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• Why compact objects?

• Compact objects:

– Fluid configurations in Newtonian theory.

– Static fluid configurations in General Relativity.

– Rotating fluid configurations in General Relativity (and their spacetime).

• Multipole moments (characterizing the spacetime)

– Newtonian multipole moments.

– Relativistic multipole moments.

• Properties of neutron star moments (Interesting new results and properties that are independent of the
equation of state).

• Astrophysical phenomena around neutron stars: Accretion disks and QPOs (and their relation to the
spacetime properties).

• More spacetime geometry around neutron stars.

– An analytic spacetime for the exterior of NSs in brief.

– Geodesics and relativistic precession frequencies.

∗ Kerr frequencies.

∗ Neutron star frequencies.

∗ Neutron star properties from frequencies.
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Compact objects are the results of stellar evolution.
We can see them in stellar remnants.
A typical example is the Crab nebula that hosts the
Crab pulsara.

aAPOD 2006 October 26

Very often we find rapidly rotating pulsars at the end
of stellar evolution. The fastest rotating known pulsar
(PSR J1748-2446ad) spins at 716Hz and it is part of
a binary systema.

Low mass X-ray binaries are systems that are com-
prised by a compact object and a regular star compan-
ion. The main source of the X-rays is the accretion
disk that forms around the compact object.

aJ. W. T. Hessels et al., Science 311 1901 (2006)

A lot of interesting astrophysics takes place around compact objects.

Compact objects have strong enough gravitational fields that can test unexplored aspects

of our theories of gravity.
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Compact Objects: Fluid configurations that are in equilibrium by the action

of their self-gravity and their internal forces.

Newtonian Stars
Hydrostatic equilibrium (spherical symmetry):

∇P = −ρ∇Φ⇒
dP

dr
= −

dΦ

dr
ρ = −G

m(r)

r2
ρ

Mass (spherical symmetry): dm
dr = 4πρr2

Field equations: ∇2Φ = 4πGρ, Equation of state for the fluid: P = P (ρ).

A fluid configuration is in equilibrium if the particular configuration minimizes the total energy. Assuming a

polytropic equation of state, P = KρΓ = Kρ1+1/n ⇒ u = K ρΓ−1

Γ−1
= Knρ1/n,

E = Eint +W =

∫
udm−

∫
Gmdm

r
=< u > M − a1G

M2

R
= a2KMρΓ−1

c − a3Gρ
1/3
c M5/3

dE

dρc

∣∣∣
M=const.

= 0⇒M ∝ ρ(Γ−4/3)(3/2)
c = ρ

3−n
2n
c ⇒

M ∝ R
n−3

n−1
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Relativistic non-rotating Stars

Instead of a gravitational field Φ, gravity is described by a metric gab. In spherical symmetry

the metric can take the form ds2 = −e2Φdt2 +
(

1− 2m(r)
r

)−1
dr2 + r2dΩ2.

Field equations: Gab = 8πGT ab,

Equation for the field Φ: dΦ
dr = m(r)+4πr3P

r(r−2m(r)) ,

Definition of the Mass: dm
dr = 4πρr2,

Hydrostatic equilibrium: dP
dr = −(ρ+ P )dΦ

dr .

dP

dr
= −

ρm(r)

r2

(
1 +

P

ρ

)(
1 +

4πPr3

m(r)

)(
1−

2m(r)

r

)−1

,

Equation of state for the fluid: P = P (ρ).

The spacetime outside the star is the Schwarzschild spacetime:

ds2 = −
(

1−
2M

r

)
dt2 +

(
1−

2M

r

)−1

dr2 + r2dΩ2.
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Realistic equations of state
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∗ SLB1,2 are observationally inferred EoSs

(A.W. Steiner, J.M. Lattimer, and E.F. Brown, Astrophys. J. 722 33 (2010)).
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Relativistic rotating Stars

The line element for a stationary and axially symmetric spacetime (the spacetime admits a

timelike, ξa, and a spacelike, ηa, killing field, i.e., it has rotational symmetry and symmetry

in translations in time) is 1,

ds2 = −e2νdt2 + r2 sin2 θB2e−2ν(dφ− ωdt)2 + e2(ζ−ν)(dr2 + r2dθ2).

Field equations in the frame of the ZAMOs:

D · (BDν) =
1

2
r2 sin2 θB3e−4νDω ·Dω + 4πBe2ζ−2ν

[
(ε+ p)(1 + u2)

1− u2
+ 2p

]
,

D · (r2 sin2 θB3e−4νDω) = −16πr sin θB2e2ζ−4ν (ε+ p)u

1− u2
,

D · (r sin θDB) = 16πr sin θBe2ζ−2νp,

Komatsu, Eriguchi, and Hechisu2 proposed a scheme for integrating the field equations using
Green’s functions. This scheme is implemented by the RNS numerical code to calculate
rotating neutron stars 3.

1E. M. Butterworth and J. R. Ipser, ApJ 204, 200 (1976).
2H. Komatsu, Y. Eriguchi, and I. Hechisu, MNRAS 237, 355 (1989).
3N. Stergioulas, J.L. Friedman, ApJ, 444, 306 (1995).
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One can use RNS to calculate models of rotating neutron stars for a given equation of
state. For example we show here some models for the APR EOS:
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The models with the fastest rotation have a spin parameter, j = J/M2, around 0.7 and a ratio of the polar

radius over the equatorial radius, rp/re, around 0.56.

The code, except from the various physical characteristics of the neutron stars, provides
the metric functions in a grid on the coordinates x and µ in the whole space (for values
from 0 to 1 for both variables), where µ = cosθ, r = xre

1−x and re is a length scale.
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The spacetime outside the neutron star is calculated by evaluating numerically the coeffi-
cients in the expansion of the metric functions:

ν =

{
−
M

r
+

1

3
B̃0
M

r3
+
J2

r4
+

[
−
B̃2

0

5
+
B̃2

2

15
−

12J2

5

]
M

r5
+ . . .

}
+

{
Q2

r3
− 2

J2

r4
+ [. . .]

1

r5
+ . . .

}
P2(µ)

+

{
Q4

r5
+ . . .

}
P4(µ) + . . .

ω =

{
2J

r3
−

6JM

r4
+

6

5

[
8− 3

B̃0

M2

]
JM2

r5
+ (. . .)

J

r6
+ . . .

}
P1,µ(µ)

+

{
W2

r5
+ (. . .)

1

r6
− . . .

}
P3,µ(µ) + . . .

B =
(π

2

)1/2
(

1 +
B̃0

r2

)
T

1/2
0 (µ) +

(π
2

)1/2 B̃2

r4
T

1/2
2 (µ) + . . .

where Pl are the Legendre polynomials, µ = cos θ, and T
1/2
l are the Gegenbauer polynomials.

The metric function ν is analogus to the Newtonian gravitational potential, while the metric

function ω is the cause of the relativistic effect of dragging of the inertial frames. All metric

functions are given numerically on a grid.
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As we said, Newtonian gravity is described by the potential

Φ(r) = G

∫
ρ(r′)dV ′

|~r − ~r′|
Multipolar Expansions
(the multipoles characterise the field)
In spherical coordinates:

1

|~r − ~r′|
=

1√
r2 + r′2 − 2rr′ cos θ′

=
1

r
√

1 + ε2 − 2ε cos θ′

=
1

r
+

cos θ′ε

r
+

(1 + 3 cos 2θ′)ε2

4r
+ . . .

Φ(r) = G

(
1

r

∫
ρ(r′)dV ′ +

1

r2

∫
r′ cos θ′ρ(r′)dV ′ +

1

r3

∫
1

2
(3 cos2 θ′ − 1)(r′)2ρ(r′)dV ′ + . . .

)
In cartesian coordinates:

1

|~r − ~r′|
=

1√
(x− x′)2 + (y − y′)2 + (z − z′)2

=
1

r
√

(xa/r − εa)(xb/r − εb)δab

=
1

r
+
xaεa

r2
+

1
2
(3xaxb − r2δab)εaεb

r3
+ . . . =

1

r
+
xax′a
r3

+
1
2
(3x′ax

′
b − r

′2δab)xaxb

r5
+ . . .

Φ(r) = G

(
1

r

∫
ρ(r′)dV ′ +

xa

r3

∫
x′aρ(r′)dV ′ +

xaxb

r5

∫
1

2
(3x′ax

′
b − r

′2δab)ρ(r′)dV ′ + . . .

)
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Newtonian multipole moments:

Φ(r) = G

(
Q
r

+
Qaxa

r3
+
Qabxaxb

r5
+ ...

)
(1)

where, Q, Qa, Qab, are some integrals on the source

Q =

∫
ρ(r′)d3x′, Qa =

∫
x′aρ(r′)d3x′, Qab =

∫
3

2
(x′ax

′
b −

1

3
r′2δab)ρ(r′)d3x′... (2)

The multipole moments are generally tensorial quantities.

Definition of the moments at infinity:

xa → x̃a = r−2xa: r̃2 = x̃ax̃a = r−2

Φ(r) = r̃
(
Q+Qax̃a +Qabx̃ax̃b + ...

)
(3)

If we define the potential at infinity Φ̃ = r̃−1Φ then the moments are

Pa1...an = D̃anPa1...an−1 = D̃a1...D̃anΦ̃ (4)
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In General Relativity instead of a gravitational field Φ, gravity is described by a metric gab.

Relativistic multipole moments:

• Generalization of the Newtonian moments,

• Defined for asymptotically flat spacetimes at infinity from a ”potential”, that is related
to the metric, by a recursive relation,

• There are two sets of moments, the Mass moments and the Rotation moments,

• For the two sets of moments we have two generating potentials, ΦM , ΦJ ,

The multipole moments for stationary and axisymmetric spacetimes can be reduced from
tensors to scalars, because of the rotation symmetry.

The moments characterize the structure of the source and of the spacetime.

P = Φ̃,
Pa = D̃aP,

...

Pa1...as+1 = C
[
D̃a1Pa2...as+1 −

s(2s− 1)

2
R̃a1a2Pa3...as+1

]
,
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Multipole moments of numerical spacetimes

The RNS code can calculates the first non-zero multipole moments, i.e.,

M, S1 ≡ J, M2, S3 and M4
4.

M0 = M,

S1 = jM2,

M2 = −
1 + 4b0 + 3q2

3
M3,

S3 = −
3(2j + 8jb0 − 5w2)

10
M4,

M4 =
19− 18j2 + 160b0 + 120q2 + 336b2

0 + 360b0q2 − 105q4 − 192b2

105
M5

where j ≡ J/M2, and the various parameters are given by the integrals,

Q2l = M2l+1q2l = −
r2l+1
e

2

∫ 1

0

ds′s′2l

(1− s′)2l+2

∫ 1

0

dµ′P2l(µ
′)S̃ρ(s

′, µ′),

W2l−2 = M2lw2l−2 = −
r2l
e

4l

∫ 1

0

ds′s′2l

(1− s′)2l+2

∫ 1

0

dµ′ sin θ′P 1
2l−1(µ′)S̃ω̂(s′, µ′),

B̃2l = M2l+2b2l = −
16
√

2πr2l+4
e

2l + 1

∫ 1/2

0

ds′s′2l+3

(1− s′)2l+5

∫ 1

0

dµ′ sin θ′p(s′, µ′)Be2(ζ−ν)T
1/2
2l (µ′),

where in the second integral l ≥ 1, in contrast to the other two integrals where l ≥ 0.

4G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012),

K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Neutron star multipole moments properties

Black Hole-like behaviour of the moments5:

Kerr moments Neutron star moments

M0 = M,

S1 = J = jM2,

M2 = −j2M3,

S3 = −j3M4,

M4 = j4M5,
...

M2n = (−1)nj2nM2n+1,

S2n+1 = (−1)nj2n+1M2n+2

M0 = M,

S1 = jM2,

M2 = −a(EoS,M)j2M3,

S3 = −β(EoS,M)j3M4,

M4 = γ(EoS,M)j4M5,
...

M2n = ?,

S2n+1 = ?

5W.G. Laarakkers and E. Poisson, Astrophys. J. 512 282 (1999).

G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012).

K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Neutron star multipole moments properties

EoS independent behaviour of the moments6:
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FIG. 7. (Color online) (Top) S̄3–M̄2 relation with various re-
alistic NS and QS EoSs and spins, together with the fit in
Eq. (90) and the Newtonian relation for the n = 0.5 poly-
tropes in [26]. The meaning of the dotted-dashed vertical line
is the same as in Fig. 1. Observe that the QS relation is al-
most the same as the NS one. (Bottom) Fractional di↵erence
between the data and the fit.

ical values and the � fits. Observe that the slow-rotation
relation to O(�2) is valid to O(1%) for � < 0.3.

Let us now compare the NS and QS Ī–M̄2 relation for
di↵erent EoSs, but with results valid to all orders in spin
(Fig. 6). The blue plane shows the NS relation, which is
consistent with that found in [24]. The red points show
the QS relation at di↵erent points in (Ī , M̄2,�) space.
Observe that the QS points lie on the NS plane. This
proves that the QS relation is almost identical to the NS
one.

Let us now turn our attention to the S̄3–M̄2 relation.
The top panel of Fig. 7 shows this relation, not only
for NSs but also for QSs, and various EoSs and spins.
Observe that the QS relation is again almost identical to
the NS one. Following [24], we fit all these data to the
polynomial

y = A0 + B1x
⌫1 + B2x

⌫2 , (90)

with y = (S̄3)
1/3 and x = M̄2, with fitting parameters

given in Table I. The new fit found here, which includes
both NSs and QSs results, is very similar to the one
found in [24] for NSs. In the bottom panel of Fig. 7, we
present the fractional di↵erence between the data and the
fit. Observe that the relation is approximately universal,
with variability of . O(10%).

C. M̄4–M̄2 and M̄4/S̄3–M̄2 Relations

Let us now study whether higher multipoles satisfy
approximately EoS independent relations for relativistic

stars spinning at di↵erent frequencies. Reference [26] al-
ready found that there exists a universal M̄4–M̄2 relation
to leading-order in a weak-field, Newtonian expansion,
so let us investigate this relation first. The top panel
of Fig. 1 shows the M̄4–M̄2 relation for various realistic
NS and QS EoSs and various spins, computed with the
LORENE and RNS codes, as well as in the slow-rotation
approximation. The bottom panel shows the fractional
di↵erence between the data and the fit of Eq. (90) with
y = (M̄4)

1/4 and x = M̄2 and the coe�cients given in Ta-
ble I. Observe that the EoS-universality is slightly weaker
than the S̄3–M̄2 relation, but still, it holds up to roughly
20%. This larger variation is not an artifact of numeri-
cal error, since our calculations are valid to O(1%). This
indicates that the universality becomes worse as one con-
siders multipole moment relations for higher ` modes, as
first predicted in [26].
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FIG. 8. (Color online) Fractional di↵erence between the M̄4–
M̄2 relation for rapidly-rotating stars with RNS and the one
in the slow-rotation limit for an APR EoS with various spin
parameters.

The 20% variability observed in Fig. 1 has two possi-
ble origins: EoS variability and spin-variability. In order
to determine which of these dominates, Fig. 8 attempts
to assess the spin dependence of the M̄4–M̄2 relation.
This figure shows the fractional di↵erence between M̄4

computed with the RNS code and in the slow-rotation
approximation, as a function of M̄2, clustered in groups
of di↵erent �, using an APR EoS as a characteristic ex-
ample. As expected, the di↵erence becomes larger as one
increases spins, reaching a maximum of 5% accuracy for
the largest � models considered. Comparing this with the
fractional di↵erence in Fig. 1, we conclude that the 20%
variability in the latter is dominated by EoS-variations
and not spin e↵ects. We recall that the multipole mo-
ments have a clear spin dependence if they are expressed
in terms of the stellar compactness (see Fig. 2). Our
results indicate that such spin dependence seems to par-
tially cancel if one expresses one multipole moment in
terms of another. Not surprisingly, one can improve the

2

of such no-hair relations for NSs and QSs. A universal
relation between the moment of inertia (directly related
to the current dipole moment) and the mass quadrupole
moment was found in [19, 20], using an unmagnetized,
uniform- and slow-rotation approximation. This result
was immediately confirmed by [21] using di↵erent EoSs.
Haskell et al. [22] extended the analysis of [19, 20] to mag-
netized NSs and found that the universality still holds,
provided that stars spin moderately fast (spin period less
than 0.1s) and the magnetic fields are not too large (less
than 1012G). Such properties are precisely those one ex-
pects millisecond pulsars to have.

Several studies have relaxed the slow-rotation approx-
imation [23–25], leading to a small controversy. Initially,
Doneva et al. [23] constructed NS and QS sequences by
varying the dimensional spin frequency and found that
the EoS-universality of the relation between the moment
of inertia and the quadrupole moment was lost. Shortly
after, Pappas and Apostolatos [24] and Chakrabarti et
al. [25] constructed NS sequences by varying dimen-
sionless combinations of the spin angular moment and
found that the relation remained EoS-universal. More
recently, Stein et al. [26] proved analytically that uni-
versality is preserved to leading (Newtonian) order in a
weak-field expansion, supporting the numerical calcula-
tions of [24, 25].

Recent studies have also considered whether approxi-
mately EoS independent relations exist between higher-
` multipole moments. Reference [24] in fact found
one such relation between the current octupole and the
mass quadrupole moments of NSs. This relation was
not only approximately EoS-universal but also approx-
imately spin-insensitive. The Newtonian results of [26]
analytically confirmed this result. The latter, in fact,
proved that higher-` multipole moments in the non-
relativistic Newtonian limit can be expressed in terms
of just the mass monopole, spin current dipole and mass
quadrupole moments through relations that are approxi-
mately EoS-universal and spin-independent. This univer-
sality, however, was found to deteriorate with increasing
` multipole number.

The existence of approximately universal relations is
not only of academic interest, but it also has practical
applications. For example, if one could measure any two
quantities in a given relation independently, one could
perform an EoS-independent test of GR in the strong-
field regime [19, 20]. Moreover, these relations may play
a critical role when attempting to measure the mass
and radius of NSs with future X-ray telescopes, such as
NICER [27] and LOFT [28, 29]. The pulse and atomic
line profiles of such stars depend not only on the stellar
mass and radius, but also on the moment of inertia, the
quadrupole moment and the stellar eccentricity [30–32].
Universal relations between these quantities [17, 19, 20]
allow one to break parameter degeneracies and measure
the mass and radius [18]. Such measurements, in turn,
would allow for exquisite constraints on the EoS in the
high density regime [33].

In this paper, we study whether approximately EoS-
independent relations among multipole moments exist
up to hexadecapole order in full GR for both NSs and
QSs. To do so, we construct unmagnetized, uniformly-
rotating NS and QS solutions to the Einstein equa-
tions. For rapidly-rotating stars, we extract multipole
moments by numerically constructing stellar solutions
with the LORENE [34, 35] and RNS [36] codes. For
slowly-rotating stars, we extract multipole moments by
solving the Einstein equations in a slow-rotation expan-
sion to quartic order in spin, extending previously-found
quadratic [37, 38] and cubic [39] solutions. Validity of the
quadratic solution is discussed in [40]. Such an extension
allows us to estimate the importance of quartic-order-in-
spin terms in X-ray observations of millisecond pulsars,
which were neglected in [18, 32].
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FIG. 1. (Color online) (Top) The (reduced dimensionless)
hexadecapole (M̄4)–quadrupole (M̄2) moments relation with
various NS and QS EoSs and spins, together with the fit given
by Eq. (90) and the Newtonian relation found in [26]. Observe
the relation approaches the Newtonian one as one increases
M̄2. The Newtonian relation for an n = 0.5 polytrope agrees
with the relativistic fit for various realistic EoSs within 10%
accuracy above the critical M̄2 denoted by the dotted-dashed,
vertical line. (Bottom) Fractional di↵erence between the data
and the fit. Observe the relation is universal to roughly 20%.
This means that the hexadecapole moment can be approxi-
mately expressed in terms of just the stellar mass, spin and
quadrupole moment.

A. Executive Summary

Given the length of the paper, let us here present a
brief summary of the main results. First, we confirm
that the LORENE and RNS codes lead to numerically
extracted multipole moments up to hexadecapole order
that are not only consistent with each other, but also con-

M̄2n = |M2n/(j2nM2n+1)|, S̄2n+1 = |S2n+1/(j2n+1M2n+2)|

All these are properties that characterize the spacetime around neutron stars as well as the

stars themselves.
6G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014)].

K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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There is a variety of phenomena that take place in the spacetime around neutron stars. A
class of these that can be related to orbits in an accretion disc (and geodesic motion) are
the quasi-periodic oscillations (QPOs) of the spectrum7 of the disc,

Mechanisms for producing QPOs8 from orbital motion Typical X-Ray spectrum9

Apart from orbiting hot spots and oscillations on the disc, one could also have precessing

rings or misaligned precessing discs, which either themselves have a modulated emission or

they are eclipsing the emission from the central object.

7Stella & Vietri, 1998, ApJ, 492, L59.

8F.K. Lamb, Advances in Space Research, 8 (1988) 421.

9Boutloukos et al., 2006, ApJ, 653, 1435-1444.
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An analytic spacetime would be very useful to study geodesics.

The vacuum region of a stationary and axially symmetric space-time can be described by

the Papapetrou line element10,

ds2 = −f (dt− wdφ)2 + f−1
[
e2γ

(
dρ2 + dz2

)
+ ρ2dφ2

]
,

where f, w, and γ are functions of the Weyl-Papapetrou coordinates (ρ, z).

By introducing the complex potential E(ρ, z) = f(ρ, z) + iψ(ρ, z) 11, the Einstein field equa-

tions take the form,

(Re(E))∇2E = ∇E · ∇E,
where, f = ξaξa and ψ is defined by, ∇aψ = εabcd ξ

b∇cξd.

An algorithm for generating solutions of the Ernst equation was developed by Sibgatullin
and Manko 12. A solution is constructed from a choice of the Ernst potential along the
axis of symmetry in the form of a rational function

E(ρ = 0, z) = e(z) =
P (z)

R(z)
,

where P (z), R(z) are polynomials of z of order n with complex coefficients in general.

10A. Papapetrou, Ann. Phys., 12, 309 (1953).
11F.J. Ernst, Phys. Rev., 167, 1175 (1968); Phys. Rev., 168, 1415 (1968).
12V.S. Manko, N.R. Sibgatullin, Class. Quantum Grav., 10, 1383 (1993).
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Two-Soliton spacetime: This is a 4-parameter analytic spacetime which can be produced

if one chooses the Ernst potential on the axis to have the form:

e(z) =
(z −M − ia)(z + ib)− k
(z +M − ia)(z + ib)− k

The parameters a, b, k of the spacetime can be related to the first non-zero multipole
moments through the equations,

J = aM, M2 = −(a2 − k)M, S3 = −
[
a3 − (2a− b)k

]
M,

where M is the mass.

One can use the multipole moments M, J, M2, and S3 of a numerically calculated neutron
star and produce an analytic two-soliton spacetime that reproduces very accurately the
numerically calculated spacetime around the neutron star, as well as the relevant properties
of the geodesics in that spacetime, such as the various orbital and precession frequencies,
the position of the ISCO and the energetics of the orbits 13.

13G. P., and T. A. Apostolatos, MNRAS, 429, 3007 (2013); Other analytic spacetimes have
been proposed in the past, see: E. Berti, and N. Stergioulas, MNRAS, 350, 1416 (2004)
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In general, we assume that the spacetime around compact objects has symmetry with
respect to time translations and with respect to rotations around an axis of symmetry,
which is associated to the axis of rotation of the compact object.

Particle motion in a spacetime with symmetries:

The symmetry in time translations implies the existence of a timelike Killing vector ξa and
the symmetry in rotations implies the existence of a spacelike Killing vector ηa.

The four-momentum of a particle is defined as pa = mua = mdxa

dτ .

Symmetry in time translations is associated to an integral of motion, energy E

E = −paξa = −pt = −gttpt − gtφpφ = m

(
−gtt

dt

dτ
− gtφ

dφ

dτ

)
(5)

Symmetry in rotations is again associated to an integral of motion, angular momentum L

L = paη
a = pφ = gtφp

t + gφφp
φ = m

(
gtφ

dt

dτ
+ gφφ

dφ

dτ

)
(6)

From the measure of the four-momentum, papa = −m2, we have the equation,

−1 = gtt

(
dt

dτ

)2

+ 2gtφ

(
dt

dτ

)(
dφ

dτ

)
+ gφφ

(
dφ

dτ

)2

+ gρρ

(
dρ

dτ

)2

+ gzz

(
dz

dτ

)2

(7)
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Circular equatorial orbits:

If we define the angular velocity, Ω ≡ dφ
dt

, for the circular and equatorial orbits equation (7)
defines the redshift factor (have you seen “Interstellar”?),(

dτ

dt

)2

= −gtt − 2gtφΩ− gφφΩ2, (8)

and the energy and the angular momentum for the circular orbits take the form,

Ẽ ≡ E/m =
−gtt − gtφΩ√

−gtt − 2gtφΩ− gφφΩ2
, L̃ ≡ L/m =

gtφ + gφφΩ√
−gtt − 2gtφΩ− gφφΩ2

. (9)

From the conditions, dρ
dt

= 0, d
2ρ
dt2 = 0 and dz

dt
= 0, and the equations of motion obtained

assuming the Lagrangian, L = 1
2
gabẋ

aẋb, the angular velocity can be calculated to be,

Ω =
−gtφ,ρ +

√
(gtφ,ρ)2 − gtt,ρgφφ,ρ
gφφ,ρ

. (10)

This is the orbital frequency of a particle in a circular orbit on the equatorial plane.
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More general orbits:

Equation (7) can take a more general form in terms of the constants of motion,

−gρρ
(
dρ

dτ

)2

− gzz
(
dz

dτ

)2

= 1−
Ẽ2gφφ + 2ẼL̃gtφ + L̃2gtt

(gtφ)2 − gttgφφ
= Veff , (11)

With equation (11) we can study the general properties of the motion of a particle from
the properties of the effective potential.

Small perturbations from circular equatorial orbits:

If we assume small deviations from the circular equatorial orbits of the form, ρ = ρc + δρ
and z = δz, then we obtain the perturbed form of (11),

−gρρ
(
d(δρ)

dτ

)2

− gzz
(
d(δz)

dτ

)2

=
1

2

∂2Veff

∂ρ2
(δρ)2 +

1

2

∂2Veff

∂z2
(δz)2,

This equation describes two harmonic oscillators with frequencies,

κ̄2
ρ =

gρρ

2

∂2Veff

∂ρ2

∣∣∣∣
c

, κ̄2
z =

gzz

2

∂2Veff

∂z2

∣∣∣∣
c

,

The differences of these frequencies (corrected with the redshift factor (8)) from the

orbital frequency, Ωa = Ω− κa, define the precession frequencies.
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“Scaled” Frequencies for the Kerr spacetime:

Scaled Orbital frequency: MΩ =
299790

√
1/r3

1+j(1/r)3/2

Scaled Radial frequency: Mκρ = MΩ
(
1− 6(1/r) + 8j(1/r)3/2 − 3j2(1/r)2

)1/2

Scaled Vertical frequency: Mκz = MΩ
(
1− 4j(1/r)3/2 + 3j2(1/r)2

)1/2

Orbital, Mνφ, and precession, Mνa, “scaled frequencies” for Kerr black holes for various j (0.01-0.91).
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Plots of the orbital, periastron and nodal

precession “scaled frequencies”.

Plots of the periastron and the nodal pre-

cession “scaled frequencies” against the

orbital “scaled frequency”.

The general effect of rotation is to increase the observed frequencies (and reduce the ISCO

radius; for j ∼ 1 the horizon and ISCO radii tend to 1M).
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Frequencies for the spacetime around neutron stars:

Orbital frequency: Ω =
−gtφ,ρ+

√
(gtφ,ρ)2−gtt,ρgφφ,ρ
gφφ,ρ

Radial frequency:

κρ =
(
−gρρ

2

{
(gtt + gtφΩ)2

(
gφφ
ρ2

)
,ρρ
− 2(gtt + gtφΩ)(gtφ + gφφΩ)

(
gtφ
ρ2

)
,ρρ

+ (gtφ + gφφΩ)2
(
gtt
ρ2

)
,ρρ

})1/2

Vertical frequency:

κz =
(
−gzz

2

{
(gtt + gtφΩ)2

(
gφφ
ρ2

)
,zz
− 2(gtt + gtφΩ)(gtφ + gφφΩ)

(
gtφ
ρ2

)
,zz

+ (gtφ + gφφΩ)2
(
gtt
ρ2

)
,zz

})1/2

Orbital, Mνφ, and precession, Mνa, “scaled frequencies” for neutron star models (132)
constructed with the APR EOS for various j up to the Kepler limit (0-0.7) and masses
from 1M� up to 2.5M�.
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precession frequencies.
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precession frequencies against the orbital

frequency.
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Frequencies for the spacetime around neutron stars: The effect of rotation

Orbital frequency, periastron precession frequency and nodal precession frequency:
Orbital, Mνφ, and precession, Mνa, “scaled frequencies” for neutron star models constructed
with the APR EOS for various j up to the Kepler limit(0-0.7) and the same central density.
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Plots of the orbital, periastron and nodal precession fre-

quencies for different rotations for models with ρc = 6.3 ×
1014g/cm3. Rotation in the range, f ∼ 0.3− 0.9kHz.

Same plots for ρc = 7.3 ×
1014g/cm3 (upper) and ρc =

1015g/cm3 (lower).
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Frequencies for the spacetime around neutron stars: Effect of higher moments

Orbital frequency, periastron precession frequency and nodal precession frequency:
Orbital, Mνφ, and precession, Mνa, “scaled frequencies” for neutron star models constructed
with the APR EOS for approximately the same j = 0.39 and different higher moments.
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M 0.986 1.133 1.288 1.447 1.604 1.755 1.896 2.021 2.368
j 0.3837 0.382 0.381 0.3809 0.3817 0.3834 0.3861 0.3894 0.4069
q -1.427 -1.132 -0.905 -0.7334 -0.6044 -0.508 -0.4362 -0.3836 -0.2781
j2 -0.1472 -0.1459 -0.1452 -0.1451 -0.1457 -0.147 -0.149 -0.1516 -0.1655
f ∼ 0.5− 1.2kHz with the rotation frequency increasing with the increasing mass

The general effect of a quadrupole being higher than that of Kerr is to make κz higher

than Ω in the region near the ISCO. The size of that region increases with q.
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Frequencies for the spacetime around neutron stars: Effect of the EOS 14

Plots of the precession frequencies against the orbital frequency for 3 NS sequences of various rotations for
AU, FPS and L EOS. The models of the sequences have masses equal to 1.4M�, the mass of the maximum
mass non-rotating model that the EOS admits and the mass of a hyper-massive model without non-rotating
limit.
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The general effect of the
EOS is that stiffer EOSs
produce higher quadrupole.
Kerr black holes behave like
a super-soft star.

14G.P., 2012 MNRAS, 422, 2581-2589.
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The characteristics of the orbits in a spacetime can be associated to its multipole moments.

The precession frequencies are related to the multipole moments,

Ωρ

Ω
= 3υ2 − 4

S1

M2
υ3 +

(
9

2
−

3M2

2M3

)
υ4 − 10

S1

M2
υ5 +

(
27

2
− 2

S2
1

M4
−

21M2

2M3

)
υ6 + ...

Ωz

Ω
= 2

S1

M2
υ3 +

3M2

2M3
υ4 +

(
7
S2

1

M4
+ 3

M2

M3

)
υ6 +

(
11
S1M2

M5
− 6

S3

M4

)
υ7 + ...

where υ = (MΩ)1/3 and S1 = J.

If specific QPOs are associated to the orbital frequencies, they could then be used to

measure the multipole moments of the central object15 and from the moments, probe its

structure.

15G.P., 2012 MNRAS, 422, 2581-2589.
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An application example: A “measurement” of the first 3 moments (M,J,Q)

could select an EoS16 out of the realistic EOSs candidates.
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16G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014)
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Thank You.


