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e Why compact objects?

Outline

e Compact objects:
— Fluid configurations in Newtonian theory.
— Static fluid configurations in General Relativity.

— Rotating fluid configurations in General Relativity (and their spacetime).

e Multipole moments (characterizing the spacetime)
— Newtonian multipole moments.
— Relativistic multipole moments.

e Properties of neutron star moments (Interesting new results and properties that are independent of the
equation of state).

e Astrophysical phenomena around neutron stars: Accretion disks and QPOs (and their relation to the
spacetime properties).
e More spacetime geometry around neutron stars.
— An analytic spacetime for the exterior of NSs in brief.

— @Geodesics and relativistic precession frequencies.
x Kerr frequencies.

+ Neutron star frequencies.

+ Neutron star properties from frequencies.
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Why compact objects?

CRAB NEBULRA

Compact objects are the results of stellar evolution.
We can see them in stellar remnants.

A typical example is the Crab nebula that hosts the
Crab pulsar?.

dAPOD 2006 October 26

Very often we find rapidly rotating pulsars at the end
of stellar evolution. The fastest rotating known pulsar
(PSR J1748-2446ad) spins at 716Hz and it is part of
a binary system?,

Low mass X-ray binaries are systems that are com-
prised by a compact object and a regular star compan-
ion. The main source of the X-rays is the accretion
disk that forms around the compact object.

9). W. T. Hessels et al., Science 311 1901 (2006)

A ot of interesting astrophysics takes place around compact objects.
Compact objects have strong enough gravitational fields that can test unexplored aspects

of our theories of gravity.



The University of

Nottingham

) g

Compact objects: Newtonian fluid configurations 3 /28 T

Compact Objects: Fluid configurations that are in equilibrium by the action
of their self-gravity and their internal forces.

Fp
i Newtonian Stars
Hydrostatic equilibrium (spherical symmetry):
dP dd
vp=_pve o Lo _d® __om)
dr dr
Mass (spherical symmetry): d—m = 477,07“

Field equations: V2&d = 471G p, Equation of state for the fluid: P = P(p).

A fluid configuration is in equilibrium if the particular configuration minimizes the total energy. Assuming a
r-1

polytropic equation of state, P = Kp' = Kpltl/n =y = K= = Knpt/™,

Gmd M?
E=Emt—|—W=/udm—/ mam =<U>M_G1Gf =a2KMpcr —a Gp1/3M5/3
T

dE
dpc

— 0= M pgl’—4/3)(3/2)
M=const.
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J— 2n
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n—3
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Relativistic non-rotating Stars

Compact objects: Relativistic fluid configurations (static)

Instead of a gravitational field &, gravity is described by a metric g,,. In spherical symmetry
-1
the metric can take the form ds? = —e?®dt? + (1 — QmT(r)> dr? 4+ r2dQ22.

Field equations: G = 87rGT

3
Equation for the field &: % — m(r)+4nr>P

’r'(fr 2m(r)) '
Definition of the Mass: Cil—m = 47pr?,
Hydrostatic equilibrium: 42 = —(p + P)4®

aP _ pm(r) P 41 Pr3 2m(r) -1
w0 0T (-7)

Equation of state for the fluid: P = P(p).

The spacetime outside the star is the Schwarzschild spacetime:

2M oM\ L
ds?® = — (1 — —) dt® + (1 — —> dr? + r2d$°.

r Tr
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Compact objects:

Relativistic fluid configurations (static)

Realistic equations of state
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Polytropic equations of state

newtonian/relativistic polytropes for n=1.5

(newtonian polytropes: M oc Rn—1)
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newtonian/relativistic polytropes for n=1

newtonian/relativistic polytropes for n=0.5

* SLB1,2 are observationally inferred EoSs

(A.W. Steiner, J.M. Lattimer, and E.F. Brown, Astrophys. J. 722 33 (2010)).
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Relativistic rotating Stars
The line element for a stationary and axially symmetric spacetime (the spacetime admits a

Compact objects: Relativistic fluid configurations (rotating) 6 /28

timelike, &%, and a spacelike, n?, Killing field, i.e., it has rotational symmetry and symmetry

in translations in time) is !,

ds? = —e2Yqt? + 12sin20B2e 2 (dp — wdt)? + 26— (dr? + 12d62).

Field equations in the frame of the ZAMOs:

(e+p)(1 +u?) n

1
D .- (BDv) = 57"2 sin? B3¢ *'Dw - Dw + 47 Be?* ™% . 5
—u

2p|,

(e +p)u

D - (r?sin?0B3%e *Dw) = —167rsin §B%e2~% R
— U

D (rsinéDB) = 167rsin QB€2<_2VP,

Komatsu, Eriguchi, and Hechisu? proposed a scheme for integrating the field equations using
Green’'s functions. This scheme is implemented by the RNS numerical code to calculate
rotating neutron stars 3.

lE. M. Butterworth and J. R. Ipser, ApJ 204, 200 (1976).

°H. Komatsu, Y. Eriguchi, and I. Hechisu, MNRAS 237, 355 (1989).

3N. Stergioulas, J.L. Friedman, ApJ, 444, 306 (1995).
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One can use RNS to calculate models of rotating neutron stars for a given equation of
state. For example we show here some models for the APR EOS:

18 20

5 1‘0 1‘5 iy 2‘0 2‘5 1‘2 1‘4 1‘6
The models with the fastest rotation have a spin parameter, j = J/M?, around 0.7 and a ratio of the polar
radius over the equatorial radius, r,/r., around 0.56.

The code, except from the various physical characteristics of the neutron stars, provides
the metric functions in a grid on the coordinates x and p in the whole space (for values
from 0 to 1 for both variables), where u = cosf, » = #= and r. is a length scale.
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Compact objects: Relativistic fluid configurations (rotating) 8 /28

The spacetime outside the neutron star is calculated by evaluating numerically the coeffi-
cients in the expansion of the metric functions:

M 1. M J? B2 B2 12J%\ M
= {-—"— 4+ "By— 4+ — _ 0 2
g { 7“+3 Or3+r4+[ 5+15 5 ]r5+ }

2
+{%_2‘Z—4+[...]%+...}P2(u)
+{%+...}P4(u)+---

2J oJM 6
- +218-3
{'r3 r4 5[

Byl JM? J
M‘;] + (... ——|—...}P1,M(u)

NS

T\ 1/2 Bo\ .12 T™\1/2 Ba, 12
B = (5) (Hr_z)TO (u)+(§) (ORI
where P, are the Legendre polynomials, 4 = cos#, and Tll/2 are the Gegenbauer polynomials.

The metric function v is analogus to the Newtonian gravitational potential, while the metric
function w is the cause of the relativistic effect of dragging of the inertial frames. All metric

functions are given numerically on a grid.
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Multipole moments: Newtonian fields

1|

As we said, Newtonian gravity is described by the potential

_[lm T
1 v p(r)dv’
Q) " O(r) =G | ———
" |7 — 7|
Multipolar Expansions
(the multipoles characterise the field)
X In spherical coordinates:
1 . 1 . 1
|7 — 7| \/r2+r’2—2rr’COSG’ T\/1+€2—2€C050/
1 cosfe 1 4+ 3cos26)e?
= -+ + ( ) + ...
r r 4r

) =G (1 / P(r’)dV’Jri2 / r’cose’p(r’)dV’Jr% / 2(3cos?¢’ - 1)(r')2p(r')dV'—|—...)
r r T 2

In cartesian coordinates:

1 1 1
=7 V=2 + -y + =22 r/@/r =) /r —ba
_ l n T, 4 %(355&371) - 7"25ab)<°ia€b 4 _ l n :Caac; + %(31'&552 - ?“/25ab)55a55b
r 72 r3 oy r3 7>

Ir'5

a a..b
d(r) =G (l/p(r/)dv/ + %/x;p(r')dvl + T2 /%(3.’13;332 — 1280 p(r)dV’ + .. )
r r
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Newtonian multipole moments:

a an.b
®(r) = G <§ TR AN L ) (1)
T T

ro

where, Q, Q,, Q., are some integrals on the source
3 1
0 = / p(r) a3, Q4 = / 2 p(r) P, Qup = / Gl — Srea)p(Nd ()

The multipole moments are generally tensorial quantities.

Definition of the moments at infinity:

2 2

72 = 3%, =1~
P(r) =7 (Q + QuZ* + Qua"z" + ...) (3)
If we define the potential at infinity ® = 7~ 1® then the moments are

Pal...an — Danpal...an,l - Dal---Dan(T> (4)

¢ — % = r—
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In General Relativity instead of a gravitational field &, gravity is described by a metric gq.

Multipole moments: general relativity 11 /28

Relativistic multipole moments:
e Generalization of the Newtonian moments,

e Defined for asymptotically flat spacetimes at infinity from a " potential”, that is related
to the metric, by a recursive relation,

e [ here are two sets of moments, the Mass moments and the Rotation moments,
e For the two sets of moments we have two generating potentials, &,;, P,

The multipole moments for stationary and axisymmetric spacetimes can be reduced from
tensors to scalars, because of the rotation symmetry.

The moments characterize the structure of the source and of the spacetime.

U N
Il
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Properties of neutron star moments 12 /28

Multipole moments of humerical spacetimes
The RNS code can calculates the first non-zero multipole moments, i.e.,
M, S1=J, My, S3 and M44

My = M,
S = jMQ,
4
M, — 14 b§+3sz3’
3(2j + 8jbo — 5
Sy = _(]+ J00 w2)M4’
10
v 19 — 1852 4 160bo 4 120¢2 + 336b3 + 360bog2 — 105¢4 — 192b> Ve
4 =

105

where 53 = J/M2, and the various parameters are given by the integrals,

_ 2l4+1 2l+1 dS/SlQl ! N o I
2l — 21 21 p ’ )
Q M=Tq 152+ duP (1)Sp(s', 1)

ol d8/8/2l
Wo o= M"wy > = —— (1_ 52t / dp'sin 0’ Py _1 (1) S5(s', 1),
0
1/2 1
~ ~16V2 r2l+4 ds' 5243
_ aAg2l+2 _ : 2(¢— 1/2
Boy = M="%by = 2+ 1 1 o) dy/ sin0'p(s', 1) Be?( ”>T21 (i),
0 0

where in the second integral [ > 1, in contrast to the other two integrals where [ > 0.

4G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012),
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Properties of neutron star moments

Neutron star multipole moments properties

Black Hole-like behaviour of the moments®:

Kerr moments Neutron star moments
My = M, My = M,
S1 = J=jM? S1 = jM?
My = —j°M?3, My = —a(EoS,M)j*M>,

S3 = —j°M*, S3 = —B(EoS, M)j>M*,
My = j*M>, My = ~v(EoS,M)j*M>,
Mo, = (—1)%2"pm2ntl Mo, = 7,
Sont1 = (1) HIME 2 5, 0, = 7

SW.G. Laarakkers and E. Poisson, Astrophys. J. 512 282 (1999).
G.P. and T. A. Apostolatos, Phys. Rev. Lett. 108 231104 (2012).
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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Neutron star multipole moments properties

Properties of neutron star moments

EoS independent behaviour of the moments®:

I\I T TTTTTT

X APR X APR
+ AU 4 | L AU
1 O L T T — T T T T 10O L T T T T T T T T :
! F SLy |
SLy | :
10°H ~ w : Floow :
</ Shen I e 3l v len s :
0 poly. n=0.5 =" 10"} O poly.n=0. :
E  SQMI F| m sQMml |
‘,-. : ’ SQM2 I ....
¢ sQm2 |
® sQM3 . + . 2| ® soms |
o . I s 10— & .
» —_- I\lflewmn n=0.5 I F|— - Newton, n=0.5 I
i L
i =
! -
i -
I
I

IEjljmlmlll. III 1 IIIIIIII 1 IIIIIIII 1 IIIIIIII 1 Ill.:"

100 B 1 1 1 1 1 1 1 1 1 ] 100 =
T T T T T T T T I T T T _]
10'E = = 10 E
Rl L & N
2 C o) .:E -
g i s 102k =
IUIJm 10_2 £ E |E'<r 10 3 E
v ] I= - ]
I 1 3
3 10
10 1 1

M

Moy, = | Moy, /(52" M2 T 1) 85,11 = |So,a1/ (G2 T M2 T2))

All these are properties that characterize the spacetime around neutron stars as well as the
stars themselves.

6G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014)].
K. Yagi, K. Kyutoku, G. P., N. Yunes, and T.A. Apostolatos, Phys.Rev. D 89 124013 (2014).
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There is a variety of phenomena that take place in the spacetime around neutron stars. A
class of these that can be related to orbits in an accretion disc (and geodesic motion) are
the quasi-periodic oscillations (QPOs) of the spectrum” of the disc,

Astrophysical phenomena around neutron stars (and spacetime) 15 /28

Mechanisms for producing QPOs® from orbital motion Typical X-Ray spectrum®

T T T TTTIIT T T TTTTIT T T TTTTIT T T TTTTIT T T TTTTTI J

orbital

periastron
frequency

F X precession

10

Unknown frequency Monradial g-mode
accretion instability oscillations

Keplerian frequency
reflecting clumps

Special frequency
boundary layer hot spots

—4

Frequency x Power [(rms/mean)?/Hz]
10 -3
i

-Hl 1 IIIIIII| 1 IIIIIII| 1 IIIIIII| 1 IIIIIII| 1111

Keplerian frequency 1.
orbiting hot spots 0.01 0.1 1 10 100 10060

Keplerian frequency

obscuring clumps Keplerian frequency

disk oscillations Frequency (Hz)

Apart from orbiting hot spots and oscillations on the disc, one could also have precessing
rings or misaligned precessing discs, which either themselves have a modulated emission or
they are eclipsing the emission from the central object.

"Stella & Vietri, 1998, ApJ, 492, L509.
8F.K. Lamb, Advances in Space Research, 8 (1988) 421.
9Boutloukos et al., 2006, Apd, 653, 1435-1444.
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An analytic spacetime would be very useful to study geodesics.

Spacetime around neutron stars: An analytic spacetime

The vacuum region of a stationary and axially symmetric space-time can be described by

the Papapetrou line element!,

ds? = — [ (dt — wdp)® + [~ [*7 (dp? + d2?) + p?dg?),

where f, w, and ~ are functions of the Weyl-Papapetrou coordinates (p, z).

By introducing the complex potential £(p,z) = f(p,z) + i (p, z) 1, the Einstein field equa-
tions take the form,

(Re(£))V2E = VE - VE,
where, f = £%, and v is defined by, V.U = egpeq ELVEY.

An algorithm for generating solutions of the Ernst equation was developed by Sibgatullin
and Manko 12. A solution is constructed from a choice of the Ernst potential along the
axis of symmetry in the form of a rational function

P(z)
R(z)’
where P(z), R(z) are polynomials of z of order n with complex coefficients in general.

E(p=0,z) =e(z) =

10A. Papapetrou, Ann. Phys., 12, 309 (1953).
H1F.J. Ernst, Phys. Rev., 167, 1175 (1968); Phys. Rev., 168, 1415 (1968).
12y/.S. Manko, N.R. Sibgatullin, Class. Quantum Grav., 10, 1383 (1993).
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Two-Soliton spacetime: This is a 4-parameter analytic spacetime which can be produced

Spacetime around neutron stars: An analytic spacetime 17 /28

if one chooses the Ernst potential on the axis to have the form:

o(2) = (z— M —ia)(z+ 1) — k
(z4+ M —ia)(z+1ib) — k

The parameters a, b, k of the spacetime can be related to the first non-zero multipole
moments through the equations,

J=aM, M= —(a’—k)M, 532—[a3—(2a—b)k]M,
where M is the mass.

One can use the multipole moments M, J, M>, and S3 of a numerically calculated neutron
star and produce an analytic two-soliton spacetime that reproduces very accurately the
numerically calculated spacetime around the neutron star, as well as the relevant properties
of the geodesics in that spacetime, such as the various orbital and precession frequencies,
the position of the ISCO and the energetics of the orbits 13,

13G. P., and T. A. Apostolatos, MNRAS, 429, 3007 (2013); Other analytic spacetimes have
been proposed in the past, see: E. Berti, and N. Stergioulas, MNRAS, 350, 1416 (2004)
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respect to time translations and with respect to rotations around an axis of symmetry,
which is associated to the axis of rotation of the compact object.

Geodesics and relativistic precession frequencies 18 /28

Particle motion in a spacetime with symmetries:
The symmetry in time translations implies the existence of a timelike Killing vector &% and

the symmetry in rotations implies the existence of a spacelike Killing vector n“.

The four-momentum of a particle is defined as pa = mu% = m‘ila; .

Symmetry in time translations is associated to an integral of motion, energy E

a dt do
E = —p&" = —p = —gttpt — gt¢p¢ = m\| —gu—— — Gt¢p—— (5)
dr dr

Symmetry in rotations is again associated to an integral of motion, angular momentum L

dt do
L = pan® = py = gisp' + goep” = m <Qt¢d T Goo ) ©)
From the measure of the four-momentum, p®*p, = —m?, we have the equation,

d d d d dz\ 2
—1 = gu (ﬁ) + 2044 (dT) (di) + 9o (df) + 9pp (dp> + gz (ﬁ) (7)
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Geodesics and relativistic precession frequencies 19 /28 i

Circular equatorial orbits:

If we define the angular velocity, Q2 = dt, for the circular and equatorial orbits equation (7)
defines the redshift factor (have you seen “Interstellar”?),

dr\”°
(E> = —gut — 291692 — gppS2°, (8)

and the energy and the angular momentum for the circular orbits take the form,

—git — GipS2

- Q
V=1 — 2016 — s L=L/m= o T 90 (9)
—gtt — 291652 — oo

=FE/m= 2
\/_gtt — 2975(;59 - g¢¢Q

From the conditions, ‘fé’ = 0, th = 0 and dz — 0, and the equations of motion obtained

assuming the Lagrangian, L = anb:c b, the angular velocity can be calculated to be,

_ 2 _
Q — gt¢,p + \/(gt¢7p) gttvpg(b¢7p (10)
9og.p

This is the orbital frequency of a particle in a circular orbit on the equatorial plane.
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More general orbits:

Geodesics and relativistic precession frequencies 20 /28

Equation (7) can take a more general form in terms of the constants of motion,

dp 2 dz\° E?gsp + 2ELgy, + L?gu
—Ypp — gzz =1- — Veffs (11)
2
dr dr (9t¢)? — GttGes

With equation (11) we can study the general properties of the motion of a particle from
the properties of the effective potential.

Small perturbations from circular equatorial orbits:

If we assume small deviations from the circular equatorial orbits of the form, p = p. 4 dp
and z = 6z, then we obtain the perturbed form of (11),

d(6p)\* d(62)\°  102Vip . o 10%Vis, o o
—goo | =) — gz =z 5p)2 + ——41(52)2,
gpp< dr ) I dr 2 0p? S 2 0z (92)

This equation describes two harmonic oscillators with frequencies,
o _ g0V o _ 97OV
K- = =
P 2 8/02

B 2 022 |
The differences of these frequencies (corrected with the redshift factor (8)) from the

(& &

orbital frequency, 2, = 2 — k., define the precession frequencies.
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“Scaled” Frequencies for the Kerr spacetime:

Kerr frequencies 21 /28

2997904/1/7°
1+5(1/r)*?

Scaled Radial frequency: Mf{p = M (1 _ 6(1/r) + 8j(1/fr')3/2 _ 3j2(1/"r)2) 1/2
Mre = MQ (1 - 45(1/r)¥2 + 377(1/r)?) 2

Scaled Orbital frequency: M2 =

Orbital, Mvg, and precession, Mv,, ‘‘scaled frequencies” for Kerr black holes for various j (0.01-0.91).

Kerr black hole Kerr black hole

1000 ¢ 1000 ¢

10 ¢ 10 ¢

(kmxHz)
(kmxHz)

, Mxv,

Mxv

0.001 ¢ E ! 0.001 ¢

Mxv

0.00001 ¢ E 0.00001 ¢

5 10 50 100 500 1000 1 10 100 1000 10000
Rcirc/M Mxv, (kmxHz)

, , Plots of the periastron and the
Plots of the orbital, periastron and ¥ - .
N . scaled frequencies” against the
scaled frequencies’ .

orbital “scaled frequency”.

The general effect of rotation is to increase the observed frequencies (and reduce the ISCO
radius; for 7 ~ 1 the horizon and ISCO radii tend to 1M).
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Frequencies for the spacetime around neutron stars:

Neutron star frequencies

— st \/(gtw)2 —9tt.099¢.0
Gos.p

Orbital frequency: Q2 =
Radial frequency:

' 1/2
Kp = (—97 {(gtt + 91¢$2)? (%) o 2(gtt + 910S2) (gtg + 9652) (%) op + (910 + 9062)° (%) ,pp}>
Vertical frequency:

i 1/2
Ky = <_g2 {(gtt + 91¢$2)? (%),zz — 2(gut + 9:652) (9o + 9p652) (%),zz + (910 + 950$2)° <%)Zz}>

Orbital, Mv,, and precession, Mv,, “scaled frequencies’ for neutron star models (132)
constructed with the APR EOS for various j up to the Kepler limit (0-0.7) and masses
from 1M, up to 2.5Mg.

1000 ¢ 1000 ¢

(kmxHz)

10 ¢ 10 b

Mxv (kmxHz)
Mxv, ,Mxv,

0.001 0.001

50 100 500 1000 5000
Rcirc/M Mxv, (kmxHz)

Plots of the periastron and the nodal
precession frequencies against the orbital
frequency.

Plots of the orbital, periastron and nodal
precession frequencies.
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Neutron star frequencies 23 /28

Frequencies for the spacetime around neutron stars: The effect of rotation

Orbital frequency, periastron precession frequency and :
Orbital, Mvg, and precession, Mv,, “scaled frequencies” for neutron star models constructed
with the APR EOS for various j up to the Kepler limit(0-0.7) and the same central density.

pe = 6.31x10%, Me{0.924Mo,1.13Mo}, je{0.,0.66)}

pe = 7.36x10™, Me{l.2Mo,1.5Mo}, je{0.,0.668}

2.5 1000
1000 ¢ . g /"
_ 057216 T8 20 T
N
% 10 ¢
IS F 0.001
=
S
X
z 1000
0.1
O’Ool [ | . . P R | . N
5 10 50 100 500 1000 o
Rcirc/M 5 10 20RCHC/M 50 100 200
Plots of the orbital, periastron and fre- Same plots for p. = 7.3 x

quencies for different rotations for models with p. = 6.3 X 10'%g/em3 (upper) and p. =
101%g/em®. Rotation in the range, f ~ 0.3 — 0.9kHz. 10%g/cm? (lower).
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Frequencies for the spacetime around neutron stars: Effect of higher moments

Orbital frequency, periastron precession frequency and :
Orbital, Mvg, and precession, Mv,, “scaled frequencies” for neutron star models constructed

with the APR EOS for approximately the same 5 = 0.39 and different higher moments.

1000 ¢

""""" - \ 1000 E

121416 18 20

o = N
ok NG

10 ¢
10

(kmxHz)
(kmxHz)

Mxv
Mxwv

0.001

5 10 50 100 500 1000 0.001 . . . . . .
Rcirc/M 5 10 20 50 100 200
Rcirc/M

M 0.986 1.133 1.288 1.447 1.604 1.755 1.896 2.021 2.368
7 0.3837 0.382 0.381 0.3809 0.3817 0.3834 0.3861 0.3894 0.4069
q -1.427 -1.132 -0.905 -0.7334 -0.6044 -0.508 -0.4362 -0.3836 -0.2781
52 -0.1472 -0.1459 -0.1452 -0.1451 -0.1457 -0.147 -0.149 -0.1516 -0.1655
f ~ 0.5 — 1.2kHz with the rotation frequency increasing with the increasing mass

The general effect of a quadrupole being higher than that of Kerr is to make k., higher
than €2 in the region near the ISCO. The size of that region increases with gq.



The University of

Nottingham

I

Frequencies for the spacetime around neutron stars: Effect of the EOS 14

Neutron star frequencies 25 /28 R

Plots of the precession frequencies against the orbital frequency for 3 NS sequences of various rotations for
AU, FPS and L EOS. The models of the sequences have masses equal to 1.4M, the mass of the maximum

mass non-rotating model that the EOS admits and the mass of a hyper-massive model without non-rotating
limit.
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The general effect of the
EOS is that stiffer EOSs
produce higher quadrupole.
Kerr black holes behave like
a super-soft star.

Vp,Vz (Hz)

14G.P., 2012 MNRAS, 422, 2581-25809.
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The characteristics of the orbits in a spacetime can be associated to its multipole moments.

Neutron star properties from frequencies. 26 /28

The precession frequencies are related to the multipole moments,

Q M 27 2 21M
_p:3v2_4%v3+(§ 3 2)1}4—1031 5_|_(__251 B 2>,U6_|_m

Q T 2M3 M2 2 M4 203
QZ . Sl 3 3M> 4 S% Mo 6 SlMQ 53 7
o ‘w2 Tt +( ae ) T\ M s O )

where v = (MQ)1/3 and S; = J.

If specific QPOs are associated to the orbital frequencies, they could then be used to
measure the multipole moments of the central object!® and from the moments, probe its

structure.

15G.P., 2012 MNRAS, 422, 2581-25809.
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Neutron star properties from frequencies: Identifying the EoS 27 /28

An application example: A “measurement” of the first 3 moments (M, J, Q)
could select an EoS® out of the realistic EOSs candidates.

3 f/j (kHz)

16G.P. and T. A. Apostolatos, Phys.Rev.Lett. 112 121101 (2014)
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