5000 km/s (hang-up kicks). These recent findings do not change the main conclusions of this
Chapter: numerical relativity indicates that galaxies can retain their SMBHs either if they
are slowly spinning or if they are aligned with the orbital angular momentum of the binary.
In this work we investigate the likelihood for SMBH of being aligned with the the orbital
angular momentum of the binary, as a consequence of the interaction with the surrounding
accretion discs.



Chapter 3

Dynamics of accretion discs

In this Chapter we introduce accretion discs as a typical astrophysical environment for
SMBH interactions. We firstly introduce the dynamics of Keplerian flat accretion discs
following Pringle (1981) and Frank et al. (2002), as reported by Lodato (2008). We introduce
two generalizations to describe discs around binary systems and in warped configuration.
Detailed expressions to compute the accretion efficiency around a Kerr BH are also derived.

3.1 Keplerian disc physics

Accretion discs are the astrophysical mechanism for interstellar medium to accrete onto a
central object, in our case a SMBH. We consider in this Section only Keplerian accretion
discs, i.e. discs in which the gravitational field felt by each particle is due only to the central
object gravity, neglecting the disc self-gravity, i.e. mutual gravitational interactions between
different gas particles.

If a central object of massM is surrounded by a gaseous cloud with a net orbital angular
momentum, gas particles tend to reach equilibrium orbits on a plane perpendicular to the
angular momentum itself, where they are kept in balance by the centrifugal force. On this
plane, that would be the plane of the disc, particles are in general on elliptical Keplerian
orbits. Each particle has specific energy and angular momentum given by

E = −GM
2a

, L2 = GMa(1− e2) , (3.1)

where a and e are respectively the semimajor axis and the orbital eccentricity. If the gaseous
medium is dissipative, particles can lose energy but angular momentum is conserved in the
absence of tangential forces. Particles settle down in the minimum energy orbits for a given
specific angular momentum L, i.e. circular orbits (e = 0).

After the formation of a disc structure, accretion onto the central object is possible only
if angular momentum can be removed. Angular momentum removal can be provided by
fluid viscosity within the interstellar medium. The laws to describe the evolution of an
accretion disc follow from the classical fluid equation of motion, when applied to the disc
geometry. We use cylindrical coordinated with the z axis oriented along the orbital angular
momentum of the disc, while R and φ vary on the disc plane. We call r the spherical radius,
centered on the central object. The medium is described by fluid elements with velocity
v = (vR, vφ, vz) and mass density ρ; its the evolution obeys to mass (continuity equation)
and angular momentum (Navier-Stokes equations) conservation. The following derivation
is carried out assuming that the timescale over which particles change their radial position
(which correspond to the viscous timescale, see below), is much longer than every other
timescale involved: both the sound propagation timescale and the orbital timescale. This
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corresponds to the following ordering of the velocities

vR � cs � vφ , (3.2)

where we indicated the sound speed with cs: the first inequality states the approximation
just mentioned and the second one will be demonstrated below.

The thin-disc approximation. Accretion discs are typically assumed to be thin. We
introduce the aspect ratio of the disc H/R, where H the height of the disc. The thin-disc
approximation consists into assuming that H/R � 1 along the whole disc profile. This
condition is verified in astrophysical systems, from protostellar disc (H/R ∼ 0.1) to SMBH
accretion discs (H/R ' 10−2). Since the disc is assumed to be thin in the z directions, it
is more reasonable to use surface quantities. Given the volume mass density ρ, the surface
density is defined integrating along the z axis

Σ =

∫ +∞

−∞
ρ dz . (3.3)

The continuity equation integrated in the z direction reads

∂Σ

∂t
+

1

R

∂

∂R
(RΣvR) = 0 . (3.4)

Newton’s second law corresponds to the Navier-Stokes equations (still using volume quanti-
ties)

∂v

∂t
+ (v ·∇)v = −1

ρ
(∇P −∇σ)−∇φ . (3.5)

The first term at the right-hand side encodes pressure forces. The second term contains the
stress tensor σ and describes the effect of viscous forces. The stress tensor σ in cartesian
coordinates is given by

σij = νρ

[
∂vi
∂xj

+
∂vi
∂xj
− 2

3
(∇v)δij

]
, (3.6)

where ν is called kinematic viscosity coefficient. Viscous forces act only in the tangential
direction in bulk viscosity is neglected and axisymmetry is imposed. The only non-vanishing
components of the stress tensor σ is

σRφ = ρνR
∂Ω

∂R
, (3.7)

where Ω = vφ/R is the angular velocity. Viscous interactions are due to the differential
rotation that causes different annuli to shear with each other. In particular it vanishes for
a rigidly rotation flow (∂Ω/∂R = 0). Finally, the third term in the right-hand side of (3.5)
describes the gravitational interaction. Since we are neglecting the disc self-gravity, the
gravitational potential φ is only given by the central object. Considering only gas particles
sufficiently far from the object where GR effect can be neglected, we have

φ = −GM
r

. (3.8)

Disc structure and dynamics are obtained by projecting the Navier-Stokes equations
(3.5) on the three different directions of the cylindrical reference frame.
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Vertical structure. The projection of Navier-Stokes equations (3.5) on the z axis is a
restatement of the hydrostatic equilibrium, because the left-hand side can be neglected
within the thin-disc approximation. This can be easily solved under the assumption that
the gas is barotropic and that the sound speed does not depend on z. The vertical density
results

ρ(z) = ρ0 exp

(
− z2

2H2

)
, (3.9)

where ρ0 is the midplane mass density. The parameter H is the typical vertical size of the
disc, and it is defined as

H = R
cs
vk
, (3.10)

using the sound speed

c2s =
∂P

∂ρ
, (3.11)

and the Keplerian velocity

v2
k =

GM

R
. (3.12)

The thin-disc approximation H/R � 1 consists in requiring cs � vk. This is clearly a
condition on the temperature of the disc annuli. Due to thermal motion, the disc would
expand in the vertical direction counteracting the gravitational force.

Radial equilibrium. Let us now project the Navier-Stokes equations on the R direction.
The time variation of the radial velocity can be neglected, because of the ordering (3.2).
The radial component of (3.5) gives rise to a condition on the tangential fluid velocity

vφ = vk

√
1 +

(
cs
vk

)2
d log ρ

d logR
. (3.13)

Since ρ is typically a decreasing function of R, the tangential velocity vφ is smaller than the
Keplerian velocity vk: gravitational energy is converted both into orbital motion and into
thermal motion of the gas particles. Thermal contributions are neglegted in the thin-disc
approximation, which leads to (cf. Eq. 3.2)

cs � vk ' vφ . (3.14)

Angular momentum conservation. The φ component of (3.5), together with the con-
tinuity equation (3.4), states the angular momentum conservation though the disc

∂

∂t
(ΣRvφ) +

1

R

∂

∂R

(
R2vRΣvφ

)
=

1

R

∂

∂R

(
νΣR3 ∂Ω

∂R

)
. (3.15)

The above expression has the typical structure of a continuity equation: the left-hand side is
the Lagrangian derivative of the angular momentum per unit mass ΣRvφ, while the source
term at the right-hand side is the torque exerted by viscous forces.

The evolutionary law for the surface density is obtained combining angular momentum
conservation (3.15) and continuity equation (3.4). The following expression is obtained
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assuming Keplerian rotation (Eqs. 3.12 and 3.14)

∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R
(νΣR1/2)

]
. (3.16)

It is a diffusion equation, where the diffusion coefficient is the kinematic viscosity ν.

Viscous timescale. The typical timescale over which the disc changes its properties can
be inferred from the diffusion equation (3.16)

tν ∼
R2

ν
, (3.17)

and it is called viscous timescale. Being the timescale over which mass flows in the radial
direction (vR ' R/tν), tν is also called accretion timescale. At the beginning of the Chapter,
we assumed that the accretion timescale is much larger than the dynamical timescale (tdyn =
Ω−1 = R/vφ), which is equivalent to require vR � vφ as stated in (3.2).

Accretion rate. The mass that flows through a ring at a distance R from the central
object is given by

Ṁ(t, R) = −2πRvRΣ , (3.18)

which is called accretion rate. Given the viscosity coefficient ν, the diffusion equation (3.16)
and the angular momentum conservation equation (3.15) can in principle be solved to find
Σ and vR, thus determining the accretion rate Ṁ . In a stationary state, i.e. when the
left-hand term of (3.15) can be neglected, the accretion rate is constant and it is given by
(for Keplerian discs)

Ṁ = 3πνΣ . (3.19)

The above expression is strictly valid only in the outer disc, i.e. far from the central object.

The α prescription. The disc dynamics is ultimately ruled by the viscosity coefficient
ν. The microscopic viscosity due to molecular collision is not sufficient to transport angular
momentum on the observed timescales: accretion disc viscosity is thought to be due to
turbulent motions triggered by magneto-rotational instabilities (Balbus and Hawley 1991) or
gravitational instabilities (Lodato and Rice 2004; Lodato 2007). A critical discussion about
various viscosity sources can be found in Lodato 2008. Our ignorance on the physical nature
of disc viscosity is usually bypassed introduced the dimensionless parameter α (Shakura and
Sunyaev 1973)

ν = αcsH . (3.20)

A precise measurement of α is the most important observational challenge in disc physics.
The best constraint are obtained from observations of dwarf novae outbursts (Lasota 2001;
Kotko and Lasota 2012) which seem to indicate a value α ' 0.1. Oservational and computa-
tional attempts in determining the actual viscosity have been reviewed by King et al. (2007),
who present a typical range 0.1 . α . 0.4 according to the best observational evidences.
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3.2 Accretion onto spinning black holes

We present formulae to compute the radius of the last stable orbit and the accretion efficiency
of a Kerr BH. The accretion efficiency enters in the definition of the Eddington accretion
rate and sets the e-folding time at which spinning BHs grow. Since the accretion efficiency
depends only on the spin magnitude χ, observations of the total luminosity emitted by
accreting SMBH in AGNs can give constraints on the average SMBH spin magnitude.

3.2.1 Accretion efficiency

Accretion is a powerful source of energy. When a particle falls into a BH, all the available
gravitational potential energy can be released outside. Consider a test particle of mass m
falling into a Kerr BH of mass M and dimensionless spin χ. We restrict our studies to
circular orbit on the equatorial plane, i.e. the plane orthogonal to the spin direction. This is
not a critical assumption: particles accreting from an accretion disc are typically on circular
orbits (Sec. 3.1) and the inner disc plane is orthogonal to the spin vector (Sec. 4.1).

Given a set of coordinates xα (α = 1, 2, 3, 4) and an affine parameter τ , we define the
four-momentum of the test particle pα = mdxα/dτ . The geodetic motion (i.e. when no
other forces but gravity are present) of a test particle in GR follows from the conservation
of pα

gµνpµpν = −m2 . (3.21)

In this case µ, ν = t, r, θ, φ and gµν are the elements of the Kerr metric (1.4). The symmetries
of the Kerr metric give immediately two constant of motion: the energy and the angular
momentum

E = −pt , (3.22)

L = pφ . (3.23)

The explicit form of (3.21) for the Kerr metric, when restricted to the equatorial plane
(θ = π/2), is

E2 −m2

2m
=

1

2
m

(
dr

dτ

)2

− Mm

r
+

L2

2mr2
− ML2

mr3

+ χ

(
m2 − E2

2m

)
M2

r2
+ χ

(
2EL− E2

m

)
M3

r3
.

(3.24)

This correspond to the motion of a classic particle of constant total energy (E2 −m2)/2m

moving on the radial direction with kinetic energy m (dr/dτ)
2
/2. The effective potential

is given by the classical Newtonian attraction Mm/r, the centrifugal term L2/2mr2, the
GR correction in spherical symmetry ML2/mr3 (which is one PN order higher than the
centrifugal potential), and two terms due to the spacetime rotation (at the M2/r2 and the
M3/r3 PN level respectively). Circular orbit are obtained by (3.24) by solving(

dr

dτ

)
= 0 and

d

dr

(
dr

dτ

)
= 0 , (3.25)

for E and L as function of r. Considerable algebraic manipulation leads to the following
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Figure 3.1: Accretion onto a spinning BH: radius of the innermost stable orbit (left panel)
and accretion efficiency (right panel) as a function of the dimensionless spin χ. Particles can
get much closer to the BH and extract more energy through accretion if their orbital angular
momentum is directed along the spin axis (solid line, prograde), than in the counteraligned
case (dashed line, retrograde).

expression for the particle energy (Bardeen 1970, 1973; Bardeen et al. 1972)

E(R) = mc2
r

3/2
g − 2r

1/2
g ± χ

r
3/4
g

(
r

3/2
g − 3r

1/2
g ± 2χ

)1/2
, (3.26)

where we restored the fundamental constants and we defined rg = Rc2/GM as the radial
coordinate in unit of the gravitational radius. The two signs refer to infalling particles with
angular momentum either aligned or counteraligned with the spin direction. An analogous
expression can be obtained for L.

The effective potential in (3.24) presents a maximum, which corresponds to the radius
of the innermost stable circular orbit

Risco =
GM

c2

[
3 + Z2 ∓ (3− Z1)1/2(3 + Z1 + 2Z2)1/2

]
, (3.27)

Z1 = 1 + (1− χ2)1/3
[
(1 + χ)1/3 + (1− χ)1/3

]
, (3.28)

Z2 = (3χ2 + Z2
1 )1/2 . (3.29)

The innermost stable orbit for a Schwarzshild BH (χ = 0) is at Risco = 6GM/c2 while
for an extreme Kerr BH (χ = 1) it is located at Risco = GM/c2 for direct orbits and at
Risco = 9GM/c2 for retrograde orbits (see Fig. 3.1, left panel).

The maximum efficiency of energy extraction is defined as the fraction of the available
energy at the last stable orbit and the rest mass energy of the infalling particle

ε = 1− E(Risco)

mc2
, (3.30)

and it depends only on the spin magnitude: ε = ε(χ). Accretion processes onto a BH can
convert mass into energy with an efficiency in the range 5% . ε . 40% (Fig. 3.1, right
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panel). This makes accreting BHs among the most efficient energy sources in the Universe.
For a comparison, the hydrogen burning reaction that powers main sequence stars has an
efficiency of just 0.7%.

The difference between prograde and retrograde orbits becomes critical in the random
accretion picture of King and Pringle (2006, 2007). In this scenario, prograde and retrograde
accretion episodes are assumed to be equally probable: the effective efficiency can been
computed using (King et al. 2008, see their Fig.5)

εCA =
1

2
(ε+ + ε−) , (3.31)

where ε+ and ε− refer to the two sings in (3.26-3.29).

3.2.2 The Eddington limit

A spinning BH accreting with a rate Ṁ could be as luminous as

L = ε(χ) Ṁc2 . (3.32)

However, there is a theoretical limit on the total luminosity that can be reached by accretion
(Eddington 1926). After an accretion event, the emitted radiation will act through radi-
ation pressure on the infalling material counteracting gravity. If the luminosity increases,
radiation pressure can overwhelm the gravitational force, preventing further accretion and
consequently further radiation emission.

Let us consider a fluid element of a neural plasma placed at a distance R from a central
object of mass M . Assuming that charges in the plasma cannot be separated, we can
write the total force acting on an electron-proton couple. The gravitational force acting
on it is only due to the proton mass mp, because the electron mass is negligible. The
main interaction between the outcoming radiation and the plasma is given by Thompson
scattering with the electrons. To allow accretion, the gravitational force must be grater than
the radiation pressure times the Thompson cross-section σT

GMmp

R2
≥ σT

L

4πcR2
, (3.33)

which leads to

L ≤ LEdd =
4πcGmp

σT
M ' 1.3× 1038

(
M

M�

)
erg . (3.34)

We call Eddington limit the situation in which gravity and radiation pressure are exactly
balanced, i.e. when the equality in the above equation holds. Eq. (3.34) defines the maximum
luminosity that can be reached accreting material onto a central object. In this derivation
we neglected thermal pressure effects, which further decrease the maximum luminosity. The
Eddington luminosity LEdd is a very useful concept to compute the order of magnitude of
typical accretion rates using only fundamental constants.

Three other related quantities can be defined. The Eddington time (or Salpeter time, see
Sec. 3.2.3) is defined as the timescale over which the mass of the central object changes if it
accretes continuosly at the Eddington limit

tEdd =
Mc2

LEdd
=

σT c

4πGmp
' 4.5× 108yr . (3.35)

The Eddington accretion rate is the accretion rate of a BH of spin χ which is emitting at
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the Eddington limit

ṀEdd =
LEdd

ε c2
. (3.36)

Finally, accretion rates are often expressed using the Eddington fraction

fEdd =
Ṁ

ṀEdd

=
Ṁ

M
ε tEdd , (3.37)

with 0 ≤ fEdd ≤ 1.

3.2.3 Black-hole mass growth
When particles accrete, the central object will consequently grow in mass. BH accretion
is regulated by the efficiency ε which depends on the spin χ. We show here how the spin
magnitude affects BH mass growth as firstly proposed by Salpeter (1964) and reported in
King and Pringle (2006) and Volonteri et al. (2012).

If Ṁ is the actual accretion rate, only a fraction εṀ will be converted in emitted energy
while a fraction (1− ε)Ṁ will increase the BH mass. The variation rate of the BH mass is

dM

dt
= (1− ε)Ṁ =

1− ε
ε

MfEdd

tEdd
, (3.38)

where Eqs. (3.35-3.37) have been used. If the BH spin χ and the Eddington fraction fEdd

can be assumed to be constant during the integration time, Eq. (3.38) easily leads to

M(t) = M0 exp

(
1− ε
ε

fEdd
t

tEdd

)
, (3.39)

where M0 is an integration constant. The Eddington timescale (3.35) is thus roughly the
e-folding time of the BH mass growth. It is interesting to note its dependance on the BH
spin χ, which enters in (3.39) through the accretion efficiency ε. Spinning BHs grow in mass
faster than Schwarzshild BHs only if the angular momentum accreted is counteraligned with
the BH spin, while for prograde orbits the growth is slower because mass is converted in
outcoming radiation more efficiently. Some examples are shown in Fig. 3.2, where we chose
values that belong to the same range of spin magnitude and accretion rates explored in the
Monte Carlo simulations presented in this work (Sec. 4.4). Since the Salpeter timescale is
a sizable fraction of the Hubble time, BH mass growth is a slow process: SMBH masses
(∼ 106M�) can be reached within a few Gyrs only from massive seeds (∼ 105M�) or from
stellar mass seed (∼ 102M�) if SMBHs are slowly spinning (see our discussion in Sec. 2.1.1).

If χ and fEdd are not constant, Eq. (3.38) must be integrated in a self-consistent way
with the evolutionary equations for ε(t) and fEdd(t)∫ M

M0

dM

M
=

∫ t

0

1− ε(t′)
ε(t′)

fEdd(t′)
dt′

tEdd
. (3.40)

3.2.4 The Soltan argument
Accretion efficiency plays a key role in estimating the likelihood of SMBH in galaxies and
their average spin magnitude. We present here the argument firstly suggested by Soltan
(1982) as it is presented in the textbooks by Longair (2008, 2011).

Since accretion luminosity is linked to the properties of the accreting source ε and Ṁ , the
total luminosity emitted by all quasars in the Universe provides an estimate of the amount
of mass which must have collapsed to form SMBH over the cosmic time. Let us suppose for
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Figure 3.2: SMBH mass as function of time, varying over different spin magnitudes χ and
Eddington fraction fEdd. The e-folding time is proportional to the Salpeter time tEdd but
it is regulated by the accretion rate and the accretion efficiency, see Eq (3.39). The initial
mass M0 has been set equal to 102M� and only prograde orbits have been considered.

simplicity that the (bolometric) luminosity L of quasars is only due to accretion of matter
onto BHs. The mass of a single source can be estimated integrating the luminosity L(t) over
the quasar lifetime

MBH =
1

c2

∫
1− ε
ε

Ldt . (3.41)

From this expression, the luminosity can now be integrated to consider all quasars at all
epochs. The luminosity function can be expressed as n(L, z)dL, i.e. the number density of
sources at a given redshift z. The total mass of SMBH per unit volume in quasars is thus
expected to be (cf. Shen 2013)

ρBH =
1

c2

∫ ∫
1− ε
ε

Ln(L, z(t)) dLdt , (3.42)

where the relationship between t and z depends on the cosmological model. The number
density n(L, z) can now be related to the number counts of quasars. The number of quasars
N , at a redshift z with a bolometric flux F is defined by

N(F, z) dF dz = n(L, z) dLD2 dr , (3.43)

where D is the distance to the sources and r is the comoving radius, i.e. a radial coordinate
which follows the Hubble expansion: dr = c (1 + z)dt. On cosmological scales, flux and
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distance are related to the luminosity by

L = 4πD2(1 + z)2F . (3.44)

The mass density (3.42) thus results (Soltan 1982)

ρBH =
4π

c3

∫ ∫
1− ε
ε

(1 + z)F N(F, z) dF dz . (3.45)

The average density of mass in the Universe in the form of SMBHs is determined by inte-
grals over the observed number–flux density relation for quasars and the observed redshift
distribution in each flux density interval.

The latest expression must be related to observable quantities, such as the flux in a given
waveband. Krolik (1999) provides a convenient relation which can be derived from Soltan’s
analysis. He normalised the mass density in black holes to the number density of galaxies
ngal, thus obtaining an estimate of the typical BH mass in a galaxy

〈MBH〉 = 1.6× 107

(
F

10FB

)( 〈1 + z〉
3

)(
h

0.75

)−3 ( ε

0.1

)−1

M� per galaxy, (3.46)

where brackets indicates averaged values over the counted sources, FB is the flux in the B
waveband and h is the Hubble parameter1. This analysis suggests that the typical galaxy
should possess a BH remnant of mass about 107M�, which is consistent with the observa-
tions.

Conversely, Yu and Tremaine (2002) developed the same argument using the observed
BH mass distribution as input (see also Marconi et al. 2004; Shankar et al. 2004, 2013;
Treister and Urry 2006; Wang et al. 2006b; Hopkins et al. 2007). They showed that the
local BH mass density is consistent with the density accreted by quasars only if they have
a mass-to-energy conversion efficiency ε ' 0.1. Since the accretion efficiency is a function
of the BH spin, this is also an argument on the average spin magnitude on SMBH in the
Universe (see Sec. 4.6).

3.3 Warp propagation

Here we briefly introduce the physics of non-planar, or warped, accretion discs: such con-
figurations are typically formed around spinning BHs through the Bardeen-Petterson effect
(Sec. 4.1). This Section is largely based on Ogilvie (1999).

Let us consider a warped disc as composed of rings, each of them arbitrarily oriented in
space at a distance R from the central object; in this context R should be interpreted as a
spherical coordinate, rather than the cylindrical radius. We call β the tilt angle between the
z axis and the plane of the each rings. In a warped disc, β can be an evolving function of
the separation: β = β(t, R); while the flat case is relized if β is constant. The orientation of
the tilt on the xy plane is described by an azimuthal angle γ. The direction of the angular
momentum of the ring is defined by a unit vector l(R, t), which is related to the angles β
and γ by

l = (cos γ sinβ , sin γ sinβ , cosβ) , (3.47)

when projected onto an orthonormal basis. A useful dimensionless parameter to character-
ized the warp amplitude is

ψ = R
∂β

∂R
. (3.48)

1The parameter h is related to the Hubble constant by H0 = 100h km s−1 Mpc−1.
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If the disc is warped, vertical shearing appears as a new angular momentum dissipation
effect. Mathematically it corresponds to a non-vanishing Rz component in the stress tensor,
besides the one reported in Eq. (3.7) (Papaloizou and Pringle 1983). This term causes warps
to diffuse with a diffusive coefficient ν2, that in general is different from the shearing viscosity
ν. As in the α-prescription (3.20), it is useful to introduce a new dimensionless parameter
α2 defined by

ν2 = α2csH . (3.49)

Warp propagation theories have been carried out both in the small-amplitude (ψ � H/R)
regime and in the general case. Attempts to built a complete theory were firstly carried on
by Petterson (1977a,b, 1978), but their equations turned out to be wrong and they were
corrected by Papaloizou and Pringle (1983). Their result basically generalizes what presented
here in Sec. 3.1 and it is valid in the case of thin viscous discs: H/R < α. Papaloizou and
Pringle (1983) found that warps propagate trough the disc following a complex diffusion
equation (see their Eq. 5.1). Their theory has been generalized to thick and inviscid discs
by Papaloizou and Lin (1995), which discovered a new regime in which warps propagate via
bending waves.

Pringle (1992) developed the first generalization to study also the large-amplitude regime.
The equation derived for the angular momentum conservation in a disc with isotropic vis-
cosity ν is

∂

∂t

(
ΣR2Ωl

)
+

1

R

∂

∂R

(
R2vRΣvφl

)
=

1

R

∂

∂R

(
ν1ΣR3 ∂Ω

∂R
l

)
+

1

R

∂

∂R

(
1

2
ν2ΣR3Ω

∂l

∂R

)
.

(3.50)

If l is constant, then ν1 → ν and ν2 → 0 and this equation reduces to (3.15) which correspond
to a planar configuration. A new term containing ν2 appears at the right-had side, beside
the usual term depending by ν1. It corresponds to angular momentum which can propagate
through the warps. This approach has been confirmed and extended by Ogilvie (1999) which
developed a complete non-linear theory of warp propagation valid in the large-amplitude
warp regime as well as in the small-amplitude one (see also Ogilvie 2000; Ogilvie and Dubus
2001; Ogilvie and Latter 2013a,b).

As the shear viscosity α controls the accretion onto the central object, the vertical
viscosity α2 controls the propagation of the warp through the disc. Different parts of the
disc can communicate with each other through vertical shears on a timescale

tν2 ∼
R2

ν2
, (3.51)

which is the analogous of the accretion timescale (3.17). The problem of the warp propaga-
tion could in general be very complicated, because the vertical viscosity depends not only
on the α parameter, but also on the warp amplitude

α2 = α2 (α,ψ) . (3.52)

Even if α can be considered constant, ψ = ψ(t, R) introduces new non-linear effects in
the angular momentum conservation equation. This dependance disappears in the small-
amplitude regime and the vertical viscosity is (Ogilvie 1999)

α2 =
1

2α

4(1 + 7α2)

4 + α2
(if ψ � 1), (3.53)
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Figure 3.3: Vertical viscosity α2 (left panel) and azimuthal viscosity α1 (right panel) in the
non-linear theory of warp propagation by Ogilvie (1999). As the warp amplitude ψ increases,
the value of α2 is completely determined by non-linear corrections, while α1 shows larger
deviations from α and could even formally be negative.

which can be approximated to

α2 =
1

2α
(if ψ � 1 and α� 1), (3.54)

when restricted to small value of α (Papaloizou and Pringle 1983). Bulk viscosity can in
principle introduce further complications, but we assume its effect can always be neglected.
Ogilvie (1999) evaluates the viscosity α2 in the large-amplitude regime ψ ∼ 1 by providing
a slowly converging Taylor series to compute additional corrections2. However, the full non-
linear result must be computed numerically. In the present work we compute the coefficient
α2 using a Fortran code kindly provided by G. Ogilvie. We show in Fig. 3.3 (left panel) the
behavior of α2 as a function of α varying over different warp amplitudes ψ.

For large ψ and small α, the theory of Ogilvie (1999) predicts that the azimuthal viscosity
coefficient α1 is different from α and in particular becomes negative (Fig. 3.3, right panel).
The break point formally happens when

α1 = α− 1

24

ψ

α
+O(ψ4) < 0 . (3.55)

The behavior of the disc in such cases is unclear, and it could break up in two distinct planes
at the radius where ψ becomes too large (Nixon and King 2012; Lodato and Price 2010).
We address this issue in Sec. 4.3.3.

Warp propagation theories have been largely verified numerically. The bending waves
regime has been tested by Nelson and Papaloizou (1999, 2000), while the thin-disc diffusive
regime has been largely addressed by Lodato and Pringle (2006, 2007) and Lodato and Price
(2010). While Lodato and Pringle (2007) find a disagreement comparing their simulations
with the linear theory of Eq. (3.54), the new smoothed-particle hydrodynamics simulations
reported in Lodato and Price (2010) are in spectacular agreement with the whole non-linear
theory by Ogilvie (1999). We report their main result in Fig. 3.4.

2Note that Ogilvie (1999) defines the viscous coefficient using a different notation: Q1 = −3α1/2 and
Q2 = α2/2.
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Figure 3.4: Warp diffusion coefficient as a function of the disc parameter α (Lodato and
Price 2010). Solid line shows the analytical prediction (3.54), long-dashed line includes the
correction (3.53) for large value of α, while short-dashed line is computed using the complete
non-linear theory by Ogilvie (1999) with a fixed ψ = 0.55. Triangles show numerical results
obtained by Lodato and Price (2010) in both the small-amplitude (red) and the large-
amplitude (magenta) regime, which accurately confirm the non-linear theory.

3.4 Discs around binary systems

We describe here the main results on the dynamics of accretion discs around binary system
and their effects on the binary evolution. Calculations and discussions about the inspiral
timescale in different mass ratio regimes are postponed to Sec. 4.5.

Even if the disc and the binary orbit define in general two different planes, the analysis
could be restricted to coplanar systems. Inclined discs around binaries have been studied
numerically by Larwood and Papaloizou (1997) and a complete analytical theory has been
developed by Ivanov et al. (1999). Orbits within the gravitational potential generated by a
binary system would not in general be closed, because the binary potential cannot be treated
as Keplerian. The first non-Keplerian term in a multipolar expansion of the gravitational
potential is the quadrupole component, which causes a precession of the major axis of
elliptical orbits. The same phenomenon happens on the solar system where the oblateness
of the sun introduce a quadrupolar correction to its mostly Keplerian potential. If an inclined
disc is considered, particles in different positions with respect to the binary major axis will
precess with different frequencies. The system, now in a twisted configuration, dissipates
viscously and evolves toward a coplanar configuration. The problem is analogous to the one
studied in details in the next Chapter: in the spin-alignment process, the external torques
is due to Lense-Thirring precession; while here is due to the binary potential. In the small-
warp approximation, the alignment timescale of the process is (Ivanov et al. 1999, see also
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King et al. 2013)

tplane =

{
(H/R)

−1
tdyn if α < H/R ,

α (H/R)
−2
tdyn if α > H/R ,

(3.56)

which could be only one or two orders of magnitude bigger that the orbital period. It
means that after just 10-100 particle orbits the disc and the binary can be considered on the
same plane. To the best of our knowledge, a generalization of the above result considering
large-amplitude warps is still missing.

A binary in a gaseous environment may have in general three different discs: two indi-
vidual discs around each object (which we will call circumprimary or circumsecondary disc)
as well as a circumbinary disc around the binary orbit. The binary evolution depends on
the mutual relationship between the mass of the disc and the masses of the two BHs. If
one of the two BHs is much lighter than the other (extreme mass ratio inspiral), then the
secondary is able to migrate towards the primary exchanging angular momentum with the
disc. If the secondary is massive enough, it can open a gap in the disc, around its orbit (Lin
and Papaloizou 1979; Artymowicz and Lubow 1994; Armitage 2010). In this regime, both
the secondary BH and the disc particles can be considered as orbiting around the primary
BH. The secondary BH will generally collide with gas particles orbiting with a radius R close
to the binary separation a. Particles just outside the binary orbit (R > a) move slower than
the secondary BH. The BH speed is reduced by these collisions, which act exactly as in the
dynamical friction scenario where a gives object interact with a collection of smaller point
(see Sec.2.1 and Bertin 2000). Angular momentum is transferred from the secondary to the
disc, increasing the orbital radius of the involved gas particles and decreasing the binary
separation. The situation is reversed for particles colliding with R < a. The direction of
the secondary migration depends on which of these two effects dominate. Integrating over
every possible collision, it can be shown that the for typical disc structure, the disc gains
angular momentum interacting with the secondary BH that consequently moves inwards
(e.g. Armitage 2010).

The problem becomes more complicated whenever the BH mass ratio gets close to unity,
because gas particles cannot be considered as orbiting around the primary. The problem has
been studied using both grid-based (Günther and Kley 2002; MacFadyen and Milosavljević
2008) and smoothed-particle hydrodynamics simulations (Artymowicz and Lubow 1994; Es-
cala et al. 2005). The binary produces a cavity in the disc that could be as big as 1.5a− 2a
in which the two BHs orbit. Accretion within the cavity is not completely prevented and can
still cause the binary shrink (Artymowicz and Lubow 1996). The effect of eccentric orbits in
this regime could also be interesting for future GW observations (Armitage and Natarajan
2005).

When GW emission becomes an efficient source of angular momentum dissipation (see
our discussions in Secs. 2.1 and 4.5), the disc and the binary decouple from each other
(Armitage and Natarajan 2002). The two BHs quickly inspiral (the explicit calculation is
reported in Sec. 5.2.1), while the disc cannot react on the same timescale. The behavior of
the disc during the GW-driven evolution is still unclear and can lead to different predictions
(Lodato et al. 2009; Chang et al. 2010; Baruteau et al. 2012; Noble et al. 2012; Bode et al.
2012).



Chapter 4

Black-hole spin alignment

In this Chapter we address the problem of the alignment between the spin of a Kerr BH
and its surrounding accretion disc (Bardeen-Petterson effect). For the complete theory
of accretions discs around Kerr BHs we refer to the recent review by Abramowicz and
Fragile (2013). When spinning BHs form a binary system, we estimate if the BHs can reach
an aligned configuration by comparing the BH-disc alignment timescale and the merger
timescale. Interesting conclusions can be obtained regarding the likelihood of large BH
recoil and about astrophysical BH properties.

4.1 The Bardeen-Petterson effect

The dynamics of accretion discs around a spinning BHs has been firstly studied by Bardeen
and Petterson (1975) and it is now known as the Bardeen-Petterson effect. They showed
that a viscous disc initially misaligned with the equatorial plane of the Kerr BH, would be
expected to quickly reach an alignment configuration only in the inner regions. Out to a
certain transition radius the outer disc retains its initial misalignment. Rees (1978) pointed
out that because of Newton’s third law, the disc may also cause the alignment the hole. The
outer disc can pull the BH spin to a compete aligned configuration on a longer timescale.
The detailed calculation of this BH-disc alignment timescale is one of the main purposes of
this project.

Since a warp propagation theory was not available at the time, Bardeen and Petterson
(1975) computed the disc structure assuming that the warps propagate through the disc with
the same viscosity coefficient that produces the mass inflow (in our notation: α2 = α). Their
studied were improved later by Kumar and Pringle (1985) and Scheuer and Feiler (1996)
considering the linear, small-α warp theory. Ivanov and Illarionov (1997) include also some
PN corrections. Hydrodynamical simulations of the Bardeen-Petterson effect have been
performed by Nelson and Papaloizou (2000), Fragile and Anninos (2005) and Fragile et al.
(2007), while the inner disc behavior has been studied analytically by Lubow et al. (2002).
A slightly different approach has been used by Martin et al. (2007) and Chen et al. (2009),
where they derived stationary solutions of the disc structure assuming both viscosities ν
and ν2 to have power-law form. The numerical solution by Martin et al. (2009) consider the
disc structure under the Bardeen-Petterson effect with a stellar companion embedded in the
disc.

On the observational side, the Bardeen-Petterson effect has been invoked to explain
peculiar observations, such as misaligned jets in AGNs (Kondratko et al. 2005; Caproni et al.
2006a,b, 2007; Martin 2008; Martin et al. 2008; Falceta-Gonçalves et al. 2010), oscillations
in X-ray binaries (Fragile et al. 2001; Maccarone 2002) and X-ray transient sources due to
tidal disruption events (Lei et al. 2013). We mention in particular the analysis performed by
Caproni et al. (2006a) to the Seyfert Galaxy NGC 1068. If the occurrence of a misalignment
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Figure 4.1: Bardeen-Petterson effect: schematic behavior of an accretion disc around a
spinning BH (adapted by Caproni et al. 2006a). The inner disc is aligned with the BH
equatorial plane, while at separation larger than the Bardeen-Petterson radius RBP the
outer disc orbital angular momentum l is generally misaligned by angle θ with the BH spin
axis z.

between the inner disc (orthogonal to the galaxy’s radio jets) and outer parts of the disc
(identified by H2O maser emission lines) is interpreted as due to the Bardeen-Petterson effect,
the estimated timescale is well compatible with the expected AGN lifetime. A fundamental
ingredient of their conclusion is the non-trivial relationship between α and α2 of Eq. (3.53)
previously neglected: however, the full-non linear expression has not been considered.

4.1.1 Warp radius
The geometry of the system is summarized in Fig. 4.1. The Bardeen-Petterson effect is
due to the combination of the general relativistic Lense-Thirring precession and the viscous
dissipation of the disc. Let us consider gas particles with R � Risco where we can use the
first-PN order approximation derived in Sec.1.1.5. We obtained that the orbital angular
momentum of a particle around a BH precesses with a frequency given by (e.g. Wilkins
1972)

ΩLT =
2G2M2

c3R3
χ . (4.1)

Each ring that forms the accretion disc will precess with a different frequency because ΩLT

depends on the separation R. The disc does not precess as a whole, but it gets warped
and twisted. Warps introduce a new substantial way to transfer angular momentum. If the
timescale over which warps can propagate is shorter than the precessional timescale, the
disc can quickly react to the twisting induced by the Lense-Thirring precession and reach
an aligned configuration to avoid further dissipation. However, if the disc cannot react
quickly, the misaligned configuration is maintained. The Bardeen-Petterson radius or warp
radius RBP is defined as the boundary radius between these two behaviors1. It can be found

1Slightly different definitions are present in the literature. For instance, Perego et al. (2009) define both
a warp radius, which correspond to our RBP, and a Bardeen-Petterson radius, which is defined as the point
where the warp amplitude ψ is maximum. These values can in general be different by a factor of order unity
(see e.g. Fig. 4.3), depending on the disc structure.
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equating the Lense-Thirring timescale Ω−1
LT and the warp propagation timescale tν2

RBP =
2G2M2χ

c3ν2
. (4.2)

Using the α-prescription (3.49) and the thin-disc approximation (3.10), the viscosity coeffi-
cient ν2 can be written as

ν2 = α2H
2ΩBP , (4.3)

where ΩBP = (GMR−3
BP)1/2 is the Keplerian angular frequency evaluated at the warp radius.

The Bardeen-Petterson radius is thus given by

RBP = 2−1/3

(
χ

α2

)2/3(
H

R

)−4/3(
2GM

c2

)

' 1.58× 105

(
χ

α2

)2/3(
H/R

0.01

)−4/3(
M

108M�

)
R� .

(4.4)

The location of the warp radius depends on the BH properties M and χ, the aspect ratio
of the disc H/R and the warp diffusion coefficient α2. This expression is somewhat new
(Lodato and Gerosa 2013), because the coefficient α2 has not been substituted with any
approximate expression. In the small-ψ, small-α regime (i.e. α2 = 1/2α) it reduces to

RBP = 21/3

(
2GM

c2

)
(χα)

2/3

(
H

R

)−4/3

yr , (4.5)

as reported by Natarajan and Pringle (1998). Note that H/R might be in general a function
of R; however the dependance introduced by this factor is rather low (cf. Sec. 4.2).

4.1.2 Alignment timescale

The inner disc R < RBP becomes aligned with the BH orbital plane on the viscous timescale
tν2, as quickly as the disc is able to dissipate the differential precession induced by the Lense-
Thirring term. On this timescale, the outer disc R > RBP remains misaligned because the
disc cannot dissipate the tilts. On a longer timescale, the outer disc exert a torque on the BH
spin causing it to precess and finally to align with the outer disc angular momentum. We will
refer to the timescale of this process as "BH-disc alignment timescale" or just "alignment
timescale". In the following derivation we assume that the alignment timescale is greater
than tν2 . We are implicitly assuming that the alignment is a quasi-equilibrium process and a
stationary configuration is reached by the disc at every time step. This assumption is worth
of further investigations (see Sec. 4.4.4).

The BH spin JBH is pulled on the alignment timescale talign as a reaction to the Lense-
Thirring precession. The torques acts on the angular momentum of the disc rings close to
the warp radius Ld(RBP) on a timescale Ω−1

LT(RBP): talign can be found equating the angular
momentum per unit time which is exchanged between the disc and the hole (Scheuer and
Feiler 1996; Natarajan and Pringle 1998; Lodato and Pringle 2006)

JBH

talign
= Ld(RBP) ΩLT(RBP) . (4.6)

Sice the warp radius RBP is by definition the distance at which Ω−1
LT = tν2, the alignment
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timescale can be written as

talign =
χGM2

c Ld(RBP)

R2
BP

ν2
, (4.7)

where the BH spin JBH has been expressed using (1.5). The angular momentum Ld(RBP)
can be estimated by considering the mass ΣπR2

BP moving at a radius RBP with a velocity
ΩBPRBP

Ld(RBP) = πΣR
5/2
BP (GM)1/2 , (4.8)

where here Σ is the surface mass density at the warp radius. Since we are assuming that
the process happens in a quasi-equilibrium configuration, the stationary expression (3.19)
can be used. This leads to

talign = 3χ
α

α2

M

Ṁ

(
RBP

GM/c2

)−1/2

, (4.9)

where we used ν/ν2 = α/α2. This heuristic estimate can be confirmed using the disc
structure computed by Scheuer and Feiler (1996), up to a factor

√
2

talign = 3χ
α

α2

M

Ṁ

(
RBP

2GM/c2

)−1/2

. (4.10)

We decide to adopt the latest expression to allow more immediate comparisons with the
previous results in the literature, such as Natarajan and Pringle (1998) and Lodato and
Pringle (2006). We stress however, that a factor

√
2 do not affect our main results. Like

ours, also the Scheuer and Feiler (1996) derivation relies on the assumption that a steady
state configuration is quickly reached by the disc while the mutual direction of the BH spin
and the outer disc can be considered constant. Plugging (4.4) and (3.37) into (4.9), we
obtain (Lodato and Gerosa 2013)

talign = 3× 21/6α

(
χ

α2

)2/3(
H

R

)2/3
ε tedd

fedd

' 7× 106

(
χ

α2

)2/3 ( α

0.1

)(H/R
0.01

)2/3(
fedd

0.1

)−1 ( ε

0.1

)
yr .

(4.11)

Note that the warp propagation coefficient α2 has been kept explicitly indicated, with-
out using any small-amplitude approximation. The alignment timescale vanishes for a
Schwarzschild BH (χ = 0) simply because there is no spin direction to be aligned with.
The dependance of the alignment timescale on the BH spin χ is not trivial, because of the
accretion efficiency ε = ε(χ): in particular it depends on the prograde/retrograde direction
of the accreted particles (Sec. 4.3.2). Our expression is apparently independent on the BH
mass, but the mass of the central object would generally affect the shape of the disc, that
enters in talign through H/R.

4.2 Alignment and merger

The key argument to predict if large SMBH recoils happen in astrophysics or not, is the
expected misalignment between the binary orbital angular momentum and the spins just
before the merger (Sec. 2.3). It is considered likely that the SMBH mergers typically happen
in a gas-rich environment (Escala et al. 2004, 2005; Dotti et al. 2009b) where an accretion
disc can drive the inspiral. Even warps are treated in the low-amplitude regime, the binary
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orbit and the cimcumbinary disc are expected to reach a coplanar configuration quickly
(see Sec. 3.4 and Ivanov et al. 1999), thus SMBH ejection likelihood can be estimated
by comparing the direction of the spins with the orbital angular momentum of the disc.
To predict recoil velocities, we should know the residual misalignment after the alignment
process due to the Bardeen-Petterson effect. It is very difficult to approach the complete
problem because the whole binary history is involved and the structure of the disc needs to
be modeled in detail; moreover, additional general relativistic effects can further modify the
misalignment angles in the GW-driven inspiral just before the merger (Sec. 4.6).

Critical conclusions can be obtained using just a timescale argument, which is the main
analysis presented in this work. We compare the alignment timescale with the merger
timescale tm ' 107 yr, i.e. the timescale over which the binary separation decreases. If
talign < tm, then each BH has enough time to be aligned by with its own accretion discs,
otherwise a residual misalignment is maintained. If this misalignment is not small and
it is not greatly modified in the GW-driven inspiral, the BHs approach the merger in a
configuration that can likely produce a superkick. Our procedure is implemented through
Monte Carlo simulations as presented in Sec. 4.3 and 4.4. Before describing our results, we
review previous attempts by Bogdanović et al. (2007), Perego et al. (2009) and Dotti et al.
(2010).

• Bogdanović et al. (2007) present order-of-magnitude estimates of the Bardeen-Petterson
effect. They consider the alignment timescale for a single BH and its accretion disc.
They find that it is always shorter than the merger timescale, and conclude that each
black hole is effectively aligned with its disc preventing any strong recoil. They eval-
uate the accretion time-scale by considering the flow properties at the Bondi radius
(Bondi 1952), estimated to be at 40pc from the hole

RBondi =
GM

v2
gas

' 40

(
M

108M�

)(
vgas

100km/s

)−2

pc , (4.12)

where vgas is an estimate of the gas speed. The accretion at RBondi is then computed
using the Bondi-Hoyle accretion rate (Hoyle and Lyttleton 1941; Bondi and Hoyle
1944) as ṀBondi ' 1M�/yr. Their conclusion is that the mass accreted in tm ' 107yrs
at this rate is at least 1% − 10% of the BH mass. Since the alignment timescale is
only ∼ 1% of the accretion timescale, the inspiral lasts 1 to 10 alignment timescales
and thus complete alignment is reached.
We point out that such estimates at RBondi ' 40pc cannot accurately describe the
accretion properties at the warp radius RBP ' 105R� ' 10−3pc, which is the location
where most of the warp dissipation occur. Moreover, the viscous time at these distances
from the hole is even larger than the Hubble time.

• Perego et al. (2009) improve their study finding slightly longer timescale. They con-
sider the joint evolution of the mass and the spin vector of the BH under the Bardeen-
Petterson effect caused by a misaligned accretion disc with a formal infinite radius.
This means in practice that the outer disc angular momentum direction is considered
fixed, while only the BH properties are evolved. Three disc configurations are con-
sidered, with initial misalignment angles θ0 = π/3, π/6, π/30; the BH mass and the
Eddington fraction are taken within 105M� < M < 107M� and 10−4 < fedd < 1
respectively; and each run is performed adopting two different prescriptions to model
the viscosity profile.
They assume that the rapid time evolution of the warped disc and the BH align-
ment can be decoupled (adiabatic approximation): after a timestep δt the disc quickly
reaches the quasi-steady-state computed by Martin et al. (2007), while the BH prop-
erties are updated because some material has been accreted at the innermost stable
orbit. They treat the warp propagation using α2 = f2/2α1 where the values of f2 are
taken from the numerical simulations reported by Lodato and Pringle (2007). The
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alignment timescale obtained with this procedure is (see Eq. 43 in Perego et al. 2009)

tP09
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( α

0.1

)58/35
(
χ

f2
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yr .

(4.13)
Their result is compatible within a factor 2 with our expression (4.11), which can be
restricted to α2 = f2/2α1 and rescaled to give

talign ' 2.3× 105
( α

0.1

)1.67
(
χ

f2

)0.67

f−1
edd

( ε

0.1

)(H/R
0.01

)1.33

yr . (4.14)

The only apparent difference is the factor containing the BH mass M , which comes
from the disc structure considered in their derivation. Our expression instead keeps
the shape of the disc H/R explicitly indicated (see also the equivalent in Natarajan
and Pringle 1998). However, this M -dependace is very small suggesting that it is not
a key factor.
Using the quasi-equilibrium procedure just described, Perego et al. (2009) found that
the residual misalignment angle distribution is independent on the initial tilt angle
θ0. This conclusion relies on the alignment timescale expression (4.13) which does not
contain the misalignment θ neither explicitly nor implicitly. Different initial misalign-
ment will modify the warped disc structure and consequently the warp propagation
that cause the Bardeen-Petterson alignment. The source of this missing dependance
on θ is ultimately the linear warp-propagation theory considered (Sec. 4.4.2). One of
the goal of the present work is to include non-linear effects as predicted by Ogilvie
(1999). For future comparisons, we report in Fig. 4.2 the main result by Perego et al.
(2009).

• Dotti et al. (2010) test this suggestions by performing a series of smoothed particle
hydrodynamics simulations of two 4 × 106M� SMBHs inspiraling within a 108M�
circumbinary disc in their orbital plane. One of the SMBHs is initially at the center
of the disc, while the second SMBH spirals inwards on an eccentric orbit (e = 0.7)
from an initial separation of 50pc to a final separation of 10pc. Gas particles within
the Bondi radii around the SMBH are accreted, and the BH properties are updated
using the same algorithm presented in Perego et al. (2009). Gas is evolved assuming
a polytropic equation of state with index γ = 5/3 (hot case) or γ = 7/5 (cold case).
The hot medium is an adiabatic monoatomic gas and is meant to simulate an extreme
case in which radiative cooling has been completely suppressed during the merger
(Mayer et al. 2007b), while the cold gas is taken to approximate a solar metallicity
medium heated by a starburst (Spaans and Silk 2000; Klessen et al. 2007). They
found that the BH spins approach the merger aligned to within 10◦ (30◦) with the
orbital angular momentum of the cold (hot) disc. The difference between cold and hot
gas can be understood from the alignment timescale (4.11) derived above. The cold
disc will form a thinnest disc, thus H/R will be smaller than in the hot case. Since
talign is a monotonically increasing function of H/R, a cold disc will take less time
to be aligned and it will also likely keep a smaller misalignment. However, we stress
that the timescale expression could not determine in any way the residual misalignment
distribution, for which galactic-scale simulations like the ones performed in Dotti et al.
(2010) are needed (Sec. 4.6).
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Figure 4.2: Alignment timescale by Perego et al. (2009), as a function of the Eddington
factor fedd and of the initial BH spin parameter a0 (in our notation, χ). The colour scale
represents tP09

align in years, for two value of α = 0.09, 0.18 and two viscosity profiles ν1, ν2 ∝ Rβ .
Distributions do not depend on the initial misalignment θ0.

4.3 Modeling spin alignment

We compute for the first time the alignment timescale considering the full non-linear theory
of warp propagation. We consider a system composed by a single BH and a single accretion
disc, which is pulling the BH spin as predicted by the Bardeen-Petterson effect. We define
θ = β(Rout) to be the angle between the orbital angular momentum of the outer disc and
the spin of the BH (see Fig. 4.1), so that 0 < θ < 2π with θ = 0, 2π corresponding to full
alignment and θ = ±π corresponding to full counteralignment. The alignment timescale
that has been analytically derived in (4.11) should be evaluated considering the proper warp
propagation coefficient α2 = (α,ψ). Before showing our results, three technical aspects must
be discussed in more detail.

4.3.1 Warp amplitude ψ

To compute the warp evolution accurately, an estimate of ψ = ∂β/∂ lnR is needed. One
would need to know not only the misalignment between the outer disc axis and the BH spin
θ, but also how steep its gradient is. This requires a detailed calculation of the shape of
the disc. Unfortunately, studies of disc structure around spinning BHs are available only in
the small-amplitude regime (Scheuer and Feiler 1996; Natarajan and Armitage 1999; Martin
et al. 2007). In our preliminary attempt to test the effect of the non-linear warp propagation,
we decided to adopt a much simpler prescription: ψ ' θ. We test this approximation against
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the stationary solution computed by Scheuer and Feiler (1996). If β � 1, the components of
l (3.47) orthogonal to the spin direction reduce to β sin γ and β cos γ. They can be written
using a single complex variable (Pringle 1996)

W (R) = β(R)eiγ(R) . (4.15)

The Scheuer-Feiler solution reads2

W SF(R) = θ exp

[
2(±i− 1)

(
RBP

R

)1/2
]
, (4.16)

where the sings refer to BH co- or counter-alignment respectively. The tilt angle β results

βSF(R) = θ exp

[
−2

(
RBP

R

)1/2
]
, (4.17)

which correctly returns β = θ if R→∞ and β = 0 if R→ 0. They predict a warp amplitude

ψSF(R) = θ

(
RBP

R

)1/2

exp

[
−2

(
RBP

R

)1/2
]
. (4.18)

The function ψSF has is maximum in R = 4RBP where its value is 0.18 × θ (Fig.4.3): the
error computed by assuming ψSF = θ is always less than a factor 1/0.18 = 5.56. The
Scheuer-Feiler solution can in principle be used only where the outer disc misalignment is
small θ � 1 and consequently the warp propagation can be treated linearly (ψ � 1). In this
case the viscosity α2 and the alignment timescale talign do not depend on ψ (see Eq. 3.53):
the small-θ regime where our approximation is affected by the larger error (up to a factor
∼ 6), corresponds to the case where the net effect of ψ is negligible. If θ ∼ 1 we are fully
in the non-linear regime: the vertical viscosity coefficient α2 is smaller than in the linear
approximation (see Fig. 3.3) and consequently the warp radius RBP in (4.4) moves outwards.
The location where the BH and the disc can exchange angular momentum through warps
gets closer to the outer disc, where the local misalignment is θ.

A model of the disc shape would be needed to describe in detail the angular momentum
exchanged between the disc and the BH and thus predict the final configuration.We decided
to approach the problem within the approximation ψ = θ using a timescale argument.
We hope our study will stimulate further works toward a complete modeling of the disc
dynamical structure in the case of large misalignment angles.

4.3.2 Co- and counter-alignment
Up to now we loosely used the term alignment to indicate a configuration where the disc
plane is orthogonal to the spin direction. The disc angular momentum can be either co- or
counter-aligned with the BH spin.

The symmetry of the problem around the z axis is contained in the Kerr metric (1.4):
the alignment process from a disc misaligned by θ or −θ is completely equivalent. For the
same reason, the problem also presents a symmetry around θ = ±π/2. This means that
if |θ| < π/2, the system would go naturally towards a co-aligned configuration (θ → 0),
while if |θ| > π/2 it would tend to counter-alignment (θ → ±π). Both these symmetries
must be considered: the warp induced in the disc has the same amplitude in both co- and
counter-aligned cases, only the BH spin verse changes. In other words, the warp propagation
is independent on the sing of the Lense-Thirring differential precession (4.1). As a matter
of fact, we never considered the sign of ΩLT in the above derivation.

2In the notation used by Scheuer and Feiler (1996) (see their Eqs. 8 and 16): θ = K and RBP = ωp/ν2.
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Figure 4.3: Tilt angle βSF and warp amplitude ψSF as predicted with the Scheuer-Feiler
analytical solution (Scheuer and Feiler 1996). Even in the small amplitude regime, the
error computed by assuming ψ = θ is less than a factor 6 at the maximum warp location
R = 4RBP.

The actual warp propagation coefficient α2 is computed within the approximation θ = ψ
after being symmetrized around θ = 0 and θ = ±π/2, as shown in Fig. 4.4. This figure
contains the new critical dependence on the misalignment angle that will enter in the com-
putation of talign. The symmetry between co- and counter-alignment timescale is broken by
the accretion efficiency ε because both the location and the potential energy of the innermost
stable orbit change with the direction of the BH spin (Sec. 3.2.1). Accretion from aligned
disc will occur on prograde orbits, while retrograde orbits are expected in a counter-aligned
configuration. The difference between these two cases becomes critical for rapidly spinning
BHs where the values of ε can be different up to a factor ∼ 8 (Fig. 3.1).

King et al. (2005) show how the condition |θ > π/2| is not sufficient to predict counter-
alignment. With a simple geometric argument, they show that counter-alignment is reached
for a gas ring at a radius R only if

|θ| > π/2 and Ld(R) < 2JBH , (4.19)

where Ld(R) is the angular momentum of the gas particles inside R. This is essentially
a condition on the surface density Σ. The above condition is clearly verified for small R,
where the evolution is dominated only by the presence of the BH and the influence of the
outer disc is negligible. If |θ| > π/2 the inner disc always counter-aligns with the BH spin,
which consequently accrete from retrograde orbits. However, there could be some radius
Rcounter where the condition above becomes false: the outer disc forces the BH to an aligned
configuration. A sharp transition occur at Rcounter between the counter-aligned inner disc
and the co-aligned outer disc. This case has been studied analytically by King et al. (2005)
using the AGN disc model given by Collin-Souffrin and Dumont (1990) and numerically by
Lodato and Pringle (2006).

In this work we simply assume that this transition never occurs, i.e. Rcounter > Rout. A
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Figure 4.4: Warp propagation coefficient α2 as function of the misalignment angle θ (Lodato
and Gerosa 2013). We used the full non-linear theory of warp propagation within the
approximation θ = ψ, and implementing both the axial symmetry and the co-/counter-
alignment symmetry.

more precise treatment cannot be adopted within our timescale argument, because a model
for the disc structure is needed to predict Ld(R). Our assumption is formally true only in
the case where the mass of the disc is low enough. As we noted above, this assumption does
not affect our treatment of the accretion efficiency, since the inner disc is counter-aligned
even in these peculiar configurations. Unfortunately it does affect the viscosity coefficient
α2: the symmetrization point between co- and counter-alignment discussed above does not
generally happen at θ = ±π/2, but it should contain both the conditions reported in (4.19).

4.3.3 Negative viscosity

We already mentioned as the non-linear theory of Ogilvie (1999) predicts a negative az-
imuthal viscosity for low values of α and large values of φ (see Eq. 3.55 and Fig. 3.3). The
disc could break up in two distinct planes and maybe settle down in a stable counter-aligned
configuration (Nixon 2012). In such cases, Nixon and King (2012) find that the disc splits
into a co-aligned or counter-aligned inner disc while the outer disc remains misaligned. This
configuration is very different from Fig. 4.1: it does not present a warp radius, but rather a
sharp transition between aligned and counter aligned gas rings. The present derivation can-
not be valid in this regime. However, since the alignment process in only based on Newton’s
third law, even those discs which present a sharp transition will be aligned. The alignment
timescale will presumably be longer in this case because warp propagation through the tran-
sition is expected to be less effective. In practice, we assume that whenever α1 < 1, the
alignment timescale talign is grater than any other timescale involved in the process and
in particular greater than the merger timescale tm. Broken discs affect our result only for
α = 0.1 and θ ∼ ±π/2, where our procedure can lead to unphysical situations (see e.g. the
χ→ 0 limit in Fig. 4.7 and related discussion).
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4.4 Monte Carlo simulations

We finally present the main results of our timescale argument. We use Monte Carlo simula-
tions to compute alignment timescale distributions, fully considering the non-linear theory of
warp propagation. The values of the alignment timescale obtained are then compared with
estimates of the merger timescale, to predict likelihood of large recoil after SMBH merger
events. We draw conclusions on the average spin properties of SMBH in the Universe.

4.4.1 Numerical setup

We compute the alignment probability through Monte Carlo realizations of N = 104 events.
The alignment timescale (4.11) depends on five different parameter: θ, α, χ, H/R and fedd.
The warp coefficient α2 is uniquely determined by α and θ = ψ (Fig. 4.4), while the efficiency
ε is determined by χ (Fig. 3.1).

We decide to keep the aspect ratio fixed to H/R = 0.01 because this factor is expected
to produce a very weak dependance on the BH mass (see Eq. 4.13). The initial angles
θ are randomly distributed between −π and π, thus including also cases where the disc
and the BH end up in a counter-aligned configuration. Being θ a polar angle, we take a
uniform distribution in cos θ to have an isotropic distribution in three dimensions. As for the
Eddington fractions fedd, we carry out runs using a fixed value fedd = 0.1 and others where
they are randomly generated between 10−4 and 1 with uniform logarithmic distribution.
The alignment timescale can finally be computed for each choice of the remaining two free
parameters α and χ. We vary χ between 0 and 1, and α between 0.1 and 0.5.

4.4.2 Alignment timescale distributions
Figs. 4.5 and 4.6 show histograms with some of our Monte Carlo realizations. Each panel
contains probability distributions for a given spin parameter χ and three different values of
α, with two different prescriptions for fedd.

The distributions collected in Fig. 4.5 are computed with a fixed valued fedd = 0.1.
Let us stress the fact that even in this case we need Monte Carlo simulations, because we
have to sample over the initial misalignment. Unlike Perego et al. (2009), who found that
the alignment timescale is independent on the initial misalignment, we find that θ is a key
parameter because it determines the warp propagation coefficient and consequently the warp
radius location.

An interesting feature arises for rapidly rotating BHs, for which the alignment timescale
distribution assumes a bimodal shape. The efficiency ε strongly divides the events with
|θ| < π/2 from those with |θ| > π/2. For high spins, the efficiency of accretion ε(χ) differs
significantly between the co- and the counter-aligned cases (Fig. 3.1), so that for half of the
events we have rapid (counter-)alignment, while for the remaining half we have relatively
slower (co-)alignment. For extreme Kerr BHs (χ = 1) the peak containing the co-aligned
cases can occour at timescale as large as ∼ 50 Myr.

Fig. 4.5 shows probabilities where the Eddington fraction fedd is drawn from a uniform
logarithmic distribution between 10−4 and 1. This is the same range already explored by
Perego et al. (2009). These distribution are the generalization to non-linear warps of their
previous result reported in Fig. 4.2. Since we are sampling uniformly in log fedd like in the
scale of their plots, our distributions are equivalent to lines at constant χ in their color-coded
map. A crucial difference is that we cannot avoid using Monte Carlo simulations, because of
the new dependence on θ. It can be seen that our timescale values are sensibly larger than
their previous result, especially for high spins. Warp non-linearities become critical for large
value of χ, where the distributions significantly move towards longer alignment timescale.
Rapidly spinning BHs need much more time to be aligned with the disc: this picture emerges
only when non-linear warp propagation is considered.

We report in Table 4.1 the average values of the alignment timescale computed in 50
different Monte Carlo runs, using both the linear and the non-linear warp propagation
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Figure 4.5: Alignment timescale
probability n, obtained sampling
over the initial misalignment θ in
[−π, π], and fixing the Eddington
fraction to fedd = 0.1. For high spin
values, the distributions assume a bi-
modal shape, because the efficiency
ε(χ) can strongly differ between co-
and counter-aligned configurations.
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Figure 4.6: Alignment timescale
probability n, obtained sampling
over both the initial misalignment
θ and the Eddington fraction fedd

in [−π, π] and [10−4, 1] respectively.
Warp non-linearities become critical
at large value of χ, where the distri-
butions significantly move towards
longer alignment timescale.
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α = 0.1a α = 0.2 α = 0.3 α = 0.4 α = 0.5
χ = 0.1 9.1 (1.2) 26.5 (5.1) 26.7 (10.0) 27.1 (14.2) 28.7 (17.3)
χ = 0.2 25.3 (3.3) 73.3 (14.2) 72.7 (27.8) 74.9 (39.4) 79.3 (48.1)
χ = 0.3 47.1 (5.9) 132.8 (25.6) 131.5 (50.0) 135.3 (71.0) 143.2 (86.7)
χ = 0.4 80.9 (9.8) 219.6 (42.2) 217.3 (82.5) 223.4 (117.1) 236.2 (143.0)
χ = 0.5 110.5 (14.0) 322.5 (62.1) 319.2 (121.2) 328.5 (172.1) 347.4 (210.1)
χ = 0.6 138.2 (17.8) 428.1 (81.0) 422.9 (158.3) 434.9 (224.7) 459.9 (274.3)
χ = 0.7 189.2 (25.7) 586.6 (112.7) 581.2 (220.6) 599.2 (313.2) 634.4 (382.5)
χ = 0.8 285.7 (35.91) 823.9 (158.9) 816.2 (310.4) 840.7 (440.6) 889.7 (538.0)
χ = 0.9 401.3 (51.7) 1149.6 (223.1) 1140.4 (435.8) 1175.8 (618.7) 1244.8 (755.4)
χ = 1 1149.8 (145.1) 3295.9 (632.4) 3263.0 (1235.3) 3359.1 (1753.6) 3553.2 (2141.2)

Table 4.1: Average values of the alignment timescale talign in unit of 106yr, computed using
the non-linear theory of warp propagation. Both θ and fedd are randomly generated in
[−π, π] and [10−4, 1] respectively. In parenthesis we list the correspondent values calculated
using the linear approximation (3.53): the linear theory causes a strong underestimation of
the alignment timescale, up to a factor 7 for the low-alpha/high-spin case.

aAverage values are computed only over ∼ 4700 of the 104 generated events, because negative viscosity
events have been discarded by construction.

theory. In every case, the linear theory results in a strong underestimation of the alignment
timescale, even up to a factor 7. The largest disagreement occurs for low value of α, because
the non-linear estimate of α2 significantly differs form the linear one (Fig. 3.3); and for large
value of χ, where the effect just mentioned is amplified. Since typical merger timescales tm
are of the same order of magnitude of talign, a factor 7 can be critical to predict if SMBHs
have enough time to reach the aligned configuration before the merger (Sec. 4.4.3).

The probability distributions computed with α = 0.1 are quite different from the others,
because in this case we remove from the alignment process all the events with negative
viscosity coefficient (Sec. 4.3.3). This is clearly evident in Figs. 4.5 and 4.6 where the overall
normalization of the α = 0.1 case is evidently different from the others. However, even
such a strong assumption does not affect significantly the shape of the distributions which
is determined by the effects described above. Negative viscosity events have been removed
also to computed the average values reported in Table 4.1.

4.4.3 Timescale comparison

Our main result is that the alignment timescale significantly increases for rapidly rotating
BHs: they could therefore reach the merger in a misaligned configuration. We detail here a
preliminary analysis of the timescale argument presented in Sec. 4.2. A detailed treatment
of the shrinking timescale is needed to improve the present result, as sketched in Sec. 4.5.

To predict if SMBHs can be ejected by their galactic bulges after a merger, the alignment
timescale should be compared with some estimate of the merger timescale tm. Here we simply
take tm = 10 or 50 Myrs, as generally predicted by Escala et al. (2004, 2005); Dotti et al.
(2006); Mayer et al. (2007a) and Dotti et al. (2009b).

We show in Fig. 4.7 the probability that the alignment timescale is smaller than tm =
10 Myrs (top panel) and tm = 50 Myrs (right panel) as a function of the spin parameter χ,
for various choices of α. These plots contains 500 Monte Carlo realization (5 values of α and
100 values of χ) with N = 104 events each one; both θ and fedd are randomly generated like
in Fig. 4.6.

Alignment is efficient for small spin parameters, where we expect most spins to align
or counter-align with their discs by the time the binary approaches coalescence. However
this is not true for larger spins. In particular, for χ > 0.5 we expect a sizeable fraction of
the systems, of the order of 30-40% (or even more for extreme Kerr BHs), to not reach the
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Figure 4.7: Alignment timescale cumulative distributions (Lodato and Gerosa 2013): prob-
ability that talign is smaller than 10 Myrs (left panel) or 50 Myrs (right panel), as a function
of the spin parameter χ, for various choices of α. For large values of a, a sizeable fraction of
systems are likely to have residual spin misalignments after a binary shrinking time. The red
lines show the corresponding probabilities in the case where we use the linear approximation
(3.53) and we thus do not consider the effect of the warp non-linearities.
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aligned configuration after 10 Myrs. The result is still present for 50 Myrs, in which case
obviously the BHs have more time to become aligned. However, it can be seen from Fig. 4.7
that our findings are not very sensitive to the proxy chosen (10 or 50 Myrs), ensuring that
our results are robust with respect to different choices of the merger timescale.

To emphasize the effect of the warp non-linearity we show the alignment timescale cumu-
lative distributions both including the warp non-linearities (black lines) and considering the
small-ψ approximation of Eq. (3.53) (red lines). The effect of the non-linearities is clearly
very significant. In particular, it turns out that in the linear case the alignment probability
has a much stronger dependence on α. This happens essentially because in the non-linear
case the range of values of α2 as a function of α is much smaller than in the linear case (see
Fig. 3.3, where α2 approach a constant value for large ψ). As noted above, the alignment
process is much faster in the non-linear case, especially for low α.

For α = 0.1, the probability of alignment does not approach 1 for χ→ 0, even if tal → 0:
this result is a consequence of our strong assumption of removing all the events with α1 < 0
from our sample. A more precise treatment of broken discs is needed to overcome this
unphysical result (see Sec. 4.3.3). For larger α, the azimuthal viscosity is positive for every
event and our results are almost independent on the actual value of α.

Since the alignment timescale is inversely proportional to Ṁ , larger Eddington ratios
(such as those assumed by Bogdanović et al. 2007) imply faster alignment. Even in the
simpler cases where we keep the Eddington ratio fixed, we find that alignment within 10 Myrs
occurs only for χ < 0.6 and χ < 0.3 for fedd = 0.1 and fedd = 0.01, respectively.

4.4.4 Limitations

Our model is certainly very idealized and could be refined in several ways.
First of all, we have used a uniform logarithmic distribution of the Eddington value

without considering in a detailed way how do tidal effects and gap opening (Artymowicz
and Lubow 1996) affect the accretion rate on the binary elements. One would expect that
the discs surrounding BHs in a binary system might have somewhat smaller accretion rates
than in isolation.

A second important limitation of our work comes from the assumption that the length-
scale over which the disc inclination varies is comparable with the disc size. This results
in the approximation ψ = θ. Our assumption goes in the direction of underestimating the
alignment timescale, since if the warp occurs over a short lengthscale even a relatively small
initial misalignment might be more difficult to realign. As stressed in Sec. 4.3.1, one would
need to explicitly solve for the disc shape to take this effect into account. A self-consistent
time-dependent calculation is not available at the moment. As a consequence, we restricted
our study to a timescale argument, which prevented us from quantifying the exact degree
of misalignment at the end of the merger. Residual misalignment can be estimated only
with a detailed time-dependent calculation of the galactic-scale disc dynamics, like in Dotti
et al. (2010, 2013). We hope our work may stimulate further generalizations of the present
solutions (e.g. Scheuer and Feiler 1996; Martin et al. 2007; Chen et al. 2009) to consider in
a self-consistent way the full non-linear theory of warp propagation.

Third, our choice of tm = 10 and 50 Myrs as proxies for the shrinking timescale is clearly
very simplified, and might in particular be a function of the system parameters, such as the
accretion rate and the mass ratio of the binary. Large values of talign can be due to small
values of Ṁ and should therefore be compared with a lower shrinking timescale, suitable for
such gas-poorer environments. A possible way to overcome this limitation is presented in
Sec. 4.5.

Finally, we have considered only the interaction of the BH spin with the accretion disc.
Relativistic effects may modify the spin direction after the decoupling. A PN approach is
needed to follow the evolution of the spins at small separations, taking into account the
possible role of spin-orbit resonances (Schnittman 2004; Kesden et al. 2010a,b; Berti et al.
2012b). Since resonant locking will be the main subject of the second part of this work, we
remind to the related discussion in Chapter 6. Briefly, spin-orbit resonances are triggered
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by an asymmetry between the spin misalignment angles at the decoupling. If the BHs
that form a binary approach the decoupling with two different residual misalignments, PN
resonances can force the two spins to lie in the same plane (resonant plane locking). The
key effect to introduce a spin asymmetry could be dependance of the accretion rate in talign.
In binaries with a large mass ratio, where accretion occurs preferentially onto the secondary,
the primary might be much harder to align.

4.5 Inspiral timescale

One of the weakest points in our timescale argument is the choice of the merger timescale.
In particular, the shrinking timescale may depend on the same parameters of the alignment
timescale, such as α and Ṁ . Each value of talign should be compared with its own associated
value of tm, rather than with fixed thresholds like 10 and 50 Myrs. A BH merger is the result
of three different phases, where the shrinking is caused by dynamical interactions with stars,
viscous interactions with the accretion disc and GW emission (Sec.2.1.2). The bottleneck
of the process is the second phase (Fig. 2.2), where even a gas-rich environment may not
be efficient enough to decrease the separation in a Hubble time (final parsec problem). For
this reason, the alignment timescale must be compared with the inspiral timescale in the
disc-driven phase, before the decoupling. We do not consider other alignment effects that
may arise in the (quick) GW-driven phase. A critical discussion is given in Sec. 4.4.4.

We derive in this Section the inspiral timescale of a BH binary due to interactions with
a circumbinary disc. Three regimes can be separated, for different mutual relationships
between the BH masses M1 and M2 (with M1 > M2) and the mass of the disc inside the
binary orbit M(a). In the first two regimes, the primary mass M1 is assumed to be larger
then both M2 and M(a), a situation which has been extensively studied in the context of
planet formation (e.g Armitage and Rice 2005; Armitage 2010). The third regime instead
restricts to comparable-mass BHs.

Type 1 migration. In the Type 1 regime of "planetary" migration, the perturbation
caused by the secondary is small enough to not alter the structure of the disc. The torque
on the secondary can be computed at the linear level showing that the secondary remains
fully embedded within the gas disc, without any gap opening. The migration happens in
this regime if viscosity acts quicker than the tidal torque which tends to open the gap. The
inspiral occur in this regime if (Armitage 2010)

M2

M1
. 10−5

(
H/R

0.01

)5/2 ( α

0.1

)1/2

, (4.20)

which not relevant in the SMBH context.
Hydrodynamic simulations of the Type 1 migration in the planetary context have been

performed by Miyoshi et al. (1999); D’Angelo et al. (2002, 2003) and Bate et al. (2003);
SMBH mergers in this regime are the main subject of Armitage and Natarajan (2002).

Type 2 migration. As the mass of the secondary increases

M1 �M(a) ∼M2 , (4.21)

its presence ceases to be a mere perturbation in the disc of the primary. The disc reacts
opening a gap around the secondary position, as we described in Sec. 3.4. Angular momen-
tum is transferred from the secondary to the outer disc decreasing the binary separation.
The inspiral timescale can be found studying the angular momentum conservation on the
outer edge of the gap. The conservation equation (3.15) must be properly modified by the
presence of the secondary (Papaloizou and Lin 1984; Lin and Papaloizou 1986a,b; Trilling
et al. 1998). In general, a new term appears at the right-hand side of (3.15) to describe
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the torque induced by the secondary to the disc. The torque can be easily written down by
considering the backreaction of the disc on the secondary −∂Lb/∂t, where Lb = M2a

2Ω is
the angular momentum of the secondary (Lodato and Clarke 2004; Lodato et al. 2009). The
angular momentum conservation of the disc ring just outside the gap reads

2πR3vRΣΩ = 2πR3νΣ
∂Ω

∂R
− ∂

∂t
M2a

2Ω . (4.22)

The first term in (3.15) can be neglected because it is a first-order quantity in the (in-
finitesimal) ring width. The three different terms in (4.22) describes angular momentum
advection, viscous torque and the torque induce by the secondary, respectively. Since we
are considering the edge of the gap opened in the disc at the binary separation, we can set
R = a, vR = ȧ, Ω = Ω(a) and Σ = Σ(a). Assuming keplerian rotation a3Ω2(a) = GM1, we
obtain

2πΣΩa3ȧ = −3πνΣΩa2 − 1

2
ΩM2aȧ , (4.23)

ȧ

a
= −3

2

ν

a2

4πΣa2

4πΣa2 +M2
. (4.24)

The inspiral timescale is (Syer and Clarke 1995; Ivanov et al. 1999; Lodato et al. 2009)

tm =
a

|ȧ| '
M2 +M(a)

M(a)
tν(a) , (4.25)

where tν(a) = a2/ν is the viscous timescale at the binary separation and we approximated
the mass of the inner disc with M(a) = 4πΣ(a). If the mass of the secondary is negligible
M2 �M(a) (but large enough to open the gap), the inspiral timescale reduces to the viscous
timescale tm → tν(a).

Type 2 migration and gap opening have been studied numerically by many authors,
including by Bryden et al. (1999); Nelson et al. (2000); Kley et al. (2001); Papaloizou et al.
(2001); D’Angelo et al. (2002, 2003); Bate et al. (2003); Schäfer et al. (2004) and Lufkin et al.
(2004). They all assume for simplicity that angular momentum transport in the disc could
be represented using a microscopic viscosity. Generalizations to turbulent discs can be found
in Winters et al. (2003); Nelson and Papaloizou (2004) and Papaloizou et al. (2004). Nelson
and Benz (2003a,b) focus instead on the transition between Type 1 and Type 2 behavior.

High mass ratio. The interaction between the disc and two comparable-mass BHs

M1 ∼M2 �M(a) , (4.26)

is more complicated because the gravitational potential of the secondary cannot be ne-
glected. The disc reacts opening a cavity of radius ∼ 2a around the binary. The process is
typically studied by means of numerical simulations, and the inspiral timescale is derived us-
ing numerical results (MacFadyen and Milosavljević 2008; Cuadra et al. 2009; Roedig et al.
2011, 2012). To the best of our knowledge, Rafikov (2012) computed the first analytical
expression for the inspiral timescale in the regime M2/M1 = q ∼ 1. He presents an analysis
of the circumbinary disc properties by reformulating the standard disc equations in terms of
the viscous angular momentum flux G = −2πνΣR3∂Ω/∂R instead of Σ. He found for the
merger timescale

tm '
1

(1 + q)

M2

M(a)
tν(a) , (4.27)

which reduces to (4.25) if q � 1 and M(a)�M2 .
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4.5.1 Guess and improvement

We guess that a possible generalization of the merger timescale formulae could be

tm '
1

1 + q

M(a) +M2

M(a)
tν(a) , (4.28)

Eq. (4.28) interpolates the previous Eqs. (4.25) and (4.27) in the different regimes. The
different merger timescale expressions are plotted in Fig. 4.8 as a function of the mass of
the secondary M2. For simplicity we take M1/M(a) = 1000 and 0.1M(a) < M2 < M1. Our
guess agrees with (4.25) (Lodato et al. 2009) in the low-mass-ratio regime, and with (4.27)
(Rafikov 2012) when the mass of the two BHs is comparable.

Three main steps are still needed to improve our timescale procedure with a more precise
estimate of the merger timescale.

i) Eq. (4.28) needs to be verified analytically, paying particular attention to the right pre
factor. This could be done in principle by repeating and improving what presented by
Rafikov (2012) and comparing with Haiman et al. (2009).

ii) Two timescale comparisons between talign and tm may be performed, one for each
member of the binary. BH Masses and spins might be properly initialized using dis-
tributions from SMBH merger tree simulations (e.g. Volonteri et al. 2005, 2009, 2012;
Berti and Volonteri 2008; Natarajan and Volonteri 2012), and further assumptions are
needed on the disc properties.

Figure 4.8: Inspiral timescales in unit of the viscous timescale, as a function of the mass of
the secondary BH M2. For simplicity we take M1/M(a) = 1000 and 0.1M(a) < M2 < M1.
Dotted blue line shows the inspiral timescale for the Type 2 planetary migration (4.25),
dashed red line shows the (4.27) valid in the comparable-mass regime; solid black line shows
our guess formula (4.28) which approach the two previous results in their validity regimes.
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iii) The difference between cicurmbinary disc and circumprimary/circumsecondary disc
may become critical in this context. The accretion rates of the two individual discs
enter the alignment timescales (4.11), while the accretion rate of the circumbinary
disc may enter in the merger timescale through the viscous timescale. This three
accretion rate values cannot be assumed to be independently distributed in a Monte
Carlo simulation: they clearly are correlated because the individual discs are fed by
the circumbinary disc. We need a coherent prescription to foresee which percentage of
the mass from the circumbinary disc will end up accreting onto the primary or onto
the secondary BH (see e.g. Artymowicz and Lubow 1996).

4.6 Are supermassive black holes slowly spinning?

We have revisited the arguments suggesting that gas disc are effective in bringing the spins
of the two BHs in a merging binary into alignment. In particular, we have improved on
every other previous estimates by taking into full consideration the reduction in the warp
diffusion coefficient when the misalignment angle becomes large and consequently non-linear
terms become important. Our results are consistent, at least within orders of magnitude,
with the previous investigation by Perego et al. (2009) and Dotti et al. (2010) (Sec. 4.2): in
particular, we find a similar dependence of the alignment timescale with respect to the spin of
the BH and the Eddington ratio. Contrary to previous analysis, our estimates show that the
alignment timescale is a strong function of the initial misalignment angle. This comes from
having considered the full non linear warp propagation theory, instead of restricting to the
small amplitude regime: this is a key element, because it allow us to compute a probability
for the alignment process, based on the expected distribution of initial misalignments.

We find that if the BH are rapidly spinning (χ & 0.5), the system would not end up
to be completely aligned, in up to 40% of the cases, at the time at which the two BHs are
brought together at distances of the order of 0.01 pc, i.e. after ∼ 107yr. Highly spinning
BHs are more likely to be expected to maintain a significant misalignment, which may cause
high recoil velocities and even SMBH ejections (Sec. 2.3). The current lack of observational
evidence for strongly recoiling BHs (but see the two strong observed candidates in Sec. 2.2)
suggests that the average BH spin is rather low. Our conclusion regarding the magnitude
of the BH spin is related to the average properties of the BH population. Individual SMBH
might well have large spins, and observations of broad iron lines (Sec. 1.2.3) would naturally
be biased in their favor. On the contrary, if recoiling BHs are found to be more common,
such limitation on the magnitude of the BH spin would not apply.

Our work is not the first claim that SMBHs in the Universe could be slowly spinning.
Our predictions clearly support the chaotic accretion picture. King and Pringle (2006,

2007) realize that a series of accretion episodes randomly distributed could explain SMBH
formation from stellar-mass BH seeds far better than if SMBH were accreting form a single
prograde accretion disc. Chaotic accretion can maintain the BHs to be slowly spinning over
the cosmic time, thus allowing a quicker mass growth. The same argument has also been
invoked to solve the final parsec problem (Nixon et al. 2011a,b, 2012a,b) and explain the
M − σ relationship (Nayakshin et al. 2012). Chaotic accretion has also been implemented
in galactic scale simulations by Dotti et al. (2013), which however fail to properly consider
the warp propagation.

Our finding are also in line with the values predicted by the Soltan argument relating the
average SMBH mass to the radiation background of the Universe (Sec. 3.2.4). The totality
of background light in the low-redshift Universe is compatible only with black-hole growth
with a radiative efficiency ε ∼ 0.1 and consequently χ ∼ 0.6 (Sec. 3.2.1): this is exactly our
threshold value to avoid SMBH ejections.

A complete different suggestion that SMBHs could be slowly spinning comes from a
timescale analysis performed on AGN jets rather than SMBH merger. Babul et al. (2012)
show that gas accretion onto SMBHs in AGNs can modify the spin/jet direction quick enough
to fulfill the observational constraints, only if the spin magnitude is as low as χ ∼ 0.1. This
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could provide an explanation to the jets reorientation phenomenon (Gallimore et al. 2006;
Dunn et al. 2006; Forman et al. 2007; Wise et al. 2007; Hodges-Kluck et al. 2010). Babul et al.
(2012) present also an interesting argument to estimate not only the alignment timescale,
but also the residual misalignment. A complete aligned configuration can be reached only
if the disc is massive enough to provide a mass flow to the BHs for at least one alignment
timescale. They estimate the maximum mass of the disc that could be accreted and therefore
the residual misalignment using angular momentum conservation (see also Nixon and King
2013). Unfortunately, the same argument cannot be applied to SMBH merger, where the
alignment must be reached before the coalescence.

The cosmological co-evolution of SMBHs and their host galaxies is a significant open
problem in our understanding of many high-energy astrophysics and GW topics, such as
quasars, AGNs, SMBH binaries and mergers: with this work we outlined how the absence
of recoiling BHs can give precious insights on the SMBH spin magnitude distribution.





Part II

Resonant locking
in stellar-mass

black-hole binaries

By examining the final, smooth black hole, one cannot in any
way discover its past history. One cannot discern whether it was cre-
ated by the coalescence of two smaller holes, or by the direct implosion
of a star made of matter, or by the direct implosion of a star made
of antimatter. The black hole has no hair from which to decipher its
history. However, the history is not entirely lost. A record has been
kept: it has been encoded in the ripples of spacetime curvature that the
coalescing holes emitted. Those curvature ripples are much like the
sound waves from a symphony. Just as the symphony is encoded in
the sound waves’ modulations (larger amplitude here, smaller there;
higher frequency wiggles here, lower there), so the coalescence history
is encoded in modulations of the curvature ripples.

And just as the sound waves carry their encoded symphony
from the orchestra that produces it to the audience, so the curvature
ripples carry their encoded history from the coalescing holes to the
distant Universe.

K. Thorne, Black Holes and Time Warps:
Einstein’s Outrageous Legacy (1994)





Chapter 5

Black-hole binary inspiral

In this second part of the thesis we study the interplay between astrophysics and GR in
order to predict the statistical properties of observable stellar-mass BH binaries focusing in
particular on the role of the spin orientation angles. We show how a comprehensive model
including elements from populations synthesis physics and general-relativistic evolution is
needed to model the spin evolution from large separations, where spin directions are deter-
mined by astrophysical formation processes, to small separations, where general relativistic
spin-orbit couplings become important.

In this Chapter we also review the BH binary evolutionary equations in the GW-driven
inspiral at the lowest PN order and we describe the main results obtained by population
synthesis studies (in particular the StarTrack code) to predict BH binary expected rates.

The goal of the project is twofold: statistical predictions of spin configurations may help
GW-data analysts to place templates to increase GW detection efficiency; on the other hand,
when detections will be available, the comparison of our predictions with observations could
provide precious insights on BH formation processes.

5.1 Preparing for gravitational-wave astronomy

Stellar-mass BH binaries are promising astrophysical sources for future GW detectors. The
use of the matched filtering is needed to increase detection rate, but it requires detailed
knowledge of the incoming waveform. This depends on the configuration of the binaries
when they enters the sensitivity band of the detector. Understanding physical evolutionary
processes could therefore help data analysts to place templates in well-defined regions of the
parameter space to increase detection efficiency.

5.1.1 Stellar-mass black-hole binaries

Even in the most optimistic scenarios, the merger of extragalactic stellar-mass BH binaries
is expected to be unobservable electromagnetically. Unlike mergers involving NSs, where
several solar masses of baryons are available to radiate after the collapse, emission from
BH binaries will be Eddington limited (Sec. 3.2.2). The Eddington luminosity for several
solar mass BHs (∼ 1039 erg) is small enough to make them very difficult to observe at
extragalactic distances, and the expected stellar-mass galactic merger rate is ∼ 0.1 Myr−1

(Belczynski et al. 2007; Table 5.1). The first detection of a double BH will probably come
from GW astronomy, and it will probably concern extra-galactic sources.

Observing GWs from BHs, individually or in binaries, will help to test some of the GR
predictions in the strongly non-linear regime, as well as to constrain alternative theories of
gravity (Press and Thorne 1972; Blanchet and Sathyaprakash 1994, 1995; Sathyaprakash
and Schutz 2003, 2009; Horbatsch and Burgess 2012; Berti et al. 2012a). Radiation from
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stellar-mass BHs is expected mainly from coalescing binary systems, when one or both of
the components is a BH. The larger mass of BH systems makes them visible in GWs from
a greater distance than neutron-star binaries: BH events will be much "louder" than those
involving neutron stars. Although BHs are formed more rarely than neutron stars, because
they require higher-mass progenitor stars, the spatial abundance of binary systems with BHs
is amplified relative to neutron-star binaries, because binary systems are much more easily
disrupted by NS formation than by BH formation. When a neutron star forms, most of the
progenitor star’s mass (6M� or more) must be expelled from the system rapidly to produce
a ∼ 1.5M� object. Due to the stronger gravity of BHs, material is expected to fall back
onto the proto-neutron star, which typically reduces the kick received by the newly formed
compact object (see Sec. 7.2.5 on SN kicks).

Double-BH systems may also be formed abundantly by capture processes in globular clus-
ters, which could be efficient factories for BH binaries. Being more massive than the average
star in a globular cluster, BHs sink towards the center via dynamical friction (Sec. 2.1.2), and
this can lead to efficient binary formation (Portegies Zwart and McMillan 2000; Benacquista
and Downing 2013).

5.1.2 Gravitational-waves searches for black-hole binaries

The life of a compact binary as a GW source can be divided in three main stages, each of them
producing a different GW signal: inspiral, merger and ringdown (an artist representation
is given in Fig. 5.1). During the inspiral phase the orbit of the binary decreases due to
the emission of gravitational radiation, that carries energy away from the system. The
separation can decrease until the BHs merge with each other into a more massive BH. The
merger remnant is a highly distorted BH that approaches its final equilibrium configuration
(a stationary Kerr solution) by emitting GWs of characteristic frequencies and damping
times: this is known as the ringdown phase (e.g. Berti et al. 2006, 2009).

Recent GW searches from double BH binaries with the four detectors of the LIGO/Virgo
network are described in Abadie et al. (2011, 2012a) end Aasi et al. (2013). As outlined
in Sec. 1.3.5, GW signals are extracted by matched filtering, which consists of computing
the cross-correlation between the noisy detector output and a predicted template. Efficient

� � � � � � � � � 	 
 � �  � � � �
�

� � � � � � � �
�

� � � �  ! " # $ % & ' ( )
*

+ , -
.

/ 0 1 2 3 4 5 6
7

8 9 : ; < = > � ? @ A � B C D � E F G H I J K L M N

O P Q R S T U V W X Y Z V [ \ ] ^ _ `
a

H b c d e f g h i j k W � l m n  o p ! q r s t u v w x y
z

w { | M } ~ �
�

�

� �
�

� � G � � T � � � \ � � + " � � � { � O � � � � W � � �
7

� � � � � � � ! � � � � � �   ¡ \ & ¢ £ ¤ ¥ ¦ \ §¨
© & ª « ¬  ® ¯

°
± ² V ³ ´ µ ¶ · K � ¸ ¹ º » ¼ ½ ¾

7
¿ À 4 � G Á Â ª Ã Ä Å � Æ Ç È É ! � Ê

Ë
Ì Í Î e Ï

Ð
Ñ Ò Ó w Ô

Õ Ö × W Ø Ù � Ú " Û Ü Ý Þ ß à á â % ã ä å æ ç Ö 6
7

W è é W �
7

ê ë # ì k í î ï Æ ð ñ ò � ó ô � ¶ õ
ö

÷ H _ H ø & ù H

ú û � ü � ý þ ÿ W � � � k � � � � � � � � 	 
 � �  ÿ 6
�

� � � � � W � � ¯
�

� ! � ] � �
�

� � �
�

� �  ¢ ! " # $ " % % &

' ( K ) � * + k , V  - .
/

0 + H 1 2 3 4 5 6 7 7 � 8 Z � 9 d : ;
7

<  = >
?
¯ @ ] A ¯

�
B ß C D E F H â G H I J K H

L \ M 6
�

N O P Q � R
°

S T ! U k V W C X \ { Y _ � Z [ \ ] ^ _ ` a � 6
�

S � b c d í e f g Æ W h  � i j k l m n H o

p q r s t @ u v w x M y W z { | 6
.

} ~ � � � � � � � � � � ; l �
Ë

k � � � � � Ê
z

� { � � � K � ÿ � � � � � � 6
�

� �

� � � � � � 4 � � �  
¡ � � £ ¢ £

�
¤ ¥

¦
6 § ¨ © k � � g l ª « ¬ 

®
¯ � ° ±

7
� ² � ³ ´ µ v ¶

·
� ¸ ¹ % º e » ¼ ½ ¾ ¿ À Á

Â Ã
�

: � , � Ä ¯
Å

Æ Ç È É Ê Ë Ì Í \ Î Ï � d Ð I Ñ Ò
7

Ó Ô Õ L Ö
×

Ø Ù Ú V W Ê
Û

Ü Ý Þ ß H à } [ K V á â ã ä å 6
�

æ � ç
è é ê ë W � ì l � É í � ¹ î

×
ï ð ñ k ò â ó ô

.
õ � = � Ò

7
ö ÷ ø

·
ù ú û � ü ý t þ ÿ

º
k �  � � � � � H + � � ��

	 é � 
 � Ê
�

 z � ã { ( � � � � \ ú � ] � � ì � � í q W � © � � x � � � x � ð � � Í  \  º L \ �
� ¾

�
� Q  ! � + "

ö
# $ � % { ( &

'
( ) * + , - f . / 0 ï 1 2 3

Ë
4 5 6 7 � { 8 H v % { 9 \ ã W : � \ ¹ â ; < b

= > ? @ É A G B C D W � E ¸ � É F = G H ] I [ J ú � K � É ú � Q L M N O é P © � Q R
S

� T U V
W

X � Y k Z [
\

k ] É ^
_

t Ì `
I a b " é c d A = = e � f k ² g h i i � � j k l m n

o
p q r s t

o
� \ u v w x ] y � z { ß â k | t } ~ �

\
� � � � � � �

� + � � G A W � � k � � � \ ] � k � � j t ]
�

� � � �
o

� � � L � Ò
7

� � � � � � � �
¦

� 8 � ¬ �
�

� � �
�

]   ¡ ¢ £ ¤ I K ¥ �

O ¦ § ¨ © �

ª « ¬  ® ¯ ° ± ² ³
´

µ ¶ · ¸
¹

º » ¼ ½ ¾ ¿ À ä Á Â Ã Ä Å Æ Ç È É Ê w Ë Ì Í � Î ] Ï Ð " Ñ Ò Ó Ô Õ ² Ö × Ø \
Ù t Ú ÛÜ

Ý Þ
ö ß à á â ã ä å æ ç è é ê r ë à ì í î ï ð ñ ò ó ô o õ ö È ç ÷ ø

ù ú û ü ý þ ÿ � � � � � � � � � 	 

�

� � � � � � �
� � � �

� � � � Ó � � � � � ß  ! ß " # $ % à & ' ( ) * + , - e . / 0 1 � 2 3 4 5 6 7 8 9 À : ; < =  > ? @ A  B
A C

�
D E F þ G H I J K L  M m N O P Q R S t T U V

W
X Y Z [ \ ] ^ _ ` a b c d e · f g h i j k l

m æ n � o p q r
s t u v w x y z þ à { |

¬
} ] ~ � � r � � � � � � � � � � � � ü � � � � � � � � � c � � " � m � � � m � � � < � �

�
\

  ¡ Ë � � ¢ m £ ¤ ¥ ¦ h § ¨ Ð © ª « ¬  Q ® ¯
°

± ² ³ ´ µ ¶ · ¸ ¹ º » ® ¼ ½ ¾ ¿ À Á Â
Ã

Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð
Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß à á â ã ä

å
æ ç è é ê ë ì í î ï

°
ð ñ ò

ó ô õ ö ¥ ÷
ø ù

ú
û ü ý þ ÿ � � � � � �

�
� � 	 
 Ø � �  � Æ �

� � � � � � ê ® � � � � � � � � � �  þ ! · " # $ % & ' ( ) * +
,

- . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C
D
E F G H I JK

L M N O ß P Q R S T U
V W X Y Z

[
\ ] ^ _ ` a b c d e f g Q h

ø ß i
j kl mn o p q r s t u vw w xw y z { | } w ~ � l � �� � w � �

�
�

� � w � � w ~ w � ww � � � w
�

� � w � � � � � � � � � � � � � �� w � � � �  
¡ w¢ � £ ¤ ¥ w ¦ § ¨ © w ¨ � w � � � ª « ¬ �  � ® ¯ w s °¨ �   w ± ² ³ w´ w w

µ ¶ ·
w ¸

¹
�

w º w » ¼ ½ | w ¾ ¿ À Á ¸ ¹
Â

¨ q Ã Ä ¨ º Å ¨ Â q Æ l l « ÇÈ l É l l ÊË
Ì Í l Î Ï t Ð l

� w wÑ w Ò Ó � Ô Õ Ö × � Ø Ù w w Ú q Û Ü q Ý l w Þ ß à á t w â ã ä   ww å ¨ æ ¸ ¸ ç è t é � êw ë � w ì í ¨ î ï ð � ñ ~ w ò w� ó ¬ ô õ öw w
÷ ø w ù ú ¹ û   üw ý© þ ÿ�� �

� � �
�

� �
	



�

� � û l  � � � � � w � � � � � � w � � � w� w K � � { � � ¹ � w �� © w �� � � �  ! " � þ � # � � $
¨ ¬ % & ' ( ¨ ) q * + Æ w , - K . / 0 ß 1 w � 2 3 4 5 6� � � � 7 8 9 ¸ « � w � « � ¸ : ; < ¨ = � > ? @ w A è � B C D

E F w � � G w H I J K � ¨ L M N O � �P ¨ ¨ Q R è S T U V l � W X � Y ° w Z � � w 1 w � £
| [ \ ] ^ _ ` a b c d e

¨ f g « h � K g w i g /   K � ° w 1 � K j k � ° w l 1 � m n o | � p q r ws 1 t u w
� �

8 « v | « w x y � z ¨ � { � # ¨ | } ~ ¨ � � � � Q w � � � � � ¨ � ¸ � � � � � � � � � � � q � �
ñ � ° Â � � � � � � � �� � 1 � � � � � ¸ � ¨ « � � � ¨ ¨ © � � w   � | ~ ~ � � 1� «   ¡ ¢ £ w è K ¤ ¥ ¦ � § ¨© 8 wª « g|� K ¬ 1 ~

�� | 1 ®¯ ��� � � �°

± ² ³ ´ µ ¶ ·

¸ ¹ º » ¼ ½

¾

¿
À

Figure 5.1: Artistic embedding diagrams depicting the curvature of spacetime around two
merging BHs (Thorne 1994). The BH event horizons are represented by the circles at the
bottom of the pits. Two interacting BHs are present during the inspiral phase (a-b); the
horizons merge just before diagram (c) into a deformed BH; this deformation is carried away
by GWs in the ringdown phase (d).
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detection requires a detailed knowledge of template waveforms which is sensitive to the
binary configuration when the GW signal enters the detector sensitivity band. Predicted
waveforms are an invaluable tool for GW observations (see the detailed discussion in Cutler
et al. 1993; Cutler and Flanagan 1994). The template waveforms currently used in some
of the LIGO/Virgo pipelines to search for binary coalescence model the evolution in all the
three phases of inspiral, merger and ringdown (IMR); others kind of searches are instead
restricted to a single phase. GW emission from the merger phase can only be simulated
numerically: IMR waveform models are obtained using numerical relativity simulations
as guides to build analytical templates that can be generated more rapidly, sampling a
larger range of binary parameters. IMR templates are currently constructed in two main
ways. In the effective-one-body approach, the two-body problem is approximated with
an effective-one-body description which is then tuned with numerical simulations: a PN-
resummed Hamiltonian is provided which can be used to evolve a binary system and predict
the GW signal (Buonanno and Damour 1999, 2000; Damour et al. 2000, 2003; Buonanno
et al. 2007a,b; Damour et al. 2008a,b; Boyle et al. 2008; Pan et al. 2008, 2011; Damour
and Nagar 2009; Damour 2012). In the phenomenological IMR model, the numerical merger
waveforms are matched directly to PN inspiral waveforms and used to tune phenomenological
parameters in the frequency domain (Ajith et al. 2007, 2008, 2011; Ajith 2008).

The number of observationally distinguishable predicted templates should be extremely
large (Owen and Sathyaprakash 1999), both because of the large and strongly mass-dependent
number of cycles in each signal and because the emitted waveform depends sensitively on
as many as seventeen different parameters. Seven parameters are related just to the rela-
tive position of the source and the detector: they consist of the source position (distance,
right ascension and declination), two angles defining the orientation of the orbital plane, the
phase at coalescence and the time of coalescence. These are "extrinsic" parameters, which
are independent of the model of the source. For a BH binary we should obviously add the
masses of the BHs, or (equivalently) their total mass and the mass ratio. If the BHs are
spinning the signal depends also on the components of each spin vector (or equivalently
on the magnitude of each spin and two angles defining the spin orientation). Masses and
spins are "intrinsic" parameters, which affect the time evolution of the wave amplitude and
phase. The waveform of a circular BH binary has fifteen different parameters, but if we
allow the orbit to be eccentric we should add also the eccentricity and one angle defining
the orientation of the ellipse on the orbital plane.

Do we really need all these parameters? The difficult task of exploring such a high-
dimensional space can be simplified if nature provides physical mechanisms that cause as-
trophysical binaries to cluster in restricted portions of the parameter space. We will show in
the next Section (Peters and Mathews 1963; Peters 1964) that, due to the emission of GWs,
the eccentricity of a BH binary is expected to be very small by the time sources enter the
sensitivity band of the detectors. This assumption may not be valid if the binary is found
in a very dense astrophysical environment, such as a globular cluster, in which three-body
interactions can play a leading role in the dynamics (O’Leary et al. 2009).

The question we address here is: does binary evolution cluster the spin parameters in
certain regions of the parameter space? We address such a possibility by combining astro-
physical binary formation models with the PN resonant locking discovered by Schnittman
(2004).

5.2 The interplay between astrophysics and relativity

BH binaries enter the sensitivity band of GW detectors during the inspiral phase, which is
the main subject of our study. We study the inspiral of a stellar-mass compact binary using
three different approaches. At large separations the shrinking is due to interactions with
the astrophysical environment. Unlike SMBHs for which exchange of angular momentum
with the accretion disc can drive the binary (Sec. 2.1.2), stellar-mass BH shrinking in this
phase is typically due to astrophysical mechanisms related to BH formation from stellar
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collapse (mainly SN kicks and common-envelope phase, Secs. 5.3.1 and 7.1.1). As in the
supermassive case, when the gravitational radiation inspiral timescale becomes smaller than
the Hubble time, the dynamics of the binary decouples from the astrophysical environment.
At such small separations, the inspiral is driven by GW emission in GR. Unfortunately
the two-body problem in GR cannot be completely solved analytically. Following a major
breakthrough in 2005 (Pretorius 2005; Baker et al. 2005; Campanelli et al. 2006) numerical
relativity can now be used to follow the evolution of the binary during the least few cycles
before the merger. These simulations unveiled unexpected consequences of BH mergers,
such the superkick phenomenon described in Sec.2.3. Even now, however, these studies are
computationally very expensive. Between these two extreme regimes, i.e. when the evolution
is dominated by GW emission but GR effects are weak, the evolution can be studied using
the PN approximation. Short introduction to the PN approach will be given in Sec. 6.1.

At the PN level, the equilibrium configurations discovered by Schnittman (2004) may
lock the spins with well defined orientations. Do BH binaries keep memory of their forma-
tion during the PN resonant locking? Which insight on BH formation from massive star
progenitor can be gained with GW observations?

5.2.1 Gravitational-wave driven inspiral

We briefly derive here the evolutionary equations for the inspiral of BH binaries due to GW
emission at the lowest (Newtonian) order, following Buonanno (2007) and Maggiore (2007).

Let us consider a binary system with masses m1 and m2, total massM = m1 +m2, mass
ratio q = m2/m1 and reduced mass µ = m1m2/(m1 +m2). We assume for simplicity that
the BH far apart (so their orbital dynamics use described by Newtonian physics) and that
they move on a circular orbit. Our goal is to compute the traceless quadrupole tensor for
this source, and then plug it into the quadrupole formula (Sec. 1.3.2). In a set of coordinates
with the z-axis oriented along the orbital angular momentum of the binary, the reduced mass
position is defined by 

x(t) = a cos Ωt ,

y(t) = a sin Ωt ,

z(t) = 0 ,

(5.1)

where a is the binary separation and Ω is the orbital frequency. The quadrupole traceless
mass tensor (1.50) reduces to

Qij = µxixj − µ
1

3
δkl xkxl . (5.2)

The total power radiated in GWs can now be computed using (1.51), and it is equal to the
orbital energy variation rate

P = −dE
dt

=
32

5

Gµ2a4Ω6

c5
. (5.3)

At the (dominant) Newtonian order, E = −GµM/2a and Ω2 = GM/a3, which leads to

da

dt
= −64

5

G3M3

c5a3

q

(1 + q)2
. (5.4)

GW emission causes the binary to shrink with a rate scaling as ȧ ∼ a−3, while the inspiral
timescale |a/ȧ| ∼ a4 (cf. also Sec. 2.1.2).

These results can be generalized to eccentric binaries. In this case, two coupled equations
describing the evolution of the binary semi-major axis a and eccentricity e drive the dynamics
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at the leading, Newtonian order (Peters and Mathews 1963; Peters 1964):

da

dt
= −64

5

G3M3

c5a3

q

(1 + q)2
(1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4

)
, (5.5)

de

dt
= −304

15
e
G3M3

c5a4

q

(1 + q)2
(1− e2)−5/2

(
1 +

121

304
e2

)
. (5.6)

For example, from the above equations we have da/de ∼ (12/19)(a/e) and consequently
a ∼ e12/19. The eccentricity decreases faster than the separation: deviations from the
circular inspiral become smaller and smaller as the separation decreases. Fig. 5.2 shows the
merger timescale in the GW-driven phase for BH binaries of total mass M = 10M� and
mass ratio q = 0.8 (which is the same value used in Chapter 7). The coupled differential
equations (5.5) and (5.6) are solved numerically from initial values a0 and e0. We plot on a
color-coded scale the time necessary1 to reach a ' 0. Integrations are performed using the
StepperDopr5 routine developed in Press et al. (2002). The merger timescale increases
with the initial separation a0, because a very small amount of energy is emitted when the
BHs are far from each other (P ∼ a−5, from Eq. 5.3). Highly eccentric binaries will merge
quicker because less angular momentum has to be emitted (see Eq. 3.1) and more radiation
is emitted at periastron because the bodies are closer to each other.

Further PN corrections of these evolutionary equations in the case of elliptic orbits can be
found in Damour et al. (2004), Sperhake et al. (2008a) and references therein. In this work
we use the standard Peters equations (5.5) and (5.6) to select merging binaries because they
give the timescale of the process within the level of accuracy that we require (Sec. 7.1.2).
The BH inspiral described in Chapter 6, is modeled in far more detail using higher-order
corrections for circular orbits.
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Figure 5.2: Merger timescale in the GW-driven inspiral for BH binaries with M = 10M�
and q = 0.8. The color-coded map shows (on a logarithmic scale the time needed (in yrs) for
a BH binary with semi major axis a0 and eccentricity e0 to reach coalescence. Black lines
mark 106, 108, 1010, 1012 and 1014 yrs from bottom to top respectively. The calculation was
performed by numerically integrating Eqs. (5.5) and (5.6).

1We cannot formally reach the final separation a = 0, because the system becomes stiff: in practice we
follow the solutions down to fiducial separations 10−8a0, which are well outside the range of separations
where Eqs. (5.5) and (5.6) are valid.



92 Black-hole binary inspiral

5.2.2 Length scales

We review here the length scales associated with the formation, inspiral, and merger of BH
binaries. The well-defined hierarchy of these length scales demonstrates the necessity of our
joint analysis of astrophysics and PN evolution.

GW emission causes a binary with a semimajor axis less than

aGW = 45

(
M

10M�

)3/4
q1/4

(1 + q)1/2
f1/4(e)R� . (5.7)

to merge on a timescale less than the Hubble time tH ' 1010yrs (Peters and Mathews 1963;
Peters 1964). The function f(e) is defined through Eq. (5.5):

f(e) = (1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4

)
. (5.8)

Astrophysical processes leading to BH formation, include mass transfer, SN explosions and
common envelope evolution, and they are required in order to shrink the binary down
to separations smaller than aGW. GW emission also circularizes the binary at separations
comparable to aGW. PN spin-orbit couplings become important at much smaller separations
(Schnittman 2004; Kesden et al. 2010a)

aPNi ∼ 103GM

c2
' 10−2

(
M

10M�

)
R� , (5.9)

below which they can lock binaries into resonant configurations with well defined spin direc-
tions (Sec. 6.3). The peak GW frequency emitted from a compact binary is given by twice
the orbital frequency:

fGW = 2× Ω

2π
=

(
GM

π2a3

)1/2

. (5.10)

Resonant locking is therefore important at separations above

aLIGO ' 10−3

(
M

10M�

)1/3(
fGW

20Hz

)−2/3

R� , (5.11)

at which the binary reaches the lower limit fGW ' 10− 20 Hz of the Advanced LIGO/Virgo
sensitivity band. The third-generation Einstein Telescope is expected to reach even lower
frequencies of order fGW ' 1 Hz. Since these frequencies are well within the regime where
PN resonances are important, a unified treatment of the astrophysical initial conditions
and of the subsequent PN evolution of the binary is essential to determining which spin
configurations are most relevant for GW detectors. Such a treatment is the main goal of
this work.

5.3 Astrophysics of black-hole binary formation

Isolated BH binaries do not emit electromagnetically and hence have yet to be observed.
Despite this lack of evidence, they are a likely outcome of the evolution of massive stellar
binaries. The rate at which they form can be inferred from observations of their progenitors
and from systems like binary NSs, that have similar formation channels. Formation rates
can also be calculated theoretically using population-synthesis models.

We first describe the main evolutionary stages leading to BH binary formation and then
we review the available theoretical predictions, focusing in particular on the StarTrack
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code. Present model do not keep track of the spin orientation during the formation of a BH
binary. In order to fill this gap, we build an astrophysical model that simplifies the standard
evolutionary picture to highlight only those physical processes that affect spin directions
(Sec. 7.1).

5.3.1 Formation stages
Historically, the evolutionary scenarios for massive binaries were introduced after the dis-
coveries of X-ray binaries (see Sec.1.2.1, van den Heuvel and De Loore 1973), and they are
now considered as standard. Following Postnov and Yungelson (2006), the evolution of a
massive binary star leading eventually to a compact binary can be divided in ten stages, as
summarized in Fig. 5.3. The reader can compare Fig. 5.3 with the analogous Fig. 7.1 of our
astrophysical model, which focuses on spin directions.

1) The initial system is composed of two massive binary stars, with both stars on the
upper main sequence (O-B type). The duration of this stage is determined by the time
the primary spends on the main sequence burning hydrogen, that typically is ∼ 106

yrs. While hydrogen burning proceeds, a central helium core is formed. The expected
number of such binaries in the Galaxy is ∼ 104.

2) After exhaustion of the hydrogen in the core, the primary star evolves into a supergiant
and leaves the main sequence. During the rapid supergiant expansion, the radius of
the primary star may approach the Roche lobe of the system, starting a mass transfer
phase onto the secondary (main sequence) star. The mass transfer ends when most
of the primary’s hydrogen envelope is transferred onto the secondary: a naked helium
core is left behind, which can be observed as a Wolf-Rayet star (Nugis and Lamers
2000). The secondary star is expected to acquire large angular momentum due to the
infalling material, so that its outer envelope can be spun up. Such massive rapidly
rotating stars are observed as Be stars (Porter and Rivinius 2003). During this mass
transfer stage, the semimajor axis of the orbit first decreases, reaches a minimum when
the masses of the binary components become equal to each other, and then increases.
This picture is complicated by stellar wind: mass loss induced by stellar wind removes
matter from the binary, thus increasing the binary separation. The duration of the
first Roche-Lobe overflow is rather short, of the order of 104 yr, so only several dozens
such binaries are expected to be in the Galaxy.

3,4) The duration of the helium-burning stage is ∼ 105 yrs, and all the subsequent reactions
are completed very quickly. The primary star explodes as a Ib or Ic SN, and a NS or
a BH is formed. The inferred Galactic type Ib SN rate is around 10−2 per year, and
half of the exploding stars may be in binary systems (Postnov and Yungelson 2006).
Due to the asymmetry of the SN explosion, a kick is imparted to the newly formed
compact object (Sec. 7.2.6), that may unbind the binary. The companion in this case
will end up being a runaway OB-star.

5) If the system remains bound after the first SN, it will be formed by a massive main
sequence star and a compact object. The orbital eccentricity after the SN explosion
may be large enough (cf. Eq. 7.39) that accretion episodes onto the compact object can
occur at every periastron passage, reducing the mass of the companion. This can cause
further X-ray emission, as observed in ∼ 100 Galactic Be/X-ray binaries (Raguzova
and Popov 2005). In the NS case, these accretion episodes spin-up the NS rotation,
producing a recycled pulsar (Srinivasan 2010). This phase lasts until the secondary’s
hydrogen is depleted.

6,7) The secondary evolves into a supergiant, reaching a radius that is typically bigger than
the binary separation. The common envelope stage consists in a helium Wolf-Rayet
star and a NS/BH companion surrounded by a single expanding envelope. This phase
still presents many uncertainties, such as the efficiency of the process (see Sec. 7.2.4)
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Figure 5.3: Evolution of a binary star leading to formation of a compact binary composed
of BHs and/or NSs (Postnov and Yungelson 2006).
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and the role of the material accreted from the compact object during this phase.
Hyper-Eddington accretion onto a NS is possible in general if the gravitational energy
released in accretion is lost by neutrinos (Colgate 1971; Zel’dovich et al. 1972), and this
may be the case for the accretion in common envelopes (Chevalier 1993). A predicted
consequence is that a NS in this stage may collapse to a BH inside the common
envelope. Further complications have been pointed out, because a hyper-Eddington
regime may be prevented by the angular momentum of the captured matter and the
magnetic field of the NS (Brown et al. 2000). The NS/BH and the helium core may
also merge during the common envelope phase to form a (hypothetical) Thorne-Zytkow
object (Thorne and Zytkow 1975, 1977).

8,9,10) The secondary star, now reduced to a helium core, explodes as a SN and forms a
second compact object. The outcome of the explosion can be a compact binary, or
two single compact objects if the system is disrupted by the explosion. For the case of
double NS systems, the older NS is expected to have faster rotation velocity than the
younger one because of the recycling at the preceding accretion stage. The subsequent
orbital evolution of such compact binary systems is due only to GW emission (see
Section 5.2.1).

Possible evolutionary channels which produce merging NS and/or BH binaries have been
extensively studied in the literature (e.g. Bagot 1997; Wettig and Brown 1996; Dewi and
van den Heuvel 2004; Willems and Kalogera 2004). Predictions are currently made using
populations synthesis codes (see Sec. 5.3.2). At variance with scenarios involving only NSs,
formation models of binaries involving BHs must include different parameters, such as the
threshold zero-age main sequence mass necessary to form a BH (van den Heuvel and Habets
1984; Woosley et al. 1995; Portegies Zwart et al. 1997; Fryer 1999), the mass of the forming
BHs (Timmes et al. 1996; Bethe and Brown 1998; Fryer 1999; Fryer and Kalogera 2001) and
their spins (Sec. 5.3.4).

5.3.2 Population synthesis: rate predictions
The main method used to study the formation and evolution of compact binaries is called
population synthesis, and it basically consists of Monte-Carlo simulations of samples of
binaries spanning a wide range of astrophysical parameters (Kalogera and Belczynski 2001;
Popov and Prokhorov 2007).

There are several population synthesis codes used in the literature to model massive
binary evolution, which take into account with different degrees of completeness various
aspects single and binary stellar physics. We will pay special attention to the StarTrack
code (Belczynski et al. 2002, 2008a) that is used to build parts of our spin evolution model.
Other codes include BSE (Hurley et al. 2000, 2002), Binary_c (Izzard et al. 2006), SeBa
(Portegies Zwart and Verbunt 1996; Nelemans et al. 2001a,b; Toonen et al. 2012), a code
developed by the Brussels group (De Donder and Vanbeveren 2004; Mennekens et al. 2010)
and those used in Tutukov and Yungelson (1993a,b); Lipunov et al. (1997); Portegies Zwart
and Yungelson (1998); Voss and Tauris (2003); de Freitas Pacheco et al. (2006).

Some results of population synthesis calculations of compact binary mergers carried out
by different groups are presented in Table 5.1, which shows the predicted galactic merger
rates for double compact systems. These predictions must be taken with a grain of salt,
because of the great number of parameters involved in these Monte Carlo simulations, many
of which still poorly constrained (or even unknown) (Eggleton 2006; Paxton et al. 2010,
2011). Population synthesis studies still need to be calibrated against statistically signifi-
cant samples of observations; and this may only happen when GW astronomy becomes a
reality. Some work has been done using binary pulsar statistics in connection with double
pulsar observations (Kalogera et al. 2004a,b): the results obtained agree with the population
synthesis estimates if SN kicks are in the range (250 – 300) km s−1, a range which is also
considered likely from statistical studies of pulsar proper motion observations (Hobbs et al.
2005; Sec. 7.2.5).
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In order to obtain predictions of event rates for GW interferometers, the synthetic merger
rates must be converted to detection rates for a given detector/network configuration. The
actual detection threshold for a network of GW detectors will depend in general on the
positions of the detectors in the network, the characteristics of each detector noise, and
the search strategy used (Brady and Fairhurst 2008). Given the galactic merger rate for a
compact source R (i.e. any of the numbers in Table 5.1), the detection rate is given by

Ṅ = R×NG , (5.12)

where NG is the number of accessible galaxies in the given experimental configuration. The
LIGO/Virgo collaboration (Abadie et al. 2010) provides the following formula as a good
approximation to NG in their detectors, once the galaxy density variations are averaged out
at larger distances (& 30 Mpc):

NG =
4

3
π

(
Dhorizon

Mpc

)3

(2.26)−3(0.0116) , (5.13)

where Dhorizon is the "horizon" (maximum observable) distance reached by a given detector
configuration as reported in Table 5.2. The factor 1/2.26 in (5.13) is the correction factor
used to average over all sky locations and orientations (Finn and Chernoff 1993; Finn 1996);
the factor 1.16 × 10−2 Mpc−3 is the extrapolated density of galaxies in space (Kopparapu
et al. 2008). The final expected rates for the LIGO/Virgo network are reported in Table 5.2,
using assumptions that are carefully discussed by (Abadie et al. 2010).

5.3.3 The StarTrack code

StarTrack is a population synthesis code which builds upon previous analytical studies of
single and binary stellar evolution by Hurley et al. (2000, 2002). The main features of the
code are described in Belczynski et al. (2002, 2008a). StarTrack is meant to be a compre-
hensive simulation framework for a general stellar environments with special regard to the
formation of binaries and the endpoint of binary evolution. The calibration of the parame-
ters used in the code is obtained from available (mainly NS) observations (O’Shaughnessy
et al. 2005a,c, 2007, 2008b).

StarTrack has been applied and tested on a large variety of astrophysical topics and
objects, including statistical comparisons with Chandra observations (Belczynski and Taam
2004b; Sepinsky et al. 2005); predictions of mass ratio (Bulik et al. 2004b), chirp mass
(Bulik and Belczyński 2003), and eccentricity (Ihm et al. 2006; Kowalska et al. 2011) dis-
tributions in compact binaries; rates (Ruiter et al. 2009; Fryer et al. 2010; Ruiter et al.
2011, 2013) and progenitors (Belczynski et al. 2005) for type Ia SN explosions; compact
binaries in globular clusters (Ivanova et al. 2005, 2006; Willems et al. 2007; Ivanova et al.
2008); ultracompact binaries (Belczynski and Taam 2004a); high-redshift X-ray binaries
(Belczynski et al. 2010c; Fragos et al. 2013); mass distributions of BHs and NSs (Bulik et al.
2004b; Belczynski et al. 2010b, 2012; Fryer et al. 2012); frequency of BHs in binaries (Bel-
czynski et al. 2004b, 2006b); recycled pulsars (Belczynski et al. 2010d); Be X-ray binaries
(Belczynski and Ziolkowski 2009); high-mass X-ray binaries (Linden et al. 2009); ultralu-
minous X-ray sources (Blecha et al. 2006); short gamma-ray bursts and their connection
with double NS mergers (Belczynski et al. 2006a, 2008b; O’Shaughnessy et al. 2008a). The
code predictions have also been compared with observations of selected astronomical sources
(Belczynski et al. 2004a; Willems and Kalogera 2004; Willems et al. 2006; Fragos et al. 2008,
2009a; Belczynski and Taam 2008; Belczynski et al. 2011, 2013; Luo et al. 2012). Finally,
the implications of StarTrack synthetic universe for future GW observations have also been
extensively addressed (Nutzman et al. 2004; Bulik et al. 2004a; Belczynski et al. 2007, 2010a;
O’Shaughnessy et al. 2012).

The last update of StarTrack is presented by Dominik et al. (2012), which is the first
in a three-paper series. The main goal of the study is a substantial improvement of merger
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Authors
NS-NS NS-BH BH-BH
[yr−1] [yr−1] [yr−1]

Tutukov and Yungelson (1993a,b) 3× 10−4 2× 10−5 1× 10−6

Lipunov et al. (1997) 3× 10−5 2× 10−6 3× 10−7

Portegies Zwart and Yungelson (1998) 2× 10−5 1× 10−6

Nelemans et al. (2001a,b) 2× 10−5 4× 10−6

Voss and Tauris (2003) 2× 10−6 6× 10−7 1× 10−5

O’Shaughnessy et al. (2005c) 7× 10−6 1× 10−6 1× 10−6

de Freitas Pacheco et al. (2006) 2× 10−5

Belczynski et al. (2007) 1× 10−5 9× 10−7 9× 10−7

Dominik et al. (2012)a 2× 10−5 2× 10−6 8× 10−6

Table 5.1: Estimates for Galactic merger rates R of compact binaries calculated using
different population synthesis codes and approaches (updated from Postnov and Yungelson
2006). The values listed are taken from those models indicated by the authors themselves
as "likely" or "standard".

Network Source
Dhorizon Nlow Nre Nhigh

[Mpc] [yr−1] [yr−1] [yr−1]

Initial LIGO/Virgo
NS-NS 33 2× 10−4 0.02 0.2
NS-BH 70 7× 10−5 0.004 0.1
BH-BH 161 2× 10−4 0.007 0.5

Advanced LIGO/Virgo
NS-NS 445 0.4 40 400
NS-BH 927 0.2 10 300
BH-BH 2187 0.4 20 1000

Table 5.2: Detection rates Ṅ for compact binary coalescence sources. Columns indicates
pessimistic estimates (Nlow), realistic estimates (Nre) and optimistic estimates (Nhigh). Rows
indicate different sources: NS-NS, NS-BH and BH-BH (inspiral and) merger. Rates are
computed using the procedure detailed in Abadie et al. (2010).

aDistributions are publicly available at www.syntheticuniverse.org and will be used for a preliminary
comparison in Sec. 7.4.2.

rate predictions, by carefully considering all of the main uncertainties in the astrophysics
of compact binary formation (and particularly the common envelope phase and the redshift
dependance) in order to have precise predictions when Advanced LIGO will start taking
data. Simulations were performed varying over many different parameters, and the results
are publicly available at www.syntheticuniverse.org. The richness of the StarTrack
evolutionary scenarios is precious for our study, that focuses only on the evolution of the BH
spin orientations. Our assumptions build upon prescriptions from the StarTrack results that
cannot be inferred within our simplified model (e.g. when computing the remnant masses
resulting from gravitational collapse as a function of the progenitor masses, Sec. 7.2.1, or in
treating the common envelope phase, Sec.. 7.2.4). In Sec. 7.4 we will present a preliminary
comparison of our conclusions with the public results from Dominik et al. (2012).

5.3.4 Spin dynamics in black-hole binary formation
Most studies of compact-binary formation do not keep track of the magnitude and orientation
of BH spins, and those that do (see e.g. the StarTrack papers: O’Shaughnessy et al. 2005b;
Belczynski et al. 2008c and Fragos et al. 2010) neglect general-relativistic effects in the late-
time evolution of the binary. We showed in Sec. 5.2.2 that a joint analysis of astrophysics

http://www.syntheticuniverse.org/
www.syntheticuniverse.org
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and PN evolution is necessary: one of the goals of our study is to fill this gap.
The present version of the StarTrack code assumed that both spins remained aligned

with the initial direction of the orbital angular momentum of the BH binary, i.e. the orbital
angular momentum with which the binary forms. The evolution of the orbital angular mo-
mentum itself is performed by applying energy and angular-momentum conservation when
compact objects are formed (and kicked) as a result of gravitational collapse (a procedure
also implemented in our model, see Sec. 7.2.6). This approach is suitable for binaries in
nonrelativistic orbits, like observed X-ray binaries (Fragos et al. 2010), but it may not be
appropriate for merging binaries, that are interesting both as GW sources and as progen-
itors of short gamma-ray bursts (Belczynski et al. 2008c). Existing BH binary formation
models preserve the mutual alignment of the spins with the initial direction, so all BH-BH
binaries are formed with the two spin misalignment angles equal to each other (θ1 = θ2 in
the notation of the following chapters). Later models of mixed BH X-ray binaries do allow
for the possibility of asymmetric spin configurations via accretion (Fragos et al. 2010), but
to the best of our knowledge no such studies have been published for the BH-BH case.

In Chapter 6 we will demonstrate that spin-orbit couplings act efficiently whenever a
spin angle asymmetry is presents before the onset of GW-driven regime. In Chapter 7,
we will develop a slightly more complex (and presumably more realistic) model for spin
evolution, allowing for the formation of "asymmetric" BH binaries (θ1 6= θ2). The model
is very simplified and it is not meant to rival the complexity of population synthesis codes
like StarTrack. Our goal is rather to isolate the physical ingredients that are specifically
relevant to BH spin alignment.

StarTrack


Chapter 6

Spin-orbit resonances

The PN approximation is a powerful tool to study Einstein’s GR in the limit of small
velocities and weak gravitational fields. The evolution equations for spinning BH binaries at
the lowest PN order present special equilibrium configurations that turn out to be resonant:
if precessional dynamics brings the spin parameters close to one of these solutions, the
system can remain locked into resonance. In this Chapter we introduce the PN equation of
motions and their resonant solutions for BH binaries. We perform numerical integrations
with specify sets of initial conditions to highlight the role of spin asymmetry for resonant
locking.

Following common practice in the GR literature, in this Chapter we will typically use
geometrical units such that G = c = 1, and the Einstein conventions for repeated indices.

6.1 The post-Newtonian approximation

After decoupling from their astrophysical environment, the dynamics of BH binaries in
vacuum can be approximated by expanding the Einstein equations in a perturbative PN
series, where the perturbative parameter is the ratio v/c of the orbital velocity to the speed
of light. For historical reasons (de Sitter 1916a; Einstein et al. 1938), one usually says
that a quantity is expanded up to nPN order if all terms up to order (v/c)2n are retained.
We present the main ideas of this approximation following the clear presentation given in
Damour (1987); an extensive review of the subject can be found in Blanchet (2002).

Newton’s and Einstein’s gravity. Let us consider a fluid with a given barotropic equa-
tion of state linking the mass density ρ and the pressure p = p(ρ). We call vi(x, t) the
velocity field in cartesian coordinates xi, with i = 1, 2, 3. The equations describing the full
dynamics in Newton’s gravity are: the continuity equations,

∂ρ

∂t
+
∂(ρvi)

∂xi
= 0 , (6.1)

which states that the mass of the system is be conserved; the Euler equation for the mo-
mentum conservation

ρ

(
∂vi

∂t
+ vi

∂vi
∂xi

)
= − ∂p

∂xi
+ ρ

∂φ

∂xi
; (6.2)
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and the Poisson equation

∑
i

∂2φ

∂xi 2
= −4πGρ (6.3)

for the gravitational potential φ.

These Newtonian equations are a special case of by the relativistic equations of motions
for a perfect fluid (e.g. Misner et al. 1973). Given the fluid four-velocity uµ with µ = 0, 1, 2, 3,
and the spacetime metric gµν , the stress-energy tensor for a perfect fluid is given by

Tµν = (ρ+ p)uµuν + pgµν , (6.4)

where the parameters ρ and p reduce to mass density and pressure in the Newtonian limit.
The Einstein field equations

Rµν − 1

2
Rgµν = 8πTµν , (6.5)

describe how the spacetime is curved by the mass-energy content. The Bianchi identies

∂Tµν

∂xν
+ ΓµνρT

νρ + ΓννλT
µλ = 0 , (6.6)

encode the relativistic generalization of the continuity equation

∂εuµ

∂xµ
+ Γµµρεu

ρ = 0 , (6.7)

and the Euler equations can be written as

(ρ+ p)uν
(
∂uµ

∂xν
+ Γµνρu

ρ

)
= − (gµν + uµuν)

∂p

∂xν
. (6.8)

We have introduced a proper rest-mass density ε defined (modulo a constant factor) as

ε = exp

∫
dρ

ρ+ p(ρ)
. (6.9)

The Ricci tensor Rµν , the Ricci scalar R and the Christoffel symbols Γµνρ all contain with
up to second-order derivatives of the metric gµν (see Eqs. 1.28-1.31). The general problem of
motion in GR is therefore described by the second-order partial differential equations (6.5)
and (6.6).

The PN approach. The PN approximation seeks to model the solution of the relativistic
system (6.5)-(6.6) after the solution of the Newtonian system (6.1)-(6.2)-(6.3). For instance,
the continuity equation (6.7) is rewritten as a Newtonian-type equation (6.1)

∂ρ̃

∂t̃
+
∂(ρ̃ṽi)

∂x̃i
= 0 , (6.10)

where "time", "velocity" and "mass density" are defined respectively as

t̃ =
x0

c
, ṽi = c

ui

u0
, ρ̃ = εu0

√
−det gαβ . (6.11)
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The Einstein equations (6.5) can be cast in a form reminiscent of the Poisson equation (6.3)
under weak-field assumptions. First we write the metric as

gµν
√
−det gαβ = ηµν + hµν , (6.12)

where ηµν = diag(−1,+1,+1,+1) is the (flat) Minkowski metric. Then hµν is assumed
to be small everywhere , thus describing a quasi-Minkowski spacetime where gravitational
interactions are weak.

PN expansion series. We assume that the characteristic linear dimension L of the bodies
is much smaller than the characteristic separation R between them: L � R. We call m
the typical mass of the bodies involved and v their typical velocity. Three dimensionless
parameters can then be introduced to describe a slow-motion/weak-field limit: v/c, Gm/c2R
and GM/c2L. It is expected that L & Gm/c2, where the equality holds only for extremely
compact objects such as BHs. By the virial theorem we have v2 ∼ Gm/R, which implies
together with the above assumption

v2

c2
∼ Gm

c2R
� GM

c2L
. (6.13)

The PN approximation is based on the assumption that the metric hµν admits an asymptotic
expansions in the non-relativistic limit

γ =
GM

c2L
→ 0 . (6.14)

We write

hµν(x, t) = γ hµν(1PN)(x, t) + γ3/2 hµν(1.5PN)(x, t) + γ2 hµν(2PN)(x, t) + . . . . (6.15)

The PN approximation is supposed to get more accurate as more terms in this expansion
are retained. At the lowest 1PN order, the zeroth-zeroth component of (6.5) yields

∇2
(
γ h00

(1PN)

)
=

16πG

c2
ε+O

(
γ2

L2

)
, (6.16)

which recalls the Poisson equation of Newtonian gravity. The same approach can be gener-
alized to higher orders in γ1/2, which leads to a formal hierarchy of Poissons equations for
hµν(nPN). For the n-th order, one finds an equation that schematically looks like

∇2
(
γnhµν(nPN)

)
= [Terms from Tµν in Eq. (6.5)] + [Terms known from the lower orders] ,

(6.17)

which can be solved, at least in principle, to study the motion at the desired PN level.

6.1.1 Breakdown of the post-Newtonian approach

As firstly realized by Fock (1965), the slow-motion/weak-field limit presented above is not
valid throughout the whole spacetime, but only in the near zone, which is the region suffi-
ciently far from the horizons that a weak-field approximation is valid, but less than a reduced
GW wavelength λ/2π away from the center of mass of the system, so that retardation effects
can be treated perturbatively. Other approaches can be adopted in the far zone, i.e. the
radiation zone where retardation effects can no longer be treated perturbatively, and in the
inner zone, very close to the compact objects (see e.g. Thorne 1980; Alvi 2000, 2003; Yunes
et al. 2006; Yunes and Tichy 2006; Yunes 2007; Johnson-McDaniel et al. 2009).
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When analyzing a BH binary, the PN approximation definitely breaks down when the
two BHs eventually become so closely separated that a slow-motion/weak-field description is
inappropriate. The problem of the region of validity of the PN approximation can only be ad-
dressed when one possesses a different, analytical or numerical, description of the dynamics.
In the case of extreme mass ratio inspirals, where the presence of a small-mass orbiting body
can be treated as a perturbation in the metric of the primary, Poisson (1995, 1997) tested
the validity of the 5.5PN theory predictions against analytical results form BH perturbation
theory. He found that PN theory is sufficiently accurate provided v . 0.2. BH perturbation
theory and PN theory have also been compared for the loss of the binary’s binding energy
for non-spinning and spinning BH (at 5.5PN and 4PN respectively) by Yunes and Berti
(2008, 2011) and Zhang et al. (2011). They found a consistent agreement only if v . 0.29,
which corresponds to an orbital separation of a & 11M . In the comparable-mass regime, PN
predictions can only be compared with full numerical relativistic simulations to determine
the region of validity of the PN approach (Berti et al. 2008; Hannam et al. 2008a,b, 2010;
Santamaría et al. 2010; MacDonald et al. 2011; Sperhake et al. 2011a). Within the NINJA
(Numerical INJection Analysis) project, a collaboration between numerical relativists and
GW data analysts established that 3PN order gravitational waveforms are sufficiently accu-
rate for use as templates in GW detector provided v . 0.33, i.e. a & 8M (see Aylott et al.
2009; Ajith et al. 2012 and references therein). Analytical arguments also seem to indicate
that the PN approximation may be more accurate, i.e. valid for even larger velocities, in
the comparable-mass regime than for the extreme mass ratio inspirals (Simone et al. 1997;
Blanchet 2003; Mora and Will 2004, 2005; Buonanno et al. 2009).

For our goals, we are interested only in the binary configurations as they enter the sensi-
tivity band of GW detectors such as Advanced LIGO/Virgo (fGW = 20 Hz) and the Einstein
Telescope (fGW = 1 Hz), which corresponds to a ' 38M and a ' 278M respectively. These
values are well within the range of validity of the PN approximation, which confirm the
validity of our approach. Our simulations formally reach a = 10M , which is assumed to be
a rough upper limit on the separations at which the PN approach can be consider reliable.

6.2 Post-Newtonian evolutionary equations

The PN equations of motion for spinning BH binaries have been derived by several authors
at progressively increasing orders of approximations: see e.g. Papapetrou (1951); Cori-
naldesi and Papapetrou (1951); Barker and O’Connell (1975a); Thorne and Hartle (1985);
Kidder et al. (1993) and Kidder (1995). Previous numerical studies of BH inspirals in-
clude Arun et al. (2009, 2011); Kesden et al. (2010a,b); Galley et al. (2010) and Berti et al.
(2012b). Buonanno et al. (2003, 2005, 2006) used the PN equations for spinning BHs to build
matched-filtering template families for GW detection; a statistical investigation of spinning
BH binaries evolutions using Graphical Processing Units has been presented by Herrmann
et al. (2010). Lousto et al. (2010b,c) used a slightly different approach, evolving a large
sample of spinning BH binaries systems using a non-resummed, PN-expanded Hamiltonian.

We restricted our evolution to circular orbits: we will show in Sec. 7.3.1 that this is a well
justified assumption for all binaries in our samples. We denote unit vectors with a hat, and
we use subscripts "1" and "2" to indicate the primary and the secondary BH, respectively.

For circular orbits with radius a and orbital velocity v = (GM/a)1/2, the intrinsic
dynamics of a binary system depends on 10 variables: the two masses m1 > m2, the spins
S1 and S2 and the direction of the orbital angular momentum L̂. At the PN order we
consider both spin magnitudes χ1 and χ2 (cf. Eq. 1.5), and the mass ratio q = m2/m1 < 1
remain fixed during the inspiral. This leaves 7 independent degrees of freedom. Because
BHs are vacuum solutions of the Einstein equations, there is only one physical scale in the
problem (the total mass of the binary M). Rescaling all quantities relative to the mass M ,
we are left with 6 intrinsic parameters. It is convenient to analyze the precessional dynamics
in the frame where the direction of the orbital momentum L̂ lies along the z-axis. If we take
(say) the y-axis to be oriented along the projection of S2 on the orbital plane (see Fig. 6.1),
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•

Figure 6.1: Reference system adopted to describe the PN inspiral. The three independent
variables in the PN evolution are the angle between the spins and the orbital angular mo-
mentum θ1 and θ2, and the angle between the projection of the spins on the orbital plane
∆Φ. We also define θ12 to be the angle between the two spins

we are effectively imposing 3 additional constraints just by our choice of the reference frame
(2 components of L̂ and 1 component of S2 are set equal to zero). Then the only 3 variables
describing precessional dynamics are the angles θ1, θ2 and ∆Φ, defined to be the angles
between the spins and the orbital angular momentum of the binary and the angle between
the projections of the two spins on the orbital plane, respectively:

cos θ1 = Ŝ1 · L̂ , (6.18)

cos θ2 = Ŝ2 · L̂ , (6.19)

cos ∆Φ =
Ŝ1 × L̂

|Ŝ1 × L̂|
· Ŝ2 × L̂

|Ŝ2 × L̂|
. (6.20)

As shown in Fig. 6.1, θ1 and θ2 vary in the range [0, π], while ∆Φ ∈ [−π, π]. The angle
between the two spins is related to the other independent variables as follows:

cos θ12 = Ŝ1 · Ŝ2 = sin θ1 sin θ2 cos ∆Φ + cos θ1 cos θ2 . (6.21)

In summary, for any given binary with intrinsic parameters (q,χ1,χ2), the precessional
dynamics is encoded in the variables (θ1, θ2,∆Φ) as functions of the orbital velocity v or
(equivalently) of the orbital frequency ω = v3/M . These variables can be evolved forward
in time by integrating the following PN equations of motion:
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dS1

dt
= Ω1 × S1

dS2

dt
= Ω2 × S2 , (6.22)

MΩ1 = ηv5

(
2 +

3q

2

)
L̂ + α1

v6

2M2

[
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(
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)
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(
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24
+
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L̂ ,

(6.23)

MΩ2 = ηv5

(
2 +

3

2q

)
L̂ + α1

v6

2M2

[
S1 − 3

(
L̂ · S1

)
L̂− 3

q

(
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)
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[
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16
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16
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(6.24)

dL̂

dt
=− v

ηM2

{
dS1

dt
+
dS2

dt
− α2
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M
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M
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1 +
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16
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(6.25)

dv

dt
=

32
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η

M
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(6.26)
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where γE ' 0.577 is Euler’s constant and we defined the following combinations of the
individual BH masses:

M = m1 +m2 , η =
m1m2

M2
, δm = m1 −m2 . (6.27)

To stress the perturbative structure of the equations, we indicate the expansion parameter
v in blue. Red (boolean) variables α1 and α2 will be useful in Sec. 6.2.1 to check the relative
importance of various PN orders.

The leading 2.5PN terms in Eqs. (6.23)-(6.24) describe precessional motion about the
direction of the orbital angular momentum L̂. Spin-orbit couplings appear at 3PN, and
they are the reason for the existence of the resonant configurations (Schnittman 2004).
These two terms are the generalization of geodetic precession and Lense-Thirring precession,
respectively (see Secs. 1.1.4-1.1.5) to the case in which the spacetime curvature induced by
the second body is also considered (Kidder 1995). Exactly like in our simple derivation,
Lense-Thirring precession appears at a higher PN order than geodetic precession.

From (6.25) we see that the direction of the angular momentum evolves on a precessional
timescale tp ∼ Ω1,2 ∝ a5/2, while Eq. (6.26) implies that its magnitude decreases on the
radiation-reaction timescale due to GW emission: tGW ∝ v−8 ∝ a4. Both of them are longer
than the dynamical (orbital) time tdyn ∝ a3/2 in the PN limit for which this analysis is valid:

tdyn � tp � tGW . (6.28)

The leading (quadrupolar) order of Eq. (6.26) is equivalent to the circular limit of
Eq. (5.5) when we recall that v2 = M/a. The non-spin terms can be found in Blanchet
et al. (2002, 2005) and references therein, taking into account the "regularization param-
eters" that can be found in Blanchet et al. (2004a,b) and Blanchet and Iyer (2005). The
1.5PN spin-orbit interaction has been derived by Kidder et al. (1993) as well as Poisson
(1993) and Kidder (1995); calculations for the 2PN spin terms can be found in Kidder et al.
(1993); Kidder (1995); Poisson (1998); Laarakkers and Poisson (1999); Gergely (2000) and
Mikóczi et al. (2005); while the 2.5PN spin interactions are reported in Blanchet et al. (2006,
2007, 2010).

The 3.5PN terms in (6.23), (6.24) and (6.25) have only recently been computed by Ajith
and Favata (2013).

6.2.1 New post-Newtonian terms

To check the importance of the different PN corrections, we insert in the equations two
boolean variables α1 and α2 (in red in Eqs. 6.22-6.26). Arun et al. (2009, 2011) integrate
the PN equation taking α1 = α2 = 0, while the previous works by Kesden et al. (2010a,b)
and Berti et al. (2012b) considered just the terms multiplied by α1. New higher-order terms,
including those recently computed by Ajith and Favata (2013), have been multiplied by α2

and were included in this study. As a preliminary code test, we performed the integration
for two maximally spinning BHs (χ1 = χ2 = 1) starting from an initial separation a = 100M
for two different values of the mass ratio q = 1 and q = 1/4, and two different initial spin
configurations at a = 100M

(A): θ1 = π/2, θ2 = π/2, ∆Φ = π/2 ,

(B): θ1 = π/6, θ2 = π/6, ∆Φ = 3π/4 .

We chose these particular values to facilitate comparisons with Arun et al. (2009, 2011).
These authors describe the direction of the orbital angular momentum in terms of the
spherical coordinate angles (ι, ζ), where ι denotes the angle between the orbital angular
momentum and the total angular momentum J = L + S1 + S2, while ζ is the azimuthal
angle in the plane orthogonal to J. The results of our integrations are summarized in



106 Spin-orbit resonances

Fig. 6.2, where we show the angle between the orbital angular momentum and the total
angular momentum ι as a function of 2M Φ̇, where Φ̇ is related to the orbital frequency by

φ̇ =
v3

M
− cos

(
ι
dζ

dt

)
. (6.29)

Dashed lines are computed using the same equations as in Arun et al. (2009, 2011) and they
exactly reproduce their Fig. 2. The effect of additional PN terms is visible (dotted lines),
even for the new small corrections added in the present analysis (solid lines).

Throughout this work we decided to take into account all of the α-terms in Eqs. (6.22-
6.26), setting α1 = α2 = 1. However, we verified that even if the new terms (Alvi 2001; Ajith
and Favata 2013) affect the late-time evolution of individual binaries (as shown in Fig. 6.2),
they are not statistically significant for the evolution of a whole sample of binaries, leaving
the main conclusions of Kesden et al. (2010a,b) and Berti et al. (2012b) unchanged. All of
our results about spin angle distributions, locking and alignment are robust to the addition
of further PN corrections. The robustness of these statistical properties under the inclusion
of higher-order PN terms was already noted in Kesden et al. (2010a,b) and Berti et al.
(2012b).
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Figure 6.2: Test of the PN spin evolution code. Solid lines are obtained using α1 = α2 = 1;
dotted lines using α1 = 1 and α2 = 0; dashed lines using α1 = α2 = 0. Red lines are
computed with q = 1 and spin configuration (A), blue lines with q = 1 and spin configuration
(B), green lines with q = 1/4 and spin configuration (A), and orange lines with q = 1/4
and spin configuration (B).
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6.2.2 Correlation between ∆Φ and θ12

As stressed above, the only three independent variables in the PN evolution of a BH binary
are θ1, θ2 and ∆Φ. Here we discuss the statistical correlation between the angles θ12 and
∆Φ (defined in Eq. 6.20 and 6.21). This will be helpful in the Section below, to decouple
the effect of resonances from "simple" precessional evolution.

Let us study a sample of binaries, with given initial distributions f1(cos θ1) and f2(cos θ2).
The (initial) averaged value of cos θ12 as a function of ∆Φ is

〈cos θ12〉 =

∫
f1(cos θ1) sin θ1 d cos θ1∫
f1(cos θ1) d cos θ1

∫
f2(cos θ2) sin θ2 d cos θ2∫
f2(cos θ2) d cos θ2

cos ∆Φ

+

∫
cos θ1 f1 d cos θ1∫

f1 d cos θ1

∫
cos θ2 f2 d cos θ2∫

f2 d cos θ2
.

(6.30)

Taking uniform (in cosine) distributions between θ̄i − δi and θ̄i + δi (i = 1, 2),

fi(cos θi) =

{
1 if cos(θ̄i + δi) < cos θi < cos(θ̄i − δi) ,
0 elsewhere;

(6.31)

the integrals in (6.30) can be computed analytically, with the result∫
fi(cos θi) sin θi d cos θi∫
fi(cos θi) d cos θi

=
2δi − cos(2θ̄i) sin(2δi)

4 sin θ̄i sin δi
, (6.32)

∫
fi(cos θi) cos θi d cos θi∫
fi(cos θi) d cos θi

= cos θi cos δi , (6.33)

where we assumed δθ < θ̄. For distributions f1 and f2 that are isotropic in [0, π], i.e.
θ̄i = δi = π/2, the average yields instead

〈cos θ12〉 =
π2

16
cos ∆Φ . (6.34)

If BH spins evolve precessing on a cone of constant amplitude around the orbital angular
momentum (i.e. if we neglect the 3PN spin term in Eq. 6.23 and Eq. 6.24), the evolution
should necessary bring the variable cos θ12 close to the expected value 〈cos θ12〉. Sensible
deviations from this behavior indicate that spin-orbit coupling cannot be neglected to analyze
the dynamics of the binary.

6.3 Resonant locking

At large separations, only the dominant (2.5PN) term in the precession equations (6.23)
and (6.24) is important. The total angular momentum J = L + S1 + S2 is conserved on the
precessional timescale, and at large separations it is J ∼ L ∝ a1/2. During the first phases
of the GW-inspiral, the direction of L can be considered fixed: both spins simply precess
about the orbital angular momentum on a precession cone of constant amplitude. However,
when the spin-orbit couplings become important the evolution is not trivial. Schnittman
(2004) discovered families of equilibrium solution (or resonances) that can notably influ-
ence the inspiral in this regime. We first review the analytical derivation of the resonant
configurations, and then we analyze their main features using numerical time evolutions.
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6.3.1 Semi-analytical equilibrium solutions

Schnittman (2004) studied the precession equations (6.22)-(6.24) at 3PN order on the pre-
cessional timescale tp. Since tp � tGW, in practice this means that we can neglect every
radiation reaction effects (dv/dt = 0) and work at some fixed separation a. We look for
solutions of the PN equations in which the three independent variables θ1, θ2 and ∆Φ are
constant. Trivial equilibrium examples include the collinear cases with cos θ1 = ±1 and
cos θ2 = ±1. More interesting cases may occur if solutions are found where S1 , S2 , and
L are not collinear but they lie in the same plane, precessing together around a fixed axis
at a constant rate and remaining at some fixed relative orientation. This is not a necessary
condition to find equilibrium solutions: our aim is not to write down all possible solutions
of the system, but only to show that coplanar solutions exist. We require therefore that L,
S1 and S2 be coplanar, i.e. sin ∆ = 0 for all times. Since

S2 · (L× S1) = (m2
1χ1)(m2

2χ2)(ηM3/2a1/2) sin θ1 sin θ2 sin ∆Φ , (6.35)

the problem can be solved in practice by finding simultaneous solutions to the equations

S2 · (L× S1) = 0 , (6.36)

and

d

dt
S2 · (L× S1) = 0 . (6.37)

Beside the collinear case, the first equation is verified for ∆Φ = 0 or ∆Φ = ±π; this
conditions distinguish between two different families of equilibrium solutions. The second

Figure 6.3: Spin-orbit resonances for maximally spinning BH binaries with a mass ratio
q = 9/11 (left panel) and q = 1/3 (right panel) (Kesden et al. 2010a). Solid black curves
show the one-parameter families of equilibrium solutions different fixed binary separations.
Approaching the diagonal from below, these curves correspond to the ∆Φ = 0 resonances
at separations a = 1000M , 500M , 250M , 100M , 50M , 10M . The curves approaching from
above correspond to the ∆Φ = ±π resonances with a = 250M , 50M , 20M , 10M . Dashed
red curves show how these solutions evolves during the inspiral from a = 1000M to a = 10M .
(S1 + S2) · L is constant along the dashed blue lines, S0 · L is constant along the dotted
green lines.
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equation is equivalent to

(Ω1 × S1) · [S2 × (L + S1)] = (Ω2 × S2) · [S2 × (L + S2)] , (6.38)

that can be easily solved numerically for both ∆Φ = 0 and ∆Φ = ±π to find the equilibrium
values of θ1 and θ2. The results are two one-parameter families of equilibrium solutions. The
resonant values θ1 and θ2 are different for any fixed binary separation a. This is crucial, as
otherwise resonances would affect only a small portion of the three-dimensional parameter
space (θ1, θ2,∆Φ) through which generic binaries evolve. As GWs slowly extract energy
and angular momentum from the binary on the radiation time tGW , the resonances sweep
through a significant portion of the (θ1, θ2) plane. The variable ∆Φ of a generic BH binary
varies on the much shorter precession timescale tp, and thus has a significant chance to
closely approach the resonant values ∆Φ = 0,±π at some point during the inspiral.

We illustrate resonant coplanar solutions in Fig.6.3, assuming for simplicity maximally
spinning BHs (χ1 = χ2 = 1) and two values of the mass ratio (q = 9/11 and q = 1/3). Black
curves show the resonant values for different binary separations. Two families of equilibrium
solutions are present: the ∆Φ = 0 solutions always have θ1 < θ2, and thus appear below the
diagonal in the plot; the ∆Φ = ±π solution can only be found in the θ2 < θ1 region. In the
limit a→∞, the resonant configurations have either S1 or S2 (anti)aligned with L, which
corresponds to the four borders of the plot in Fig. 6.3. As the inspiral proceeds, i.e. as a de-
creases, the one-parameter families of resonant configurations approach the diagonal θ1 = θ2,
and formally reach it if a→ 0. Red lines show the evolution of a resonant configuration dur-
ing the inspiral, illustrating the dependence on a in Eq. (6.38). The projection (S1 + S2) ·L
of the total spin on the orbital angular momentum is constant along the dashed blue lines.
These blue lines have steeper slopes than the red lines along which the resonant configura-
tions evolve. This implies that the total spin becomes antialigned (aligned) with the orbital
angular momentum for resonant cofigurations with ∆Φ = 0(±π) leading to smaller (larger)
final spins (Kesden et al. 2010a). Evolutionary red lines are almost coincident with dotted
green lines, along with the projection S0 · L of the effective-one-body spin (Damour 2001)

S0 = (1 + q)S1 +

(
1 +

1

q

)
S2 (6.39)

is constant. The quantity S0 · L is a constant of motion at 2PN order: this follows directly
from (6.22)-(6.25) (see also Racine 2008). In our evolutionary 3.5PN equations, S0 · L can
only be considered as an approximate constant of motion.

Is it particularly interesting to study the resonant evolution of the angle θ12. While the
system evolves towards θ1 = θ2, the angle between the two spins (6.21) tends to

cos θ12 → cos ∆Φ + cos2 θ1 (1− cos ∆Φ) . (6.40)

In the same limit, since S0 · L is an (approximate) constant of motion, we have

S0 · L→ cos θ1
M2(χ1 + qχ2)

1 + q
, (6.41)

and therefore

cos θ12 → cos ∆Φ +

[
(1 + q)(S0 · L)

M2(χ1 + qχ2)

]2

(1− cos ∆Φ) . (6.42)

From this results we see that while the ∆Φ = 0 resonance tends to align the two spins with
each other (θ12 → 0), the ∆Φ = ±π resonance has a tendency towards the anti-alignment
of the spins, that however cannot be reached completely. The actual misalignment in this
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case depends on the initial conditions of the PN inspiral, which set the value of S0 ·L. The
intrinsic asymmetry between the two resonances can also be seen in Fig.6.3: the family of
resonances with ∆Φ = 0 (below the diagonal) approach the diagonal θ1 = θ2 more closely
than the other. This also implies that spin-spin alignment may be more effective than
spin-spin anti-alignment.

The influence of the mass ratio q can be studied by comparing the two panels in Fig. 6.3,
where resonances are shown for q = 9/11 and q = 1/3, respectively. As the mass ratio de-
creases, the equilibrium solutions affect only a smaller portion of the (θ1, θ2) plane: binaries
will be less affected by the resonances as they sweep through the plane. Binaries which are
already in a resonant configuration will also be less affected, since the resonant curves do
not approach the diagonal as closely. Therefore, spin-orbit resonances are more important
for mass ratio close to one, but not exactly equal to 1. Symmetry implies that the PN spin
alignment must vanish for equal-mass binaries, since the labeling of the BHs is arbitrary for
q = 1 and it is therefore impossible to distinguish θ1 < θ2 from θ2 < θ1 (Berti et al. 2012b).
As we will see in Sec. 6.3.3, the asymmetry of the binary is the key element to trigger PN
resonant dynamics.

Here we presented results assuming maximally spinning BHs, i.e. χ1 = χ2 = 1. The
importance of spin resonances obviously decreases if lower spin magnitudes are considered.
Numerical experiments reported by Kesden et al. (2010b,a) show that resonances remain
influential provided q & 0.4 and χ1, χ2 & 0.5.

We can summarize the resonant behavior as follows:

θ1 < θ2 , ∆Φ→ 0 , cos θ12 → cos(θ1 − θ2)→ 0 ; (6.43)

θ1 < θ2 , ∆Φ→ ±π , cos θ12 → cos(θ1 + θ2)→ 2

[
(1 + q)(S0 · L)

M2(χ1 + qχ2)

]2

− 1 . (6.44)

If the more massive BH (primary) is initially more aligned with the orbital angular momen-
tum (θ1 < θ2), the system can remain locked in the ∆Φ = 0 resonance, which may cause a
complete spin-spin alignment (cos θ12 → 0). If the less massive BH (secondary) is initially
more aligned with the orbital angular momentum (θ2 < θ1), the system can remain locked in
the ∆Φ = ±π resonance, which presents a tendency to anti-align the two spins which each
other: further anti-alignment is prevented by the initial condition (through the approximate
conserved quantity S0 · L).

6.3.2 Numerical setup

Precession and GW radiation reaction may bring the binary configurations close to the
resonant solutions, causing a resonant locking. When resonant locking occurs, the PN
evolution proceeds by displaying oscillations around the coplanar equilibrium solutions
along the red lines in Fig. 6.3. However, while equilibrium solutions can be found by the
(semi-)analytical argument just presented, PN locking can only be studied numerically, since
it involves radiation reaction.

We perform numerical integration of the ten ordinary differential equations (6.22)-(6.26)
in the reference frame reported in Fig. 6.1. Previous numerical experiments (Kesden et al.
2010b,a; Berti et al. 2012b) showed that a relatively long PN evolution is needed to fully
capture the resonant behavior. In fact, resonant behavior was not detected by Lousto et al.
(2010b), who initialize their simulations at a = 50M . We started our simulations at a =
1000M , adopting the prescription extensively tested by Kesden et al. (2010a). Integration
is performed down to a = 10M , where the PN approximation breaks down and numerical
relativity becomes necessary to follow the inspiral (Sec. 6.1.1).

Monte Carlo simulations are performed evolving 103 BH binaries for each sample, using
the adaptive stepsize integrator Stepperdopr5 in C++ (Press et al. 2002). To monitor the
variables along the whole evolution, we output all quantities using a constant logarithmic
spacing in the orbital frequency at low frequencies (a > 100M), and the stepsize as used
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in the integrator at high frequencies (a > 100M). Typically this results in ∼ 64000 points
in the range 10M < a < 1000M . Numerical attempts indicate that a tolerance parameter
2× 108 in the adaptive stepsize integrator is sufficient for an accuracy of order 1% or better
in the final quantities. Integration and output for 103 binaries typically take ∼ 10−12 hours
on a quad-core machine with 800 Mhz CPUs, owned by the Gravity Group at the University
of Mississippi.

6.3.3 Spin asymmetry and resonant evolution

To show the influence of resonant effects on the binary dynamics, we first performed several
test runs under well controlled initial conditions. Precious insight on the main resonant
features can be gained from these simple simulations . These hints will be very valuable
to understood the PN evolution of astrophysically predicted samples of BH binaries in the
next Chapter.

We first choose isotropic distributions of cos θ1, cos θ2 (in [−1, 1]) and ∆Φ (in [−π, π]),
following Kesden et al. (2010a). We assume maximally spinning BHs and two different
values for the mass ratio (q = 9/11 and q = 1/3). Fig. 6.4 shows different snapshots of the
evolution from a = 1000M to a = 10M . To stress the role of the two different resonances,
binaries are colored with respect to their initial value of θ1 and θ2: red binaries have θ1 ≤ θ2

at a = 1000M , while blue binaries are initialized with θ2 < θ1. The PN evolution is shown
in both the (cos θ1, cos θ2) plane and the (∆Φ, cos θ12) plane. We also show the initial
correlation computed integrating (6.21) over the distributions of θ1 and θ2 at a = 1000M
(see Sec. 6.2.2). While the distributions remain isotropic in the (cos θ1, cos θ2) plane (as
already noted by Bogdanović et al. 2007), the presence of resonant configurations causes a
clear segregation of the sample in the (∆Φ, cos θ12) plane, which are the relevant variables
to understand resonant evolution (Kesden et al. 2010a). If the more massive BH is more
aligned with the orbital angular momentum than the less massive one (θ1 < θ2, red points)
the evolution is strongly influenced by the ∆Φ = 0 resonance, and it will generally align
the two spins with each other (cos θ12 → 1); if instead the less massive BH is initially more
aligned (θ1 > θ2, blue points), then the ∆Φ = π resonance forces the spins of the locked
binaries to get closer to anti-aligned configurations (see Eq. 6.44). BH precession alone
cannot describe the observed evolution: the average value of cos θ12 moves away from the
non-resonant value computed in Sec. 6.2.2. At small separations, binaries lie above (below)
the correlation line in the ∆Φ = 0 (±π) region.

These same results are still valid, but to a lesser extent for isotropic samples with lower
values of q. A comparison between the top and bottom panels of Fig. 6.4 shows that spin-
orbit couplings are not so critical in the inspiral of lower-mass-ratio binaries.

We also studied three controlled configurations in order to understand the role of the
asymmetry of the initial spin misalignments. As in the previous runs, we keep both the
mass ratio and the spin magnitudes fixed to q = 9/11, 1/3 and χ1 = χ2 = 1. Here we show
only the results obtained assuming q = 9/11, since plots with q = 1/3 are qualitatively
similar but less instructive, because resonances are weaker. The angle ∆Φ varies on the
short precession timescale, while the separation a evolves on the longer inspiral timescale.
Because of the timescale hierarchy (6.28), binaries are found at a = 1000M (i.e. where we
initialize the PN evolution) at a random point of their precessional motion. For this reason
we always choose ∆Φ uniformly in [−π, π] at the beginning of the simulations. As for the
initial distributions of θ1 and θ2, our configurations are:

(10− 10): both spins are misaligned on average by the same angle with respect to the
orbital angular momentum: θ1 and θ2 are uniformly drawn in cosine in the range
[10◦ − 3◦, 10◦ + 3◦];

(10− 0): the secondary BH is almost aligned with the orbital angular momentum: θ1 is
uniformly drawn in cosine in the range [10◦ − 3◦, 10◦ + 3◦] and θ2 in [0◦, 3◦];
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(0− 10): the primary BH is almost aligned with the orbital angular momentum: θ1 is
uniformly drawn in cosine in the range [0◦, 3◦] and θ2 in [10◦ − 3◦, 10◦ + 3◦].

In the (10−0) and (0−10) configurations, an asymmetry in the spin misalignments is assumed
at a = 1000M , while binaries in the (10 − 10) configuration approach the PN regime with
symmetric spin angle distributions. Fig. 6.5 shows snapshots of the PN evolution with the
same conventions used in the previous figures for each different run. In the (10 − 10) run
there is no efficient locking into PN resonances. The number of binaries which freely precess
is always bigger that the number of binaries locked in a resonant configuration. Resonances
still exist, as they remain solutions of the PN equations, but their effect is statistically almost
irrelevant. If we decided to stop the evolution at R = 10M or R = 20M (which is quite
arbitrary, see Sec. 6.1.1) the points would lie in very different regions of the (∆Φ, cos θ12)
plane, indicating that the binaries are not librating around any resonant configuration. On
the other hand, the locking is extremely efficient in both the (10− 0) and the (0− 10) runs:
almost all binaries are locked around ∆Φ = 0 or ∆Φ = π. The samples are almost perfectly
segregated by the PN evolutions. We can also see that binaries depart from the expected
correlation line during the PN evolution, that in this regime cannot be described without
properly taking into account spin-orbit interactions. Depending on whether the initial spin
angle distributions are symmetric or asymmetric, the evolution can shift from almost free
precession to almost perfect resonant locking. The isotropic case of Fig. 6.4 is somewhat in
between.

To illustrate the efficiency of resonant locking, in Fig. 6.6 we followed the evolution of
some relevant variables during the inspiral. For each simulation we track the properties of
all binaries in the sample (black line) and of the two subsamples for which the primary is
initially more/less aligned than the secondary (red/blue lines). In all plots the separation
decreases on the x-axis from a = 1000M to a = 10M as the binary shrinks. The first
column shows the difference between the number of binaries with cos θ2 > cos θ1 (Nup) and
the number of binaries with cos θ1 < cos θ2 (Ndown), normalized to the dimension of each
(sub)sample; the second and the third columns show the evolution the averaged parameters
〈|∆Φ|〉 and 〈cos θ12〉1. All variables show quick oscillations on the precessional timescale,
and slower trends on the inspiral timescale. In the isotropic case, during the inspiral more
and more binaries get locked into a resonant configuration, evolving towards the diagonal in
the (cos θ1, cos θ2) plane (see Fig. 6.3), and they are attracted by either ∆Φ = 0 or ∆Φ = π.
The same trends are even more evident in both the (10−0) and the (0−10) run, where |∆Φ|
reaches a mean value of 150◦ and 30◦, respectively. If both spins start equally misaligned
on average, as in the (10− 10) run, these features are still present, but strong precessional
oscillations make their effect irrelevant. In this configuration the binaries spend the same
amount of time with cos θ1 > cos θ2 as they do with cos θ2 < cos θ1, and they are therefore
attracted by both resonances.

1Note than here we are averaging numerically over all three variables θ1, θ2 and ∆Φ. In Sec. 6.2.2, the
expected correlation is computed by averaging analytically over θ1 and θ2 only.



6.3 Resonant locking 113

Isotropic, q = 9/11

Isotropic, q = 1/3

Figure 6.4: Distribution of (cos θ1, cos θ2), left panels, and (∆Φ, cos θ12), right panels, for an
isotropic sample of maximally spinning BH binaries with q = 9/11, top panels, and q = 1/3,
bottom panels. In each panel the evolution is plotted for different separations: from right
to left and from top to bottom, at a = 1000M (initial conditions), 1000M (slightly after
the beginning of the PN evolution), 750M , 500M , 250M , 100M , 50M , 20M and 10M . Red
points start with cos θ1 > cos θ2, blue points start with cos θ1 < cos θ2; the black dotted line
is the expected correlation between cos θ12 and ∆Φ
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Figure 6.5: Distribution of (cos θ1, cos θ2), left panels, and (∆Φ, cos θ12), right panels, for our
three test (a)symmetric samples of maximally spinning BH binaries with q = 9/11: (10-10),
(10-0) and (0-10). In each panel the evolution is plotted for different separations: from right
to left and from top to bottom, at a = 1000M (initial conditions), 1000M (slightly after
the beginning of the PN evolution), 750M , 500M , 250M , 100M , 50M , 20M and 10M . Red
points start with cos θ1 > cos θ2, blue points start with cos θ1 < cos θ2; the black dotted line
is the expected correlation between cos θ12 and ∆Φ
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Figure 6.6: Efficiency of the resonant locking. The three columns show, from left to right, the
difference between the number of binaries above and below the diagonal in the (cos θ1, cos θ2)
plane, the average of the absolute value of ∆Φ and the average of cos θ12. All the values
are plotted as function of a from 1000M to 10M . In the four rows, from top to bottom, we
show the results for our different simulations with q = 9/11: isotropic, (10 − 10), (10 − 0)
and (0− 10). The black lines contains all binaries in the sample; the red lines, just the ones
starting with cos θ1 < cos θ2; the blues lines the ones starting with cos θ2 < cos θ1.





Chapter 7

Linking formation and evolution

In this Chapter we present a simple astrophysical model of spinning BH binary formation
and evolution. We first introduce the main ideas behind the model, deferring details of the
implementation to a dedicated Section. Spin distributions following from our astrophysical
model are then evolved in the PN regime to predict binary configurations as the GW signal
enters the sensitivity band of second- and third-generation detectors. Resonant-plane locking
and complete spin-spin alignment may occur in the PN regime and are linked to specific
formation mechanisms, namely tidal interactions and mass transfer events. The Chapter
ends with a preliminary comparison of our predictions with existing population-synthesis
models.

7.1 Spin evolution modeling

We develop a BH binary formation model which focuses on the spin orientations, and in
particular on mechanisms that could produce a spin asymmetry leading to resonant locking
(Sec. 6.3.3). Fig. 7.1 summarizes the critical stages of binary evolution in our model. We
first introduce the main ideas of the model; more details can be found in Sec. 7.2.

We will loosely use the term "supernova" to indicate the core collapse of massive stars,
even when such events are not luminous.

7.1.1 Fiducial scenarios for binary evolution

In order to highlight the effects of spin orientation during the PN inspiral of BH binaries,
we fix the BH binary mass ratio to a fiducual value q = 0.8 (cf. Dominik et al. 2012). Due
to the strong dependence of the PN evolution on the binary mass ratio (cf. e.g. Fig. 6.4),
the importance of the different astrophysical mechanisms is less evident if wide distributions
are considered. By fixing the mass ratio we can perform a controlled experiment to under-
stand which formation channels are likely to produce spin-orbit resonant locking. This is a
significant limitations of our model, and it will be extensively discussed in Sec. 7.4.1.

Two scenarios are possible to form BH binaries with the same mass ratio because in
interacting binaries the mass ratio can be reversed by mass transfer events. Since the main-
sequence lifetime of a star is a decreasing function of its mass, the initially more massive star
in a binary is expected to collapse first. If mass transfer from this star to its less massive
companion is small, which we will refer to as the standard mass ratio (SMR) scenario, the
initially more massive star will go on to form the more massive member of the BH binary.
We cannot however rule out the possibility that prior to the first SN, the initially more
massive star overflows its Roche lobe and donates mass to its initially lighter, longer-lived
companion. This mass transfer may produce a mass-ratio reversal, so that the heavier BH in
the binary forms second: we will call this the reversed mass ratio (RMR) scenario. According
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Figure 7.1: A schematic representation of our model for BH binary formation and spin
evolution (Gerosa et al. 2013). Empty circles represent stars, filled circles represent BHs.
The first phase (a) shows the initial main-sequence stellar binary. Mass transfer from the
primary to the secondary (b) leads to a possible mass-ratio reversal. The first SN kick tilts
the angle between the spins and the orbital plane (c). Tidal interactions can realign the
stellar member of the binary (d). The second SN kick tilts the orbital plane again (e).
Gravitational radiation shrinks and circularizes the binary before our explicit PN evolution
begins (f).

to population-synthesis models, mass-ratio reversal happens for a sizable fraction (typically
from ∼ 10% to 50%) of the total number of BH binaries (cf. Dominik et al. 2012 and Table
7.4 below). To ensure that a final mass ratio q = 0.8 is obtained, the initial stellar masses
of the binaries can be fixed to (M ′Si,M

′′
Si) = (35M�, 16.75M�) in the SMR scenario, or

(30M�, 24M�) in the RMR scenario. Sec. 7.2.1 shows how this choice of initial masses leads
to BHs of the desired final masses. Throughout the rest of this Chapter, we use a single
prime to identify the initially more massive stellar progenitor or "primary", and a double
prime to denote the initially less massive progenitor or "secondary" (M ′Si > M ′′Si). As in
the previous chapters, we use subscripts 1 and 2 to indicate the primary and the secondary
BH, respectively (m1 > m2).

The initial main-sequence stage of the evolution is shown as phase a in Fig. 7.1. Bina-
ries are assumed to form on circular orbits with initial semimajor axes a0 drawn from the
distribution described in Sec. 7.2.2, where we also show that our results do not depend on
the initial eccentricity. We assume that the spins of the primary S′ and secondary S′′ are
initially aligned with the orbital angular momentum L.

As the primary evolves, its envelope expands until it fills its Roche lobe, initiating stable
mass transfer to the secondary (phase b in Fig. 7.1). We assume that this mass transfer
continues until the primary has depleted its hydrogen envelope, leaving behind a helium
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core of mass M ′C = 8.5M� (M ′C = 8M�) in the SMR (RMR) scenario (Belczynski et al.
2008a). Following Dominik et al. (2012), we assume semi-conservative mass transfer: the
secondary accretes half of the mass lost by the primary, growing to a mass M ′′Sf = 30M�
(M ′′Sf = 35M�) in the SMR (RMR) scenario at the end of the mass-transfer episode. In
principle mass transfer should also change the orbital separation, but we neglect this change
as it is smaller than the width of the distribution of initial separations, as well as subsequent
changes in the separation during the CE phase.

Following the end of mass transfer, the primary explodes in a SN (phase c in Fig. 7.1)
producing a BH of mass M ′BH = 7.5 M� (M ′BH = 6 M� ) in the SMR (RMR) scenario
(Belczynski et al. 2008a). For simplicity, in our simulations the spin of this newly born BH is
assumed to be maximal1 and aligned with its stellar progenitor. The SN ejecta are generally
emitted asymmetrically, imparting a recoil velocity to the BH because of linear momentum
conservation. When a BH is formed, his typical kick velocity vBH is usually parametrized
as a fraction of the recoil velocities for protoneutron stars vpNS:

vBH ' (1− ffb)vpNS , (7.1)

where ffb ∈ [0, 1] is the "fallback parameter" (cf. Sec. 7.2.5). The stronger gravity of BHs
is expected to reduce the amount of mass ejected, and thus kicks are expected to be weaker
than those imparted to NSs . The recoil tilts the orbital plane by an angle γ1, and changes
the semimajor axis and eccentricity to a1 and e1, respectively. These orbital changes depend
on both the kick and the mass lost during the SN, as described in Sec. 7.2.6. We assume
the kick direction to be confined in a double cone of amplitude θb about the spin direction.

After the SN explosion of the primary, the secondary evolves and expands. The primary
raises tides on the swollen secondary, and dissipation may allow these tides to both circularize
the orbit (so that the final eccentricity is et ' 0) and align the spin S′′ of the secondary
with the orbital angular momentum L, as shown in phase d of Fig. 7.1. This tidal alignment
is described in greater detail in Sec. 7.2.7. Given the uncertainty in the efficiency of tidal
alignment, we explore both extreme possibilities: complete circularization and alignment of
S′′ ("Tides" runs), as well as no circularization and no alignment at all ("No Tides" runs).
As the secondary expands further, it fills its Roche lobe initiating a second phase of mass
transfer. However, unlike the first mass-transfer event, this second mass-transfer phase will
be highly unstable (Soberman et al. 1997; Ge et al. 2010; Clausen et al. 2012). Instead
of being accreted by the primary, most of this gas will expand into a common envelope
about both members of the binary. Energy will be transferred from the binary’s orbit to the
common envelope, ultimately unbinding it from the system. This energy loss shrinks the
semimajor axis of the binary from a1 to a1CE (Dominik et al. 2012), as shown in phase d
of Fig. 7.1 (see Sec. 7.2.4). After the secondary loses its hydrogen envelope, the remaining
helium core has a massM ′′C = 8M� (M ′′C = 8.5M�) in the SMR (RMR) scenario (Belczynski
et al. 2008a).

After the end of common-envelope evolution, the naked helium core of the secondary
rapidly completes its stellar evolution and explodes as a SN, as shown in phase e of Fig. 7.1.
This explosion produces a BH of mass M ′′BH = 6M� (M ′′BH = 7.5M�) in the SMR (RMR)
scenario (Belczynski et al. 2008a), as listed in Table 7.2. For simplicity, we assume that this
BH has a maximal spin that is aligned with the spin S′′ of its stellar progenitor, as we did
for the primary. The SN leads to mass loss and a hydrodynamical recoil that change the
semimajor axis and eccentricity of the binary to a2 and e2, respectively. It also tilts the
orbital plane by an angle Θ, that can be calculated using the same procedure as given for
the first SN in Sec. 7.2.6. This tilt changes the angles between L and the spins S′ and S′′

to γ′2 and γ′′2 , respectively. If tides efficiently align S′′ with L prior to the second SN, these

1Note that spin-orbit resonances are effective provided that the dimensionless spins χi & 0.5 Kesden
et al. (2010a).
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angles are given by

cos γ′2 = cos γ1 cos Θ + cosϕ′ sin γ1 sin Θ , (7.2)

cos γ′′2 = cos Θ , (tides) (7.3)

where ϕ′ is the angle between the projection of S′ in the orbital plane before the SN and
the projection of the change in L into this same initial orbital plane. If ϕ′ is uniformly
distributed (i.e. the direction of the SN kick of the secondary is uncorrelated with the
spin of the primary), the second term on the right-hand side of Eq. (7.2) averages to zero,
implying that γ′2 > γ′′2 for most binaries. This is the mechanism for creating a binary BH
population preferentially attracted to the ∆Φ = ±180◦ family of spin-orbit resonances in
the SMR scenario and the ∆Φ = 0◦ family of resonances in the RMR scenario. We expect
results qualitatively similar to the bottom and lower panel of Fig. 6.5.

If tides are inefficient, γ′′2 is instead given by

cos γ′′2 = cos ξ = cos γ1 cos Θ− sin$ sin γ1 sin Θ , (no tides) (7.4)

where ξ is the angle between S′′ and the post-SN angular momentum (cf. Eq. 7.41), and $
is the angle between the projection of S′′ into the orbital plane before the second SN and the
separation vector between the members of the binary. We can assume $ to be independent
of ϕ′ and uniformly distributed: the second term on the right-hand side of Eq. (7.4) also
averages to zero, implying that γ′2 ' γ′′2 for most binaries. We expect therefore that binaries
will not be preferentially attracted by either family of resonances in the "No Tides" scenario,
like we saw in the top panel of Fig. 6.5. The assumption that $ is independent of ϕ′ and
uniformly distributed is well justified, because the primary and secondary spins precess at
different rates (Ω1 6= Ω2 from Eqs. 6.23 and 6.24) and the precession timescale

tp ∼ Ω−1
1,2 ∼

GM

c3

(v
c

)−5

∼ 0.5

(
M

M�

)−3/2(
a

R�

)5/2

yr (7.5)

is short compared to the time tSN ∼ 106 yr between SN events.
After the second SN, the BH binary is left in a non-relativistic orbit that gradually decays

through the emission of gravitational radiation, as shown in phase f of Fig. 7.1. We calculate
how this orbital decay reduces the semimajor axis and eccentricity using (5.5) and (5.6). To
an excellent approximation, the BH spins simply precess about L during this stage of the
evolution, leaving γ′2 and γ′′2 fixed to their values after the second SN. Once the semimajor
axis reaches a value aPNi = 1000M (in units where G = c = 1), we integrate higher-order
PN equations of motion as described in Sec. 6.2 to carefully model how the orbit and spins
evolve. We assume that radiation reaction circularizes the orbit (ePN = 0) by the time we
start integrating the higher-order PN equations describing the precessional dynamics of the
BH binary. This assumption is fully justified, as we will show by explicit integration in
Sec. 7.3.1 below.

7.1.2 Synthetic black-hole binary populations

We consider fiducial scenarios for the formation of BH binaries characterized by three choices:

i) stable mass transfer prior to the first SN can preserve (SMR) or reverse (RMR) the
mass ratio of the binary;

ii) hydrodynamic kicks generated by the SN can have a polar (θb = 10◦) or isotropic
(θb = 90◦) distribution with respect to the exploding star’s spin;

iii) tides do or do not circularize the orbit and align the spin S′′ of the secondary with the
orbital angular momentum L prior to the second SN.
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In this Section, we construct synthetic populations of BH binaries for the 8 different
scenarios determined by the three binary choices listed above. To generate members of
these synthetic populations, we perform Monte Carlo simulations of 108 binary progenitors2
in which random values determine

i) the initial semimajor axis a0 (Sec. 7.2.2),

ii) the magnitude and direction of the kick produced in the first SN (Sec. 7.2.5),

iii) the magnitude and direction of the kick produced in the second SN (Sec. 7.2.5),

iv) the angles ϕ′ and $ specifying the directions of the spins S′ and S′′ before the second
SN (Sec. 7.1.1),

v) the angle ∆Φ between the projections of the BH spins in the orbital plane at separation
aPNi (Sec. 6.3.3).

The angles ϕ′, $, and ∆Φ in items iv) and v) above are uniformly distributed in the
range [0, 2π]. The synthetic populations generated via this procedure determine the initial
conditions for the PN equations of motion, as described in Sec. 7.3.1.

A binary-star system can fail to produce a merging BH binary for one of the following
reasons:

i) it is unbound by the first SN (e1 > 1);

ii) it merges during the common-envelope evolution between the two SN (a1CE < amCE);

iii) it is unbound by the second SN (e2 > 1);

iv) the time tGW required for gravitational radiation to shrink the semimajor axis from
a2 to aPNi, found by solving the coupled PN equations (5.5) and (5.6), exceeds the
Hubble time tH ' 1010 Gyr.

Table 7.1 lists the fraction of 108 simulated binaries νSN1, νmCE, νSN2, and νH that fail to
produce merging BH binaries for reasons i) through iv) listed above, as well as the fraction
νBH = 1− (νSN1 + νmCE + νSN2 + νH) that do evolve into such binaries.

Kicks Tides Transfer νSN1(%) νmCE(%) νSN2(%) νH(%) νBH(%)

Isotropic On SMR 32.50 (80.50) 26.53 (12.24) 2.66 (0.51) 0.04 (0.00) 38.27 (6.74)
Isotropic On RMR 32.55 (80.28) 34.86 (14.91) 2.97 (0.30) 0.04 (0.00) 29.59 (4.50)
Isotropic Off SMR 32.50 (80.50) 26.53 (12.24) 2.93 (0.60) 0.04 (0.01) 38.01 (6.65)
Isotropic Off RMR 32.55 (80.28) 34.86 (14.91) 3.01 (0.35) 0.04 (0.00) 29.54 (4.46)
Polar On SMR 31.84 (83.14) 26.68 (9.40) 3.29 (0.24) 0.01 (0.01) 38.18 (7.21)
Polar On RMR 31.86 (82.97) 34.88 (12.10) 3.65 (0.24) 0.02 (0.00) 29.58 (4.70)
Polar Off SMR 31.81 (83.16) 26.65 (9.38) 3.35 (0.52) 0.03 (0.01) 38.15 (6.93)
Polar Off RMR 31.84 (82.98) 34.89 (12.09) 3.65 (0.33) 0.04 (0.00) 29.59 (4.60)

Table 7.1: Fraction of binaries ν (in percentage) that satisfy the following conditions, each
of which successively prevent the formation of a merging BH binary: i) are unbound by
the first SN (νSN1), ii) merge during the CE phase (νmCE), iii) are unbound by the second
SN (νSN2), iv) do not merge within a Hubble time due to gravitational-radiation reaction
(νH). The final column is the fraction νBH = 1− (νSN1 + νmCE + νSN2 + νH) of all simulated
binaries that form merging BH binaries. In parentheses we list the corresponding fractions
if SN kicks are not suppressed by fallback, i.e. if we set ffb = 0 rather than ffb = 0.8.
Statistical errors are ±0.01%.

2Each panel of Fig. 7.2 only shows a subsample of 104 progenitors to avoid cluttering.
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Figure 7.2: Scatter plot showing the change in the semimajor axis due to the first (top panel:
a0 → a1) and second (bottom panel: a1CE → a2) SN (Gerosa et al. 2013). All plots refer to
the SMR scenario, but the behavior in the RMR scenario is very similar. Red dots represent
binaries that remain bound after each explosion, while green dots correspond to binaries
that are unbound. Dashed lines show the minimum post-SN semimajor axis af,Min given by
Eq. (7.43) and the critical semimajor axis amCE given by Eq. (7.20) below which binaries
merge during common-envelope evolution. Kicks are too small to saturate the isotropic limit
af,Min for ai . 102R�.
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The failure fractions indicate the relative importance of different physical phenomena. To
emphasize the sensitivity of our results to the highly uncertain SN kicks, we also show how
these fractions change when the BH kick vBH fully equals that imparted to the protoneutron
star vpNS, i.e. taking ffb = 0 rather than our canonical choice ffb = 0.8 (Sec. 7.2.5). Stronger
kicks unbind more binaries during the first SN, increasing νSN1 and thereby reducing the
overall fraction νBH of binaries that survive to form BH binaries. This qualitatively agrees
with results of detailed population-synthesis models (see variations 0, 8, and 9 in Table 7.4).
We adopt ffb = 0.8 in the remainder of our study.

Fig. 7.2 shows how the choices that define our fiducial scenarios affect whether SN kicks
unbind the binaries. One result apparent from this plot (and supported by the failure
fractions νSN listed in Table 7.1) is that the probability of unbinding the system depends
only weakly on whether the SN kicks are isotropic or polar. This is consistent with the
findings of Postnov and Kuranov (2008), which suggest mild sensitivity to θb. Fig. 7.2 also
shows the effect of tides on the fraction νBH of BH binaries produced. In the absence of tidal
dissipation ("No Tides"), the binaries have nonzero eccentricity (ei 6= 0) when the second
SN occurs. Eq. (7.35) shows that the final semimajor axis af has additional dependence
on the true anomaly ψi in this limit, broadening the distribution of af , as can be seen in
the right panel of Fig. 7.2. The kicks can add coherently to the large orbital velocities near
pericenter of highly eccentric orbits, allowing binaries to become unbound even after CE
evolution has reduced the semimajor axis, as shown by the handful of green points with
a1CE . 10R� in the right panel of Fig. 7.2. This increases the fraction νSN2 of binaries
unbound in the second SN when tides are "Off" in Table 7.1.

The importance of common-envelope evolution can be seen as well: virtually all binaries
that fail to form a common envelope (a1CE & 104R�) are unbound by the second SN.
Binaries bound tightly enough to survive the second SN almost always manage to merge
through GW emission in less than a Hubble time (νH � 1). As the disc-driven phase
in the case of SMBH (Sec. 2.1.2), the common-envelope evolution can shrink the orbit of
stellar-mass BH down to separations where GW can finally lead the inspiral in a Hubble
time.

7.2 Astrophysical spin evolution

We use population-synthesis models, and in particular results from the StarTrack code, to
justify and put into context the simple procedure adopted in this work to follow the spin
evolution. The simple model and fiducial scenarios considered do not account for a thorough
exploration of the parameter space, but they illustrate the essential physics and demonstrate
that PN resonance locking can be the preferred outcome of astrophysically motivated BH
binary formation channels.

We describe here the necessary prescriptions to implement our astrophysical model: stel-
lar physics formulae; choice of initial orbital parameter; treatment of stable mass transfer
phase, common-envelope evolution, SN kicks and tidal alignment. Table 7.2 provides nu-
merical values for the masses and radii of both the primary and secondary throughout the
evolution in both our SMR and RMR scenarios.

7.2.1 Single stellar evolution

Here we provide the relevant information about the evolution of isolated stars implemented
in our model. Main-sequence stars born with a mass MS have a radius (Demircan and
Kahraman 1991)

RS
R�
' 1.33

(
MS

M�

)0.555

. (7.6)

Massive, metal-rich main-sequence stars lose a substantial amount of mass via winds prior
to going SN, but we neglect this mass loss for simplicity. The inclusion of wind mass loss
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SMR RMR SMR RMR
M ′Si 35M� 30M� R′Si 9.57R� 8.78R�
M ′′Si 16.75M� 24M� R′′Si 6.36R� 7.76R�
M ′′Sf 30M� 35M� R′′Sf 8.78R� 9.57R�
M ′C 8.5M� 8M� R′C 0.26R� 0.26R�
M ′′C 8M� 8.5M� R′′C 0.27R� 0.27R�
M ′BH 7.5M� 6M� R′G 3608R� 3500R�
M ′′BH 6M� 7.5M� R′′G 3500R� 3608R�
amin 17.9R� 18.8R� anoCE 6981R� 6758R�
amax 8128R� 8787R� amCE 0.69R� 0.63R�

Table 7.2: Masses and length scales at various stages of the binary evolution in our SMR
and RMR scenarios (Gerosa et al. 2013). The only independent parameters are the main-
sequence masses M ′Si and M

′′
Si, which have been tuned to study final BH binaries with mass

ratio q = 0.8. The other values are defined in the main text, and they are obtained using
the analytical prescriptions presented in Sec. 7.2.

in our model would reduce the mass of the hydrogen envelope available to be transferred
to the secondary during the first mass-transfer event (cf. Sec. 5.3.1). While neglecting this
mass loss quantitatively changes the binary evolution, it does not qualitatively alter our
conclusions. Larger (and appropriately chosen) initial stellar masses would lead to final BH
binaries with masses comparable to those considered in our model even in the presence of
winds (Hurley et al. 2000, 2002).

Stars with main-sequence masses in the range 25M� ≤ MS ≤ 40M� evolve into super-
giants with helium-core masses well approximated by (top panel of Fig. 14 of Belczynski
et al. 2008a)

MC ' 0.1MS + 5M� , (7.7)

and radii (Rappaport et al. 1995)

RG
R�
' 4950

(MC/M�)4.5

1 + 4(MC/M�)4
+ 0.5 . (7.8)

Once the hydrogen envelopes have been lost, the naked helium cores have radii (Fryer and
Woosley 1998)

log

(
RC
R�

)
' −0.699 + 0.0557

(
log

MC

M�
− 0.172

)−2.5

. (7.9)

We neglect further evolution of the naked helium star before SN. For the large masses
typical of BH progenitors, the naked helium cores have radiative envelopes and do not
expand substantially during subsequent shell burning (Ivanova et al. 2003; Belczynski et al.
2008a). After going SN, a main-sequence star leaves behind a BH of mass (bottom panel of
Fig. 14 of Belczynski et al. 2008a)

MBH ' 0.3MS − 3M� . (7.10)

7.2.2 Initial orbital parameters

The initial binary separation a0 is drawn from a uniform logarithmic distribution in the
range [amin, amax] (Öpik 1924; Abt 1983; Poveda et al. 2007; Belczynski et al. 2008a). The
upper limit amax is chosen to ensure that the primary fills its Roche lobe during its supergiant
phase, while the lower limit amin is chosen so that the secondary does not fill its Roche lobe
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after receiving mass from the primary. The Roche-lobe radius RL of a star of mass mα in
an orbit of semimajor axis a about a companion of mass mβ is (Eggleton 1983)

RL(a,mα,mβ) ' 0.49Q2/3

0.6Q2/3 + ln(1 +Q1/3)
a , (7.11)

where Q ≡ mα/mβ , so the above limits are determined by the constraints

RL(amax,M
′
Si,M

′′
Si) = R′G , (7.12)

RL(amin,M
′′
Sf ,M

′
C) = R′′Sf . (7.13)

These limits are somewhat arbitrary, but different choices would not affect our results. In
fact, binaries that do not go through mass transfer (a > amax) are so widely separated that
they are easily unbound by the first SN, while binaries where mass is transferred back to
the primary prior to this SN (a < amin) will merge in the CE phase. In other words, we are
not losing binaries from our final sample by our choice of the initial separation boundaries.

As for the initial eccentricity e0, we decided to restrict our study to circular orbits. We
verified that the actual value of e0 has minimal effect: we have repeated our PN simulations
using an initially thermal distribution of eccentricities of the form f(e0) = 2e0 (Heggie 1975),
and we observed no significant difference in the final distribution of ∆Φ and θ12.

7.2.3 Stable mass transfer

When a star fills its Roche lobe, gas will either be stably transferred to its companion
or form a common envelope about both members of the binary. Stable mass transfer is
discussed in this Section, while common-envelope evolution is discussed in Sec. 7.2.4. In
general, the stability of mass transfer depends on the donor star, the accreting star, and the
mass ejected to infinity; as a first approximation, stability criteria are usually implemented
by simple thresholds on the binary mass ratio, as summarized by e.g. Clausen et al. (2012)
and references therein. For most of the BH-BH binary progenitors (Belczynski et al. 2008a;
Dominik et al. 2012), mass transfer from the primary to the secondary prior to the first SN
will be stable, while mass transfer from the secondary to the primary between the two SN
events will lead to the formation of a common envelope.

A fraction fa of the mass lost by the primary in the first mass-transfer event will be
accreted by the secondary, increasing its mass to

M ′′Sf = M ′′Si + fa(M ′Si −M ′C) . (7.14)

Fully conservative mass transfer (fa = 1) preserves the total mass of the system, while all of
the mass lost by the donor is ejected from the system in fully non-conservative mass transfer
(fa = 0). We assume that stable mass transfer is semiconservative (fa = 1/2), in agreement
with the standard model of Dominik et al. (2012). Larger values of fa during this first
mass-transfer event will tend to favor the RMR scenario over the SMR scenario. Since fa is
directly tied to the fraction of binaries that undergo mass-ratio reversal in a given mass and
mass-ratio range, our model suggests that it is potentially measurable via GW observations
(Sec. 7.4.2).

For simplicity, we assume that tides and the mass transfer itself efficiently circularize the
orbit, but we prevent any circularization when tides are taken to be inefficient (for recent
investigations of mass transfer and circularization in eccentric binaries, see Sepinsky et al.
2009, 2010).
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7.2.4 Common-envelope evolution

If the semimajor axis a1 of the binary following the first SN is greater than anoCE, as
determined from the constraint

RL(anoCE,M
′′
Sf ,M

′
BH) = R′′G , (7.15)

with R′′G given by Eq. (7.8), the secondary does not fill its Roche lobe and no common-
envelope evolution occurs. For smaller values of a1, a common-envelope phase does occur
and the envelope binding energy is converted to gravitational energy. We use conservation of
energy to determine how much the binary’s orbit shrinks during common-envelope evolution
(Webbink 1984, 2008). The gravitational binding energy of the common envelope can be
expressed as

Eb = −
GM ′′Sf

(
M ′′Sf −M ′′C

)
λR , (7.16)

where M ′′Sf is the mass of the secondary at the onset of common-envelope evolution,
M ′′Sf −M ′′C is the mass lost by the secondary during this evolution, R = RL(a1,M

′′
Sf ,M

′
BH)

is the Roche-lobe radius of the secondary at the onset of common-envelope evolution, and
λ is a dimensionless parameter of order unity that depends on the mass and structure of
the secondary, notably the location of the core-envelope boundary. Full stellar-evolution
codes can be used to calculate the appropriate value of λ for our BH progenitors (Xu and
Li 2010a,b; Loveridge et al. 2011; for a different approach see De Marco et al. 2011). We
adopt an analytic fit to Fig. 3 of Dominik et al. (2012), which summarizes the results of
these calculations:

λ = ae−bR/R� + c , (7.17)

where a = 0.358, b = 7.19×10−3, and c = 0.05. Conservation of energy during CE evolution
implies

−
GM ′BHM

′′
Sf

2a1
+ Eb = −GM

′
BHM

′′
C

2a1CE
; (7.18)

solving for a1CE yields

a1CE = a1
M ′′C
M ′′Sf

(
1 +

2

λ

a1

R
M ′′Sf −M ′′C
M ′BH

)−1

. (7.19)

If a1CE is less than amCE, as determined from the constraint

RL(amCE,M
′′
C ,M

′
BH) = R′′C , (7.20)

with R′′C given by Eq. (7.9), the helium core of the secondary itself fills its Roche lobe
before the end of common-envelope evolution. This leads to a prompt merger, preventing
the eventual formation of a BH binary. Our final prescription for a1CE as a function of a1

is shown in Fig. 7.3. Common-envelope evolution shrinks the semimajor axis by a factor
∼ 103 and thereby allowing the eventual BH binary to merge in less than a Hubble time.

Motivated by previous hydrodynamical simulations (Ricker and Taam 2008, 2012; Passy
et al. 2012), we neglect accretion onto the primary BH during common-envelope evolu-
tion. These studies suggest that the BH accretes at substantially less than the Bondi-Hoyle
accretion rate (Hoyle and Lyttleton 1941; Bondi and Hoyle 1944) during the evolution, ac-
cumulating . 0.1M� in mass. Given this small change in mass, we are justified in ignoring
any resulting changes in the BH spin (King and Kolb 1999). As noted in Sec. 7.2.1, we also
neglect the expansion of naked helium stars, and therefore explicitly forbid a helium-star
common-envelope phase (Ivanova et al. 2003).
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Figure 7.3: The semimajor axis a1CE at the end of common-envelope evolution as a function
of its initial value a1 in both the SMR and RMR scenarios (Gerosa et al. 2013). If a1 > anoCE,
as given implicitly by Eq. (7.15), the secondary fails to fill its Roche lobe, no common-
envelope evolution occurs, and a1CE = a1. If a1CE < amCE, as given implicitly by Eq. (7.20),
the helium core of the secondary fills its Roche lobe prior to the end of the common envelope
and the binary merges, failing to eventual form a BH binary. The nonlinear relationship
between the semimajor axis before and after the common-envelope phase when a1 < anoCE

results from the nontrivial dependence of the common-envelope efficiency parameter λ on
a1, as given by Eq. (7.17).

7.2.5 Supernova kicks: magnitude and direction

Asymmetric SN events impart hydrodynamical recoils to the newly formed protoneutron
stars (Hills 1983; Brandt and Podsiadlowski 1995; Belczynski et al. 2008c; Nordhaus et al.
2012). We calibrate the magnitude of this primordial kick using observed proper motions
of young pulsars: each protoneutron star is kicked with a velocity vpNS drawn from a single
Maxwellian with parameter σ = 265 km/s (Hobbs et al. 2005). A fraction ffb of this
asymmetrically ejected material falls back onto the protoneutron star and is accreted as it
collapses into a BH. This fallback suppresses the magnitude of the final kick imparted to
the BH to vBH ' (1 − ffb)vpNS. For BHs with masses MBH = (6M�, 7.5M�), as in our
fiducial scenarios, core-collapse simulations by Fryer (1999) and Fryer and Kalogera (2001)
suggest ffb ' 0.8. This BH kick distribution is consistent with the observed proper motions
of galactic X-ray binaries hosting BHs (Fragos et al. 2009b; Wong et al. 2012). Although our
results are not extremely sensitive to the precise magnitude of the BH kicks, the existence
of such kicks is crucial in our model, as they are the only observationally well motivated
mechanism to introduce misalignment between the compact binary spins and the orbital
plane.

We assume that the BH kicks are distributed in a double cone of opening angle θb about
the BH spin and consider two extreme scenarios: isotropic (θb = 90◦) or polar (θb = 10◦)
kicks. There is some observational (Wang et al. 2006a; Noutsos et al. 2013) and theoretical
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(Spruit and Phinney 1998; Lai et al. 2001) support for the polar model. However we examine
both possibilities because this choice has a significant effect on the resulting binary orbits.
Our choice of θb = 10◦ in the polar model was partly motivated by a comparable observed
misalignment between the spin and proper motion of the Crab pulsar (Kaplan et al. 2008).

7.2.6 Supernova kicks: influence on the orbit

In this Section, we describe how SN kicks are implemented in our Monte Carlo calculations.
The expressions provided below have been published previously either under more restrictive
assumptions (Kalogera 1996, 2000) or using different notation (Hurley et al. 2002). Each SN
reduces the mass of the binary and imparts a kick to the newly produced compact remnant.
We calculate how these effects change the Keplerian orbital elements by applying energy
and angular-momentum conservation to the binary before and after the SN. As the duration
of the SN explosion is short compared to the other stages of binary evolution, we assume
that this orbital modification occurs instantaneously.

In our simulations we assume that the binary is on a circular orbit (ei = 0) and that
the stellar spins are aligned with the orbital angular momentum (γi = 0) when the first
SN occurs (we have actually relaxed the circularity assumption in additional simulations
not presented here, and we verified that this has a negligible impact on our conclusions: cf.
Sec. 7.2.2. If tides are inefficient, both of these simplifying assumptions will not hold, in
general, for the second SN. Therefore here we present general expressions for the post-SN
orbital elements.

True anomaly. The binary separation r for a Keplerian orbit with initial semimajor axis
ai and eccentricity ei can be expressed as

r =
ai(1− e2

i )

1 + ei cosψi
, (7.21)

where ψi is the true anomaly. Values for the true anomaly at the time of the SN are chosen
by assuming that the explosion is equally likely to occur at any given time. The time t after
the binary reaches pericenter is given by

2π

P
t = E − ei sinE , (7.22)

where

P = 2π

(
a3
i

GMi

)1/2

(7.23)

is the period of a binary of total mass Mi. The eccentric anomaly E is related to the true
anomaly ψi by (see e.g. Chobotov 1991; Goldstein et al. 2002)

cosψi =
cosE − ei

1− ei cosE
. (7.24)

We assume that t is uniformly distributed in the range [0, P ] and derive the corresponding
values of ψi from these relations.

Reference frame. Let us consider the orthonormal basis (r̂, L̂i, r̂× L̂i), where r̂ is a unit
vector along the line of separation between the members of the binary and Li is the orbital
angular momentum of the binary before the kick, as shown in Fig. 7.4.
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r̂× L̂i

r̂

L̂i

Lf
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•

Figure 7.4: Reference frame adopted to study SN kicks, centered on the exploding star. The
spin S, the pre-SN velocity v0, the kick velocity vk and the final orbital angular momentum
Lf are shown in the basis (r̂, L̂i, r̂× L̂i), where r̂ points toward the companion star and Li

is the orbital angular momentum before the explosion.

The position of the collapsing star with respect to its companion is

r = −r r̂ , (7.25)

where the separation r is given by (7.21). The direction of the spin S of the star is specified
by the angle γi between S and Li and the angle $ between the projection of S in the orbital
plane and r̂:

S = S sin γi cos$ r̂ + S cos γi L̂i + S sin γi sin$ r̂× L̂i . (7.26)

The velocity of the collapsing star before the kick v0 is given by the standard expression for
a Keplerian orbit

v0 = −v0 cos δ r̂ + v0 sin δ r̂× L̂i , (7.27)

where

v2
0 =

GM

a0

1 + 2ei cosψi + e2
i

(1− ei)2
, cos δ =

ei sinψi

(1 + 2ei cosψi + e2
i )

1/2
. (7.28)

The direction of the kick velocity vk is defined by a polar angle θ̄k and an azimuthal
angle φ̄k. Here θ̄k is the angle between vk and the pre-SN orbital velocity v0, and the
axis defined by φ̄k = 0 is chosen to be parallel to the orbital angular momentum Li:

vk = vk cos θ̄k v̂0 + vk sin θ̄k cos φ̄k L̂i + vk sin θ̄k sin φ̄k v̂0 × L̂i (7.29)

=− vk(cos θ̄k cos δ + sin θ̄k sin φ̄k sin δ) r̂

+ vk(cos θ̄k sin δ − sin θ̄k sin φ̄k cos δ) r̂× L̂i + vk sin θ̄k cos φ̄k L̂i .
(7.30)
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The kick magnitude vk is chosen using the prescription presented in Sec. 7.2.5. In terms of
these angles, the angle θp between S and vk is given by

cos θp =
vk · S
vk S

=−
(
sin θ̄k sin φ̄k sin δ + cos θ̄k cos δ

)
cos$ sin γi

+
(
cos θ̄k sin δ − sin θ̄k sin φ̄k cos δ

)
sin$ sin γi + sin θ̄k cos φ̄k cos γi .

(7.31)

In our Monte Carlo simulations, kick directions are drawn from uniform distributions in
φ̄k, cos θ̄k, and $. Kicks confined to within an angle θb of the stellar spin S are therefore
implemented by repeated draws from this distribution such that

θp ≤ θb or θp ≥ π − θb . (7.32)

The SN reduces the total mass of the binary from Mi to Mf and changes the velocity of
the exploding star from v0 to v0 + vk. The final semimajor axis af and eccentricity ef can
be found applying energy and angular-momentum conservation to the binary after the SN
explosion.

Energy conservation. After the explosion the total (specific) energy of the binary is
given by the Keplerian expression (cf. Eq. 3.1)

E = −GMf

2af
. (7.33)

The energy at the explosion can also be found as the sum of kinetic and potential energy

E =
(v0 + vk)2

2
− GMi

r
. (7.34)

Conservation of energy requires for the final semimajor axis:

af = ai β

[
2 (β − 1)

1 + ei cosψi
1− e2

i

+ 1− u2
k − 2uk

(
1 + 2ei cosψi + e2

i

1− e2
i

)1/2

cos θ̄k

]−1

,

(7.35)

where β = Mf/Mi and uk is the magnitude of the kick velocity normalized to the circular
orbital velocity before the explosion, i.e.

uk = vk

√
ai
GMi

. (7.36)

Angular-momentum conservation. When the star receives the kick, the (specific) or-
bital angular momentum is given by

Lf = r× (v0 + vk) =
√
GMiai(1− e2

i )

{[
1 + uk

(
1− e2

i

1 + 2ei cosψi + e2
i

)1/2

×
(

cos θ̄k −
ei sinψi sin θ̄k sin φ̄k

1 + ei cosψ0

)]
L̂i −

[
uk sin θ̄k cos φ̄k

(1− e2
i )

1/2

1 + ei cosψi

]
r̂× L̂i

}
.

(7.37)
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When the new orbit forms, the angular momentum has the Keplerian expression (cf. Eq. 3.1)

Lf
2 = GMfaf (1− e2

f ) . (7.38)

Conservation of angular momentum can thus be used to compute the final eccentricity ef :

1− e2
f =

1− e2
i

β2

{[
1 + uk

(
1− e2

i

1 + 2ei cosψi + e2
i

)1/2(
cos θ̄k −

ei sinψi sin θ̄k sin φ̄k
1 + ei cosψ0

)]2

+ (1− e2
i )

(
uk sin θ̄k cos φ̄k

1 + ei cosψi

)2
}

×
[
2 (β − 1)

1 + ei cosψi
1− e2

i

+ 1− u2
k − 2uk

(
1 + 2ei cosψi + e2

i

1− e2
i

)1/2

cos θ̄k

]
.

(7.39)

If the right-hand side of Eq. (7.39) is negative, ef > 1 and the SN has unbound the binary.
For binaries that remain bound, the orbital plane is tilted by an angle Θ such that

cos Θ =
Li · Lf
Li Lf

=

[
1 + uk

(
1− e2

i

1 + 2ei cosψi + e2
i

)1/2(
cos θ̄k −

ei sinψi sin θ̄k sin φ̄k
1 + ei cosψi

)]

×
{[

1 + uk

(
1− e2

i

1 + 2ei cosψi + e2
i

)1/2(
cos θ̄k −

ei sinψi sin θ̄k sin φ̄k
1 + ei cosψi

)]2

+ (1− e2
i )

(
uk sin θ̄k cos φ̄k

1 + ei cosψi

)2
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and the angle between S and the orbital angular momentum is changed from γi to ξ, where

cos ξ =
S · Lf
S Lf

=
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i
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i
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(7.41)

When S is aligned with L before the SN (γi = 0), the tilt of the orbital plane equals the
misalignment of the exploding star’s spin (ξ = Θ).

Circular and aligned binaries. The above expressions greatly simplify for initially cir-
cular binaries. For example, the SN will disrupt the binary if

u2
k + 2uk cos θ̄k + 1− 2β > 0 (ei = 0). (7.42)
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The equations simplify even further if S and L are initially aligned (γi = 0), in which
case exactly polar kicks are given by θ̄k = π/2, φ̄k = 0. Exactly polar kicks larger than
uk >

√
2β − 1 always unbind the binary, while for isotropic kicks a bound tail of the distri-

bution remains provided uk < 1 +
√

2β. If kicks are confined to cones within an angle θb of
Li, the minimum final semimajor axis is

af,Min =
aiβ

2β − cos2 θb
(ei = 0, γi = 0); (7.43)

exactly polar kicks (θb = 0) can only increase the semimajor axis (af,Min > a1), while
isotropic kicks (θb = 90◦) can reduce the semimajor axis by at most a factor of 2 (af,Min =
a1/2). Exactly polar kicks also add a significant component of angular momentum perpen-
dicular to the initial orbital plane, leading to a strong spin tilt:

cos Θ =
1√

1 + u2
k

(ei = 0, γi = 0). (7.44)

However, the maximum tilt that polar kicks can produce while the binary remains bound is

Θ = cos−1(2β)−1/2 . (7.45)

By contrast, isotropic kicks can make the binary more tightly bound, allowing greater lati-
tude for kicks to produce bound systems with large spin misalignments.

7.2.7 Tidal alignment

As discussed in Sec. 7.1.1, tidal dissipation can circularize the orbit of the binary and align
the spin of the secondary with the orbital angular momentum between the two SN explosions
(Kopal 1959; Brouwer and Clemence 1961; Alexander 1973; Zahn 1975; Lecar et al. 1976;
Hut 1981; Hurley et al. 2002). Tidal friction is a dissipative process which converts the
kinetic energy on the deformation induced by tidal gravity into heat, while conserving the
angular momentum. Tidal interactions are operating in the Earth-Moon binary system,
slowing down the Earth’s rotation and driving the Moon outwards.

A detailed treatment of the theory of tidal damping in massive stars is far beyond the
scope of the present work. We therefore only consider the two extreme possibilities: tides
can either fully circularize the binary and align the spin of the secondary, or they are
completely inefficient. We provide order-of-magnitude estimates for tidal processes below;
the full derivation of the equations can be found in Hut (1981) and Eggleton (2006).

Tides should generally act on both members of the binary. However tidal effects on the
BH can safely be ignored, given its small size. We therefore focus on tidal effects on the
secondary between the two SN (phase d of the evolutionary scenario presented in Fig. 7.1).
If the secondary is fully convective, as expected for the core of a BH progenitor, convection
causes internal damping on the viscous timescale

tV '
31/3

γ

(
MS

M�

)1/3(
RS
R�

)2/3(
LS
L�

)−1/3

, (7.46)

where MS , RS and LS are the mass, radius and luminosity of the secondary, and γ is a
prefactor that depends on details of the stellar structure (Eggleton and Kiseleva-Eggleton
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2001). The orbit evolves on the tidal-friction timescale (Eggleton 2006)

ttid ' k̃
tV
9

M2
S

(MBH +MS)MBH

(
a

RS

)8

(7.47)

' 4× 10−3 k̃γ
1

Q(1 +Q)

(
MS

10M�

)1/3(
RS

10R�

)2/3(
LS

104L�

)−1/3(
a

RS

)8

yr , (7.48)

where MBH is the mass of the primary, Q = MBH/MS is the mass ratio at this stage of the
evolution, and k̃ is a constant related to the quadrupole mass moment of the secondary, thus
depending on its shape3. Values of γ and k̃ can be computed exactly for polytropic stars,
i.e. self-gravitating, spherically symmetric solutions of the fluid equations (6.1)-(6.3) with a
power-law equation of state P ∝ ρ1+1/n (Table 7.3). Convective stars are well approximated
by n = 1.5 polytropes (e.g. Prialnik 2009), for which k̃γ ' 0.2 is of order unity.

Even though the details depend on the initial stellar spin, tidal friction should synchronize
and align the spin of the secondary with the now circular orbit on this same timescale (Eggle-
ton and Kiseleva-Eggleton 2001). The most notable feature of the tidal-friction timescale
ttid given by Eq. (7.47) is its extremely steep dependence on the ratio a/RS . While the
secondary remains on the main sequence with a radius given by Eq. (7.6), this ratio is
typically 100 or greater for binaries that avoid merging during CE evolution. This implies
that tidal alignment occurs on timescales much longer than the Hubble time tH ' 1010 yrs.
However, once the secondary evolves to fill its Roche lobe, its radius is given by Eq. (7.11)
and the ratio a/RS becomes of order unity. This reduces the tidal-friction timescale well
below typical stellar-evolution timescales of a few million years (hydrogen-core burning) or
even the briefer time

tHG ' 2.7× 104

(
MC

10M�

)2(
RC

10R�

)−1(
LS

104L�

)−1

yrs (7.49)

that the secondary spends on the Hertzsprung gap after exhausting the hydrogen in its
core (i.e., the Kelvin-Helmholtz timescale of the core). Since our fiducial scenarios require
the secondary to fill its Roche lobe prior to the second SN, one might expect tidal align-
ment to always be efficient. Substantial uncertainties remain in the model however. Stars
with partially radiative envelopes may have longer tidal-friction timescales (Eggleton 2006;
Belczynski et al. 2008a), and the stellar core may not efficiently couple to its envelope, as
suggested by recent Kepler observations of core-rotation rates (Beck et al. 2012). Therefore,
for completeness, we also explore the “extreme” alternative scenario of completely inefficient
tidal alignment. Being dissipative in nature, tidal interactions decrease the semimajor axis
in addition to circularizing the orbit. This change is small compared to that induced by
common-envelope evolution, and can therefore be neglected along with the orbital changes
produced by other phenomena (e.g. magnetic braking and mass transfer).

n 0 1 1.5 3 3.5 4

γ 1.00 0.610 0.339 0.0122 0.0020 0.00018

k̃ 0.160 0.433 0.604 0.944 0.979 0.995

Table 7.3: Constants relevant to tidal interactions in the case of polytropic stars. We list
the values of the constants γ and k̃ (which enter in Eq. 7.48) for polytropic solutions of the
stellar-structure equations as a function of the polytropic index n. Details can be found in
Eggleton (2006).

3In the notation of Eggleton (2006): k̃ = (1−Q2), where Q is the dimensionless quadrupole moment



134 Linking formation and evolution

7.3 Spin directions: a unified treatment

We finally present here our main results. The PN evolutionary equations described in
Chapter 6 are initialized with our astrophysical predictions, presented in Sec. 7.1, to predict
the spin configurations by the time the gravitational radiate from BH binaries enters the
sensitivity band of GW detectors.

7.3.1 Initial data for the post-Newtonian inspiral

By construction, all of the merging BH binaries produced in Sec. 7.1 have M = 13.5M�,
q = 0.8, and χ1 = χ2 = 1. For this mass ratio and these spin magnitudes, binaries become
attracted towards resonances ("resonant locking") at separations a . 100M . As tested in
Chapter 6, in order to fully capture the resonant behavior it is sufficient follow binaries from
the initial separation aPNi = 1000M (large enough so that we can neglect spin-spin coupling
at greater separations) down to aPNf = 10M . Recall that the mass ratio was defined such
that q ≡ m2/m1 ≤ 1, and the angles θ1, θ2 and ∆Φ are defined through (6.18)-(6.20).

In the SMR scenario, the primary yields the larger BH (M ′BH > M ′′BH), so the angles are
initialized to be

θ1 = γ′2, θ2 = γ′′2 . (7.50)

where γ′2 is given in (7.2), and γ′′2 is given in (7.3) and (7.4) for the "Tides" and the "No
Tides" runs, respectively. In the RMR case, the primary transfers so much mass to the
secondary prior to the first SN that it actually produces the smaller BH (M ′BH < M ′′BH),
implying that we must reverse our initialization:

θ1 = γ′′2 , θ2 = γ′2 . (7.51)

By neglecting spin-spin couplings for a > aPNi we are allowed to initialize θi in this manner,
but the lower-order spin-orbit coupling allows ∆Φ to evolve on the precessional timescale,
which is short compared to the time it takes to inspiral from a2 to aPNi. We can therefore
choose ∆Φ at aPNi to be uniformly distributed in the range [−180◦,+180◦].

Finally, since gravitational radiation is very efficient at circularizing the orbit (to leading
order e ∝ a19/12; see Eqs. 5.5-5.6), we assume that all BH binaries have circularized by
the time they reach aPNi. We checked this assumption by numerically integrating (5.5) and
(5.6) from a2 to aPNi after initializing it with the values e2 predicted following the second
SN; the residual eccentricity at aPNi was less than 10−4 for all BH binaries in our samples.

7.3.2 Resonant-plane locking and spin-alignment

We evolved 103 BH binaries for each of the 8 different fiducial astrophysical scenarios de-
scribed in Sec. 7.1.2 with the numerical setup presented in Sec. 6.3.2. The results for our
eight runs are shown in Figs. 7.5-7.8, where we show the evolution of the dynamical variables
(θ1, θ2,∆Φ). Here we plot θ1, θ2 and θ12 instead of their cosines, at variance with Figs. 6.4-
6.5, in order to emphasize the details of the distributions for low values of the misalignment
angles.

In Fig. 7.5 we show our results for both the SMR (red points) and RMR (green points)
scenarios with efficient tides and isotropic kicks. Efficient tidal interactions lead to spin
orientations that are strongly affected by spin-orbit resonances. When binaries are brought
close enough to resonant configurations by precessional motion and gravitational-radiation
reaction, they no longer precess freely through all values of ∆Φ, but instead oscillate about
the resonant configurations. In the SMR scenario, the initial orientation of the spins is such
that θ1 > θ2 (cf. our (10− 0) run in Sec. 6.3.3), and the binaries lock into resonances with
∆Φ = ±180◦. In contrast, in the RMR scenario the initial spins have θ1 < θ2 (as in the
(0 − 10) run of Sec. 6.3.3) and the binaries lock into resonances with ∆Φ = 0◦. Once the
binaries are trapped near resonances, they evolve toward the diagonal in the (θ1, θ2) plane,
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Figure 7.5: Scatter plots of the PN inspiral of maximally spinning BH binaries with mass
ratio q = 0.8 from an initial separation aPNi just above 1000M to a final separation aPNf =
10M . The top panel shows this evolution in the (θ1, θ2) plane and the bottom panel shows the
evolution in the (∆Φ, θ12) plane. Red and green dots refer to the SMR and RMR scenarios,
respectively. The initial distribution for these Monte Carlo simulations was constructed from
an astrophysical model with efficient tides and isotropic kicks (Gerosa et al. 2013).
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Figure 7.6: Scatter plots of the PN inspiral of maximally spinning BH binaries with mass
ratio q = 0.8 from an initial separation aPNi just above 1000M to a final separation aPNf =
10M . The top panel shows this evolution in the (θ1, θ2) plane and the bottom panel shows the
evolution in the (∆Φ, θ12) plane. Red and green dots refer to the SMR and RMR scenarios,
respectively. The initial distribution for these Monte Carlo simulations was constructed from
an astrophysical model with efficient tides and polar kicks (Gerosa et al. 2013).
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Figure 7.7: Scatter plots of the PN inspiral of maximally spinning BH binaries with mass
ratio q = 0.8 from an initial separation aPNi just above 1000M to a final separation aPNf =
10M . The top panel shows this evolution in the (θ1, θ2) plane and the bottom panel shows the
evolution in the (∆Φ, θ12) plane. Red and green dots refer to the SMR and RMR scenarios,
respectively. The initial distribution for these Monte Carlo simulations was constructed from
an astrophysical model with inefficient tides and isotropic kicks (Gerosa et al. 2013).
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Figure 7.8: Scatter plots of the PN inspiral of maximally spinning BH binaries with mass
ratio q = 0.8 from an initial separation aPNi just above 1000M to a final separation aPNf =
10M . The top panel shows this evolution in the (θ1, θ2) plane and the bottom panel shows the
evolution in the (∆Φ, θ12) plane. Red and green dots refer to the SMR and RMR scenarios,
respectively. The initial distribution for these Monte Carlo simulations was constructed from
an astrophysical model with inefficient tides and polar kicks (Gerosa et al. 2013).
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as seen in the top panel of Fig. 7.5. This corresponds to θ12 → 0◦ for binaries near the
∆Φ = 0◦ family of resonances (RMR scenario). As seen in the bottom panel of Fig. 7.5,
there is a much broader range of final values for θ12 in the SMR scenario, because these final
values depend on the initial astrophysical distribution of S0 · L̂ according to Eq. (6.44).

Fig. 7.6 shows that spin-orbit resonances can have an even stronger effect on BH binaries
when SN kicks are polar (aligned within θb = 10◦ of the stellar spin, Sec. 7.2.5). As discussed
in Sec. 7.2.6, exactly polar kicks tilt the orbital plane by an angle Θ given by (7.44), which
can only attain a maximum value cos−1(2β)−1/2 (where β = Mf/Mi is the ratio of the total
binary mass before and after the SN) without unbinding the binary. For β ' 0.9, as in our
SMR and RMR scenarios, Θ . 40◦, and kicks are rarely large enough even to saturate this
limit. This explains the much narrower distribution of initial values of θi in the left panel
of Fig. 7.6 compared to Fig. 7.5. Binaries with these smaller initial misalignments are more
easily captured into resonances, as can be seen from the near total segregation of the SMR
and RMR populations in ∆Φ by the time the binaries reach aPNf = 10M in the bottom
panel of Fig. 7.6.

In our model, two physical mechanisms are responsible for changing BH spin orientations:
SN kicks and tidal alignment. Both mechanisms are critical: kicks generate misalignments
between the spins and the orbital angular momentum, but only tides can introduce the
asymmetry between these misalignments that causes one family of spin-orbit resonances
(the ∆Φ = ±180◦ family in the SMR scenario, the ∆Φ = 0◦ family in the RMR scenario) to
be favored over the other. When tidal effects are removed, as shown in Figs. 7.7 and 7.8, BH
binaries are formed with θ1 ' θ2 on average. Being symmetric under exchange of the two
BHs, the evolution in the SMR and RMR scenarios is almost identical. As expected (cf. the
(10− 10) test run presented in Sec. 6.3.3), binaries do not lock into resonant configurations,
instead precessing freely during the whole inspiral. In the late stages of inspiral, the binaries
tend to pile up at ∆Φ = ±90◦, i.e. they spend more time in configurations where the
projections of the two spins on the orbital plane are orthogonal to each other. Unlike the
spin-orbit resonances, configurations with ∆Φ = ±90◦ are not steady-state solutions to the
spin-evolution equations in the absence of radiation reaction (Schnittman 2004). The pile up
at these configurations however is an essential complement to the spin-orbit resonances for
preserving the well known result that initially isotropic spin distributions remain isotropic:
see e.g. Bogdanović et al. (2007), as well as our "Isotropic" runs in Sec. 6.3.3. A first attempt
at understanding the physical origin of this phenomenon is presented in Sec. 7.3.3.

The a = 1000M snapshots in Figs. 7.5-7.8 are taken shortly after the beginning of the
PN evolution. The angle ∆Φ varies on the precessional timescale and can therefore change
quite rapidly before the separation decreases appreciably on the longer inspiral timescale.
The initial clustering in ∆Φ visible in the top-top panels of Figs. 7.5 and 7.6 is not a resonant
effect, as the binaries continue to sweep through all values of ∆Φ at these large separations.
It results instead from the different rates at which binaries in the SMR and RMR populations
precess, segregating the groups from each other during the first few precessional cycles.

7.3.3 Pile-up configurations

As we observed in the previous Section, the pile up at ∆Φ = ±π/2 observed in the "No
Tides" simulations is not a resonant effect: it is due instead to a combination of the preces-
sional motion of the spins about L and of the change in direction of L̂, which is necessary
to preserve the conservation of the total angular momentum J on precessional timescales.
Evolutions performed removing the 3PN spin-orbit couplings in Eqs. (6.23)-(6.24) show the
same qualitative behavior. Binaries are not librating around any equilibrium solution. They
evolve spanning the whole range in ∆Φ, but their precessional motion slows down when
∆Φ ∼ π/2, and therefore they spend more time in these configurations.

To further investigate the pile-up behavior, we compute the time derivative of ∆Φ on
the precessional timescale. This can be done directly from the definition of ∆Φ reported in
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(6.20), using (6.23)-(6.24) but taking dv/dt = 0. We find:

M
d∆Φ
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(7.52)

The analytical formula (7.52) describes, at least qualitatively, the observed pile up. The
3PN term proportional to cos ∆Φ vanishes for ∆Φ → ±π/2: when binaries approach these
regions, the rate of change of ∆Φ generally decreases. Moreover, this term is a subleasing
PN correction to the leading 2.5PN order term, thus explaining why the effect is more
pronounced in the late inspiral (see Figs. 7.7-7.8)

The previous argument is only qualitative in nature. Both θ1 and θ2 in (7.52) are
not constant on the precessional timescale, even if we ignore all spin-orbit couplings. The
direction of the angular momentum changes on the precessional timescale due to (6.25). This
causes a variation of θ1, θ2 and ∆Φ, because these angles are all defined in the reference
frame reported in Fig. 6.1, with L̂ along the z-axis. For this reason, both θ1 and θ2 in
that formula depend in a subtle way on ∆Φ. Further investigations are required to fully
understand the origin of the pile-up effect.

7.3.4 Black-hole binaries in the sensitivity band

SN kicks tilt the orbit, producing a misalignment between the orbital angular momentum and
the orientation of the spins of the binary members. As a result, the main factors determining
the spin alignment of a BH binary are the magnitude of SN kicks and the possibility that
other physical effects may realign the spins with the orbital angular momentum in between
SN events. Dominant among these physical effects (aside from the SN kick itself) are the
efficiency of tidal interactions and the possibility of a mass-ratio reversal due to mass transfer
from the initially more massive, faster evolving progenitor.

Tides affect the binary in two significant ways: they align the spins of stellar BH pro-
genitors with the orbital angular momentum and they reduce the binary eccentricity. Ad-
ditionally, tides force stars to rotate synchronously with the orbit, increasing the likelihood
of a large BH spin at collapse and implying that our results will depend only mildly (if at
all) on the initial stellar spin. Consider the evolution of the system between the two SN
events, when the binary consists of a BH and a non-degenerate star. If tidal interactions
are efficient (a reasonable assumption, as we argued in Sec. 7.2.7) they tend to align the
star (but not the BH) with the orbital angular momentum. This introduces an asymmetry
in the angles (θ1, θ2) which is critical to determining the spin configuration at the end of
the inspiral. Mass transfer can change the mass ratio of interacting binaries. In particular
this may produce a mass-ratio reversal, so that the heavier BH is formed by the (initially)
lighter star. Since BHs are relatively immune to the effects of tides, the spin of the first BH
to form will be more misaligned than the spin of the second BH, as this misalignment will
have accumulated due to the kicks generated during both SN events. Therefore, in the SMR
scenario BH binaries will have θ1 > θ2 at formation, and thus ∆Φ ' ±180◦ by the time
they enter the GW-detection band. On the other hand, in the RMR scenario BH binaries
initially have θ1 < θ2, so that by late in the inspiral ∆Φ ' 0◦, and furthermore the spins
are nearly aligned with each other (i.e., θ12 ' 0). In summary, whenever tidal interactions
are efficient, our model predicts that BH spins should preferentially lie in a “resonant plane”
(identified by the conditions ∆Φ = 0◦ in the RMR scenario, and ∆Φ = ±180◦ in the SMR
scenario) when they become detectable by GW interferometers. A third (more unlikely)
possibility is that tidal interactions are not efficient. In this case our simulations show that
binaries will preferentially have ∆Φ ' ±90◦. Because the most likely values of ∆Φ in the
three scenarios (RMR, SMR and no tides) are mutually exclusive, GW measurements of a
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statistically significant sample of values of ∆Φ will provide important astrophysical infor-
mation on compact-binary formation scenarios. In particular, they will tell us whether tidal
interactions are efficient, and (if so) whether mass transfer can produce mass-ratio reversals.

Fig. 7.9 makes these conclusions more quantitative by showing three histograms of ∆Φ
(top) and θ12 (bottom), corresponding to snapshots taken at different times during the
inspiral, and correspondingly to different GW frequency fGW (see Eq. 5.10). To reduce the
Poisson noise, we evolved larger samples of 104 BH binaries to produce these figures. All
simulations shown in this figure assume that kick directions are isotropically distributed.
The "No Tides" panels contain both SMR and RMR events.

The distribution of ∆Φ is flat at large separations (blue dotted lines, corresponding to
early times and small orbital frequency) because spin-spin couplings are weak, and the BH
spins simply precess about the orbital angular momentum. If tidal alignment is efficient, in
the late inspiral the BH spins lock into equilibrium configurations with either ∆Φ = 0◦ or
∆Φ = ±180◦. This effect is clearly visible at GW frequencies fGW = 1 Hz (red dashed lines),
roughly corresponding to the lowest cutoff frequency of third-generation detectors like the
Einstein Telescope, and it is even more pronounced when the binaries enter the Advanced
LIGO/Virgo band at fGW ' 20 Hz (black solid lines). If tides are artificially removed, free
precession during the late stages of the inspiral slows down the evolution of ∆Φ when the
components of the spin orthogonal to the orbital angular momentum are also orthogonal to
each other, causing binaries that are not locked into resonance to pile up at ∆Φ = ±90◦.

Let us stress again that the statistical effect of resonances is clearly visible at
fGW = 20 Hz, i.e. when BH binaries enter the Advanced LIGO/Virgo band. Therefore
GW measurements of ∆Φ could be used to constrain uncertainties in BH binary-formation
scenarios. The inclusion of resonant effects in population-synthesis models (combined with
a statistically significant sample of GW measurements of ∆Φ) has the potential to constrain
some of the main uncertainties in the models, such as tidal timescales, the efficiency of
common-envelope evolution, and the SN engine mechanism.

7.4 A diagnostic for compact-binary formation

If the angles ∆Φ and θ12 are measurable with GW observations, our model predicts that
they will carry a strong signature of BH binary formation processes. In this Section we
discuss the limitations of the present study and the improvements that will be necessary to
model the spin evolution more accurately. We also present a preliminary comparison with
population-synthesis predictions.

7.4.1 Model limitations

In our study we chose to follow the evolution of two binary progenitors (SMR and RMR)
in detail, using a specific formation channel. The resulting BH binaries resemble at least
qualitatively the low-mass BH binaries that can be formed through a wide range of compact
object formation scenarios at a range of metallicities: see e.g. Dominik et al. (2012).

An important assumption made in this study is that of negligible mass loss. Current
calculations suggest that the progenitors of the most commonly detected BH binaries will
in fact have low metallicity and strongly suppressed mass loss (Dominik et al. 2012). The
advantage of our approach is that by neglecting mass loss and focusing on a pair of fiducial
binaries we can perform a “controlled experiment” to highlight how different physical phe-
nomena influence the efficiency of PN resonance locking. Variations in the range of initial
binary masses, wind mass loss and other mass transfer modes will affect the mass distribu-
tion of the binaries and the initial distribution of the misalignment angles (θ1 , θ2), but not
our main qualitative predictions, that should be rather robust.

This study included what we believe to be the most important physical mechanisms that
could trap binaries in resonant configurations, but it is certainly possible that additional in-
gredients overlooked in our model could complicate our simple interpretation of the results.
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Figure 7.9: Probability distribution of the angle ∆Φ (top) and θ12 (bottom) for different
emitted GW frequencies fGW, assuming statistical Poisson noise. Under the effect of tides
the PN evolution brings the spins in the same plane (∆Φ → 0◦,±180◦), in both the RMR
and the SMR scenario. When tidal effects are removed the spins precess freely and pile up
at ∆Φ = ±90◦. In the RMR scenario the spins end up being almost completely aligned with
each other, i.e. most binaries have θ12 ' 0◦. In the SMR scenario and in the absence of
tides, a long tail at large values of θ12 remains even in the late inspiral.
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For example, our argument relies on a universal and deterministic relationship between stel-
lar masses and compact remnants. By contrast, some studies suggest that the relationship
between the initial and final mass may depend sensitively on interior structure (Ugliano
et al. 2012), rotation, or conceivably even stochastically on the specific turbulent realization
just prior to explosion. Likewise, our argument makes the sensible assumption that BH spins
are aligned with the spin of their stellar progenitor, but neutron star observations suggest
that the protoneutron star’s spin axis may be perturbed in a SN (Farr et al. 2011).

Our case studies of binary evolution omit by construction many of the complexities
present in more fully developed population-synthesis models (it is instructive in this sense
to compare Fig. 7.1 and Fig. 5.3). The inclusion of additional physics presents interesting op-
portunities for a more detailed understanding of the connection between poorly constrained
assumptions in population-synthesis models and GW observations. Some of the limitations
we imposed on our model – and therefore, interesting opportunities for follow-up studies –
are listed below:

i) we follow the formation and evolution of only two progenitor binaries, rather than
monitoring a distribution of masses;

ii) we only consider maximally spinning BHs, while we should consider astrophysically
motivated spin magnitude distributions;

iii) we adopt very simple prescriptions for mass transfer and evolution, which have minimal
feedback onto the structure and evolution of each star;

iv) we employ an extreme “all or nothing” limit for tidal interactions;

v) we assume that BHs are kicked with a specific fraction of the overall SN kick strength;

vi) we neglect stellar mass loss, magnetic braking and other phenomena that can occur in
different formation scenarios.

In summary: while our fiducial scenario provides a representative environment to explore
the physics of PN resonances, the specific mass distribution and the quantitative distribu-
tion of the misalignment angles at the beginning of the PN-driven inspiral will depend on
detailed binary-evolution physics which is neglected by construction in our toy model. It will
be interesting to initialize our Monte Carlo simulations using more comprehensive binary-
evolution models that include a distribution of progenitor masses, track tidal backreaction
on the spins and orbit, and model in more detail mass transfer and the modifications it
introduces to core and stellar evolution.

7.4.2 Comparison with population-synthesis results

Let us provide a specific example to illustrate these uncertainties and their potential obser-
vational payoff by combining our predictions with results obtained with the StarTrack code
(see Sec. 5.3.3). Our fiducial model assumed relatively low-mass BHs. These systems receive
strong SN kicks (due to small fallback) and are more significantly influenced by common-
envelope contraction (because of the greater relative effect of the envelope binding energy).
By contrast, more massive BHs in the StarTrack sample will accrete a significantly higher
fraction of their pre-SN mass, which drastically suppresses the typical kick magnitude. As a
result, massive BH binaries can be expected to have BH spins more aligned with the orbital
angular momentum.

This sort of qualitative difference between low- and high-mass BH binaries presents an
opportunity for GW detectors. The most easily measurable quantity in GW observations
is the “chirp mass” Mchirp = η3/5M , where M = m1 + m2 is the total binary mass and
η = m1m2/M

2 is the symmetric mass ratio (see e.g. Cutler and Flanagan 1994; Poisson and
Will 1995). Therefore, even though current simulations suggest that the detected sample will
be dominated by high-mass, nearly aligned BH binaries, observations can clearly identify the
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low-mass sample, which should exhibit significant initial misalignment and more interesting
precessional dynamics. Given the significant uncertainties in population-synthesis models,
even upper limits on the spin-orbit misalignment for high-mass BH binaries would be ex-
tremely valuable, either to corroborate the expectation of strong alignment or to demonstrate
the significance of SN kicks for high-mass BHs.

Based on our prototype study, let us assume that each PN resonance is an unambigu-
ous indicator of a specific fomation scenario: hypothetical GW measurements of angles
∆Φ ∼ ±180◦ mean efficient tides in the “standard mass ratio” (SMR) scenario; measure-
ments of ∆Φ ∼ 0◦ mean that mass reversal also occurred (RMR); finally, ∆Φ ∼ ±90◦ is an
indication that tidal effects were inefficient (cf. Fig. 7.9). Under these assumptions, statis-
tically significant measurements of ∆Φ could directly identify how often each of the three
formation channels (efficient tides, SMR; efficient tides, RMR; inefficient tides) occurs, for
each binary mass.

To illustrate how informative these measurements might be, Fig. 7.10 shows the relative
number of merging binaries that undergo mass-ratio reversal as a function of chirp mass,
as derived from the most recent StarTrack binary-evolution models (Dominik et al. 2012).
The figure (which is meant to be purely illustrative) refers to "Subvariation A" of the
"standard model" of Dominik et al. (2012). Each panel shows the chirp-mass distribution of
binaries that either do (RMR, dashed blue histograms) or do not (SMR, red solid histograms)
undergo mass-ratio reversal. This distribution has characteristic “peaks” at specific values
of the chirp mass at any given Z and it depends very strongly on composition, as we can
see by comparing the two panels (which refer to Z/Z� = 1 and Z/Z� = 0.1, respectively).
According to our model, measurements of ∆Φ for a large enough sample of binaries would

Figure 7.10: Histograms of binaries that do (RMR) or do not (SMR) undergo mass-ratio
reversal as a function of chirp mass, according to the publicly available StarTrack data
(www.syntheticuniverse.org). For illustration, here we choose "Subvariation A" of the
"standard model", in the terminology of Dominik et al. (2012). A comparison of the upper
and lower panels shows the striking differences in the chirp-mass distribution resulting from
different choices for the metallicity Z .

http://www.syntheticuniverse.org/


7.4 A diagnostic for compact-binary formation 145

allow us to reconstruct the shape of these histograms as a function of chirp mass, potentially
enabling new high-precision tests of binary evolution, above and beyond the information
provided by the mass distribution alone.

A preliminary assessment of the main features of population-synthesis models that could
be probed by these measurements can be inferred from Table 7.4. There we list the overall
fraction of BH binary systems that undergo mass-ratio reversal for several different binary-
evolution scenarios explored in Dominik et al. (2012). The most dramatic difference is due
to composition: with few exceptions, models with solar composition (Z/Z� = 1) almost
exclusively produce SMR binaries, while models with subsolar composition (Z/Z� = 0.1)
produce comparable proportions of SMR and RMR binaries. Furthermore there are clear
trends in the ratio RMR/SMR as a function of the envelope-binding-energy parameter λ
discussed in Sec. 7.2.4 (compare variations 1 to 4); the strength of SN kicks (variations 8 and
9); and the amount of mass loss through winds (variation 11). These parameters are also
well known to significantly influence the overall number and mass distribution of merging
binaries.

In conclusion, while our model needs further testing and scrutiny against more complete
population-synthesis calculations, it strongly indicates that GW measurements of ∆Φ and
θ12 will provide a useful diagnostic of compact binary formation, complementary to the more
familiar mass and spin measurements.

7.4.3 Discussion

The spin-orbit resonances discovered by Schnittman (2004) tend to lock the spin in a resonant
plane if the binary has mass ratio q & 0.4 and the dimensionless spin magnitudes χi & 0.5
as long as there is an initial asymmetry in the relative orientation of the spins with respect
to the orbital angular momentum, i.e. θ1 6= θ2 (Kesden et al. 2010a,b; Berti et al. 2012b
and Sec. 6.3.3) We built a toy model for BH binary formation focusing on the main physical
ingredients that can produce such an asymmetry: SN kicks (that tilt the orbital plane every
time a BH is formed), tidal interactions (that tend to realign the spin of the star that
collapses later with the orbital angular momentum) and mass transfer (that can produce
mass-ratio reversal, so that the heaviest BH corresponds to the lighter stellar progenitor).
We showed that for stellar-mass compact objects formed at the endpoint of isolated binary
evolution the required conditions should ubiquitously occur.

Perhaps more interestingly, we demonstrated that the angle ∆Φ between the components
of the BH spins in the plane orthogonal to the orbital angular momentum is in one-to-
one correspondence with the BH formation channel that gave birth to the BH binary: if
tides are efficient the PN evolution attracts the spins to the resonant plane with ∆Φ ' 0◦

(∆Φ ' ±180◦) if mass reversal does (does not) occur. When tidal effects are inefficient the
spins precess freely, and they pile up at ∆Φ = ±90◦ by the time the binary enters the band
of advanced GW detectors. A preliminary comparison with detailed population-synthesis
calculations suggests that the fraction of binaries in each family of resonant configurations,
both overall and as a function of (chirp) mass, should provide a highly informative diagnostic
of some of the main uncertainties involved in binary-evolution physics (metallicity, binding
energy of the CE, magnitude of BH kicks) as long as that fraction can be reliably measured.

Our initial study merits detailed follow-ups to assess (i) the potential accuracy of GW
measurements of the precessional parameters, and (ii) the information that can be extracted
by comparison with population-synthesis models.

Detailed studies are required from the point of view of GW data analysis. We have
assumed for simplicity that each PN resonance can be easily and unambigously distinguished.
In practice, accurate matched-filtering measurements of the angles ∆Φ and θ12 will need
more work on the GW source-modeling front. Relevant issues here include the construction
of gravitational-waveform templates adapted to resonant configurations, the development of
specialized parameter-estimation strategies and the understanding of systematic (as opposed
to statistical) errors for second- and third-generation detectors. Spin modulations are known
to influence both the amplitude and phase of the emitted radiation, and while there are
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several preliminary investigations of parameter estimation from spinning, precessing binaries,
the direct measurement of parameters characterizing the spin-orbit resonances may require
the inclusion of higher-order spin terms and/or higher harmonics in the waveform models.

From an astrophysical standpoint, the observable distribution of binary systems as they
enter the detector band should be calculated (more realistically) by applying our PN evo-
lution to initial data derived from state-of-the-art binary population-synthesis models. In
addition to corroborating our results, such a study will establish a comprehensive library of
reference models that can be compared to observational data using Bayesian or other model-
selection strategies: see e.g. O’Shaughnessy et al. (2008b, 2010); Mandel and O’Shaughnessy
(2010); Mandel (2010); Sesana et al. (2011); Gair et al. (2011); O’Shaughnessy (2012) for
previous efforts in this direction. Such a study is necessary also to make contact with other
observables, such as as the rate and mass distribution of compact binaries. Only with a
comprehensive and self-consistent set of predictions can we quantify how much the informa-
tion provided by PN resonances complements information available through other observable
quantities.

In conclusion, the direct observation of resonant locking will be challenging from a GW
data-analysis standpoint. However the relatively transparent astrophysical interpretation
of PN resonances makes such an investigation worthwhile. Even if only observationally
accessible for the loudest signals, these resonances will enable unique insights into the evo-
lutionary channels that produce merging compact binaries. In our opinion, more detailed
studies of resonant locking in connection with population-synthesis models will offer a great
observational opportunity for GW astronomy.
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Variation Subvariation A Subvariation B
Z/Z� = 0.1 Z/Z� = 0.1

SMR RMR # SMR RMR #
0: Standard 63.2% 36.8% 32496 66.8% 33.2% 17038
1: λ = 0.01 67.9% 32.1% 12368 67.4% 32.6% 11401
2: λ = 0.1 62.7% 37.3% 27698 65.2% 34.8% 16885
3: λ = 1 54.2% 45.8% 51806 65.7% 34.3% 19415
4: λ = 10 50.1% 49.9% 50884 62.9% 37.1% 17939
5: MNS = 3M� 62.5% 37.5% 32236 66.2% 33.8% 16868
6: MNS = 2M� 62.3% 37.7% 32535 65.9% 34.1% 16804
7: σ = 132.5km/s 58.2% 41.8% 36546 63.1% 36.9% 18935
8: vBH = vpNS 56.2% 43.8% 948 72.5% 27.5% 207
9: vBH = 0 56.3% 43.7% 52832 58.8% 41.2% 34569
10: Delayed SN 61.4% 38.6% 27310 66.3% 33.7% 13841
11: Weak winds 58.4% 41.6% 33872 63.6% 36.4% 17765

Variation Subvariation A Subvariation B
Z/Z� = 1 Z/Z� = 1

SMR RMR # SMR RMR #
0: Standard 91.9% 8.1% 10160 92.9% 7.1% 8795
1: λ = 0.01 93.6% 6.4% 8171 93.6% 6.4% 8171
2: λ = 0.1 88.9% 11.1% 11977 92.1% 7.9% 8577
3: λ = 1 79.1% 20.9% 15820 91.6% 8.4% 8442
4: λ = 10 73.2% 26.8% 14425 91.6% 8.4% 8321
5: MNS = 3M� 91.6% 8.4% 9972 92.8% 7.2% 8589
6: MNS = 2M� 91.5% 8.5% 9922 92.5% 7.5% 8590
7: σ = 132.5km/s 88.9% 11.1% 11099 89.6% 10.4% 9334
8: vBH = vpNS 56.2% 43.8% 16 0% 100% 2
9: vBH = 0 66.3% 33.7% 35267 65.2% 34.8% 32547
10: Delayed SN 81.5% 18.5% 1032 81.2% 18.8% 881
11: Weak winds 70.5% 29.5% 21786 64.2% 35.8% 16182

Table 7.4: BH binary rates predicted by StarTrack using data publicly available from
www.syntheticuniverse.org (Gerosa et al. 2013). RMR (SMR) is the percentage of bi-
naries that do (not) experience mass-ratio reversal due to mass transfer; # indicates the
total number of BH binaries in the sample. Each row refers to a different variation over the
"standard model". The variations illustrate the effect of changing one parameter (common-
envelope binding energy λ, maximum NS mass MNS, kick magnitude σ, fallback parameter,
etcetera) with respect to the "best guesses" of the standard model. Each row also shows
the effect of changing the metallicity Z and the Hertzsprung-gap donor prescription (Sub-
variations A and B): see Dominik et al. (2012) for details.

http://www.syntheticuniverse.org/




Outlook

In this thesis we modeled the interplay between astrophysics and GR, to predict what in-
formation can be gained from statistical observations of spin directions in BH binaries. In
both the stellar-mass and the supermassive range, the life of a BH binary can be divided in
two phases: at large separation the evolution is due to interactions with the astrophysical
environment, while at small separation the inspiral is mainly driven by GW emission. We
provided theoretical models to link these two regimes. Some memory of the early astrophys-
ical evolution is still present in the GW-driven inspiral and the subsequent merger, so this
astrophysical evolution can be reconstructed with future specific measurements.

We focused on two important issues in BH binary modeling: we updated the alignment
timescale between the spin of a SMBH and its surrounding accretion disc using the non-
linear theory of warp propagation; and we performed a joint analysis of stellar-mass BH
binary formation and PN evolution to predict the spin configurations when binaries become
detectable by GW interferometers.

i) On galactic scales, the spin orientation of SMBHs is critically modified by the presence
of gas in the form of accretions discs. If large spin-orbit misalignments are retained
after the disc-driven phase, numerical relativity simulations predict that the BH re-
sulting from the merger could receive a strong recoil and be expelled from the galaxy.
The interaction between the BH spin and the orbital angular momentum of the disc
must be modeled in detail to predict whether SMBH ejections are likely. BH spin and
accretion disc interact with each other through the Bardeen–Petterson effect, which
is a notable phenomenon where astrophysical fluid dynamics and GR both contribute
to the final behavior of the system. General-relativistic frame dragging triggers the
exchange of angular momentum between the disc and the hole. Lense–Thirring pre-
cession quickly (i.e., on the viscous timescale) induces a non-planar configuration of
the disc: angular momentum can then be transmitted within the disc through the
propagation of warps. To conserve angular momentum, the system tends to a planar
configuration, thus aligning the BH spin with the orbital angular momentum of the
(outer) disc. We found that warps must be treated properly to fully describe the
alignment process. If the non-linear theory of warp propagation is considered, the
alignment timescale between the spin of each BH and the orbital angular momentum
of the circumbinary disc is sensibly larger. By updating the alignment timescale, we
found that it may become comparable with typical estimates of the merger timescale.
Assuming that the disc angular momentum is parallel to the orbital angular momen-
tum of the binary, we compared the alignment timescale and the merger timescale to
predict the likelihood of large recoil velocities. We found that the average magnitude
of SMBH spins must be low to avoid frequent ejections.

The evolution of the system during the disc-driven phase determines whether the disc
is efficient enough to modify the spin orientation, and can be combined with numerical
relativity predictions to predict recoil velocity distributions. Future detections of GW
signals with planned space-based detectors and observations of electromagnetic signa-
tures of recoiling BHs could provide precious information on the statistical properties
of spinning SMBHs and their gaseous environments.
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ii) On smaller scales, stellar-mass BH mergers are particularly relevant because they are
expected to be detected soon as GW sources by ground-based interferometers. Even
if obtained by solving the equations of GR in vacuum, the PN evolution is strongly
dependent on the (astrophysical) initial conditions. If some asymmetry between the
two spin-orbit misalignment angles is present in the early inspiral, resonant evolution
quickly becomes dominant and completely determines the behavior of the system.
Binaries lock into configurations identified by a resonant plane, shared by the two spins
and the binary orbital angular momentum. We therefore focused on those astrophysical
formation processes that can both introduce a spin-orbit misalignment and cause the
necessary asymmetry. To end its life as a BH binary, a massive binary star must go
through two SN explosions. SN kicks tilt the orbital plane, thus modifying the relative
directions of the spins and of the orbital angular momentum. When the physical
dimensions of the members of the binary are intrinsically asymmetric, i.e. when the
system is formed by a BH and a star, tidal friction can transfer this asymmetry to the
spin orientations. In fact, tidal interaction consists in angular momentum exchange,
which depends on the characteristic lenghtscales of the objects involved. On the other
hand, mass transfer efficiency sets the "direction" of this asymmetry by determining
which BH forms firstly. If mass transfer reverses the binary mass ratio, the fistly formed
BH (which has the initially heavier stellar progenitor) may be the secondary member
of the binary, rather than the primary. Mass transfer events determine which of the
two resonant families will be relevant in the binary inspiral. Asymmetry induced in the
astrophysics-dominated phase results in resonant locking in the PN regime, creating
a one-to-one correspondence between the spin angles at the end of the inspiral and
different binary formation scenarios.

The consequences of the existence of the resonant plane should be explored further.
More templates could be placed in the resonant plane region to increase GW detection
rates. The measurability of the resonant angles is worthy of further investigations,
because of the relatively clean interpretation of their distributions. When statistical
samples of GW observations will be available, distributions of the spin orientation
angles may constrain poorly known astrophysical mechanisms that are responsible for
the formation of BH binary systems.

The PN evolution should be applied to the inspiral of SMBHs as well. The role of reso-
nances in this regime is not fully understood yet. Our study shows, that warp non-linearities
must be modeled in detail, especially when the initial misalignments are large. However,
solutions of the disc structure in the non-linear regime are not available in the literature.
Self-consistent solutions in the general case would allow to predict residual misalignments
after the disc-driven phase. The resulting spin angle distributions could then be evolved in
the PN regime, using the same numerical procedure applied here in the stellar-mass range.
In gas-rich mergers, the smaller BH may accrete more gas from the circumbinary disc,
becoming more aligned with the orbital angular momentum. This may be the necessary
mechanism to introduce the critical spin asymmetry in SMBH binaries, analogous to tidal
friction for stellar-mass BH binaries. A joint analysis of disc physics and PN evolution in
SMBH binaries could provide new insights in BH astrophysics and the role of GR on galactic
scales.
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