Low-Latency Search for Gravitational Waves from Compact Binary Coalescence

Outline

- Who are we?
- Why low-latency search
- Method and result
- Conclusion and future work

THE UNIVERSITY OF WESTERN AUSTRALIA

AIGO – a Detector in Southern Hemisphere

- UWA built NIOBE one of the first cryogenic bar detectors in the world
- Proposed AIGO site: Gingin, WA, 100 km north of Perth, same site as 80 m prototype
- Significant implication to source sky direction localization
 - Roughly antipodal to LIGO Livingston
 - Add the longest baseline to the network
 - Break plane degeneracy of detectors in northern hemisphere

Early Detection of Compact Binary Coalescences

- to detect CBC signals in real-time, possibly at or before merger
- desktop search using GPUs ?

Notations:

CBC = compact binary coalescence, NS-NS/BH binary coalescence

early detection = detection in real time, with no delay, possibly before or around the time of binary merger

latency = event trigger time – merger time

Triggered Search: to establish CBC-sGRB connection

- NS-NS merger and onset of short- GRB possibly within < tens of milliseconds!

Prompt (Nakar 2006) emission (Dale 2003) X-ray "tail" Fast decay 1-5 days 10-30 days Non-Relativistic Reverse Shock X-ray flare Forward Shock optical optical afterglow 50-100 days prompt? ~1000 s <1s? Host Galaxy **→**<

10³

100

1

10

10⁴

10⁵

10⁶

Sufficient Event Rate for Early Detection

- 1 inspiral event/ yr can be detected 100 s before merger
- 10 events/yr can be detected 10 s before merger
- Challenging to pinpoint source direction
 - 40/yr rate: ~10 sq-deg at merger
 - 10/yr rate: 4 sq-deg at merger
 - 1/yr rate (the best)
 - 100 sq-deg 5 s before merger
 - <~1 sq-degs at merger
 - Larger detector network can help
 - 50 sq-deg LHVK
 - 10 sq-deg LHVIK

(Chu, Q. et al 2012)

On-going Low-latency CBC Search Pipelines

- Frequency domain method
 - Two existing pipelines:
 - MBTA
 - LLOID
 - Technique
 - (Overlapping) FFT method
 - Matched filtering: correlate data with known signal
 - Multi-band multi-rate approach to process less data
 - Template interpolation to reduce number of templates

Time-domain extremely-low latency CBC filtering

- UWA
 - Linqing Wen, David Blair + 1 staff, 3 PhDs, 1 MS
- Collaboration:
 - SPIIR method :
 - Chad Hanna (Perimeter), Kipp Cannon (CITA), Drew Keppel (AEI), Yanbei Chen, Jing Luan, Leo Singer(Caltech)
 - GPU acceleration
 - Zhihui Du, Yuan Liu (Tsinghua U., China)
 - Jian Tao (Louisiana State U.)

SPIIR: Summed Parallel Infinite Impulse Response (IIR) Filters

Coefficients calculated for each template at each segment

- Equivalent to matched filter data with a constant-f sinusoid of exponentially rising amplitude (+cutoff)

LIGO-VIRGO aLIGO Engineering Runs

with simulated online detector data + blind signal injection

- ER2 (July-Aug 2012)
 - low latency data transfer
 - ~4s
 - all three low latency pipelines participated
 - all with latency ~ 30-40 s
 - SPIIR
 - latency (30 s) limited by the rest of pipeline
 - Successfully not retrieve signals that were not there ©

GPU-Accelerated Data Processing in Search for GWs

- Tflop supercomputing at desktop!

AUD \$400/each

- First application to GW pipeline: x 16 (Chung et al. 2010)
- A community has formed
 - Tools, interface, libraries, template generation
 - Caltech, AEI et al installed the GPU cluster for LIGO data analysis
 - 96 -node GPU cluster @ UWA

C-GPU hybrid pipeline developed and tested on "online" data

	U
Method	Overall Speedup
Straightforward	5.7
Parallel Sum Reduction	14
Reducing Block Level Synchronization	21
Avoid Bank Conflicts	24
Texture Memory	38
Tuning Resource Usage	47

- Used all possible GPU technique one can think of
- x 50 speed-up achieved for search engine compared to single-core CPU
 - Liu, Y. MS thesis 2013
 - Liu, Y. et al 2012 CQG
- Other bottleneck in the pipeline to be solved

Conclusion

- There are motivations to conduct real-time low latency search
 - Triggered search to allow EM follow-up
 - Some NS-NS GW events can be detected 10s' to 100s of seconds before merger events
 - Leave room for EM telescopes to be prepared for prompt follow-ups
 - Early localization problematic but can be helped with larger network
- We have developed an online time-domain search pipeline with 1s latency for the search engine
 - Tested on S5 data with detection efficiency similar to optimal search
 - Successfully run on aLIGO's Engineering Runs
 - latency of 30-40s limited by other part of the pipeline
- Hybrid GPU-accelerated pipeline working
- New template interpolation method (Luan J. et al 2012)
- Possible to detect sGRB engine in action for advanced detectors