

Dark Matter Distribution Around Massive Black Holes: A Fully General Relativistic Approach

Laleh Sadeghian, Francesc Ferrer, Clifford M. Will

Washington University in St. Louis University of Florida

7th Gulf Coast Gravity Meeting University of Mississippi, MS April 2013

Question

What is the effect of the massive black hole on the dark matter distribution at the galactic centre?

Why do we care?

- If BH formation increases the DM density locally, it also boosts the number of secondary particles and improves the prospects for <u>indirect DM detection</u>.
- If formation of a rotating BH makes the DM distribution non-spherical, then its gravity might affect the **precession of stars' orbital planes** near SgrA*.

Assumption:

The growth of the massive black hole is adiabatic (slow).

Assumption:

The growth of the massive black hole is adiabatic (slow).

Newtonian Analysis

 $\rho(\mathbf{r}) = \int f(\mathbf{r}, \mathbf{v}) d^3 \mathbf{v} \qquad \text{Change of variables: } \mathbf{v} \rightarrow E, L, L_z$ $\rho(r) = \frac{4\pi}{2} \int^{E_{\text{max}}} dE \int^{L_{\text{max}}} L dL - \frac{f(E, L)}{2}$

$$\rho(r) = \frac{\pi}{r^2} \int_{\Phi(r)} dE \int_0 LdL \frac{f(L,L)}{\sqrt{2E - 2\Phi(r) - L^2/r^2}}$$

Adiabatic Invariants: $\begin{cases} I \\ I \end{cases}$

$$I_{r}(E,L) \equiv \oint v_{r} dr$$

$$I_{\theta}(L,L_{z}) \equiv \oint v_{\theta} d\theta \qquad \longrightarrow \qquad L \text{ and } L_{z} \text{ remain constant.}$$

$$I_{\phi}(L_{z}) \equiv \oint v_{\phi} d\phi$$

$$\underbrace{I_{r,i}(E_i,L)}_{\text{DM}} = \underbrace{I_{r,f}(E_f,L)}_{\text{DM+BH}} \implies E_i = E_i(E_f,L)$$

$$f_f(E_f, L) = f_i(E_i(E_f, L), L)$$

<u>Relativistic Analysis</u>

Mass current:
$$J^{\mu}(x) \equiv \int f^{(4)}(p) \frac{p^{\mu}}{\mu} \sqrt{-g} d^4p$$

$$J^{\mu} \equiv \rho u^{\mu}$$

$$u_{\mu} u^{\mu} = -1 \qquad \longrightarrow \qquad \rho = (-J_{\mu} J^{\mu})^{1/2}$$

$$= \sqrt{-g_{00}} J^{0} \quad \text{if} \quad J^{i} = 0 \text{ (in spherical symmetry)}$$

Change of variables:
$$p^0, p^r, p^{\theta}, p^{\phi} \rightarrow \underbrace{\mathcal{E}, C, L_z, \mu}_{t_z, t_z, t_z}$$

constants of motion

Spherical symmetry limit: $C = L^2$

Kerr metric in Boyer-Lindquist coords:

$$ds^{2} = -\left(1 - \frac{2Gmr}{\Sigma^{2}}\right)dt^{2} + \frac{\Sigma^{2}}{\Delta}dr^{2} + \Sigma^{2}d\theta^{2} - \frac{4Gmra}{\Sigma^{2}}\sin^{2}\theta dtd\phi \qquad \qquad a \equiv J/m \\ \sum^{2} \equiv r^{2} + a^{2}\cos^{2}\theta \\ + \left(r^{2} + a^{2} + \frac{2Gmra^{2}\sin^{2}\theta}{\Sigma^{2}}\right)\sin^{2}\theta d\phi^{2} \qquad \qquad \Delta \equiv r^{2} + a^{2} - 2Gmr$$

$$\mathcal{E} \equiv -u_0 = -g_{00}u^0 - g_{0\phi}u^{\phi}$$

$$L_z \equiv u_{\phi} = g_{0\phi}u^0 + g_{\phi\phi}u^{\phi}$$

$$C \equiv \Sigma^4 (u^{\theta})^2 + \sin^{-2}\theta L_z^2 + a^2\cos^2\theta(1 - \mathcal{E}^2)$$

$$\mu^2 = -g_{\mu\nu}p^{\mu}p^{\nu}$$

$$\sqrt{-g} d^4p = \frac{2\mu^3}{\Sigma^2 \Delta |u_r| |u^{\theta}| \sin\theta} d\mathcal{E} dC dL_z d\mu$$

Schwarzschild BH:
$$\rho(r) = -\frac{4}{r^4\sqrt{1-2Gm/r}\sin\theta}\int f(\mathcal{E},L)\frac{\mathcal{E}}{u^r u^\theta}\mathrm{d}\mathcal{E}\mathrm{d}L^2\mathrm{d}L_z$$

$$u^{\theta} = r^{-2}\sqrt{L^2 - \frac{L_z^2}{\sin^2 \theta}}$$
$$u^r = \sqrt{V(r)}$$

$$V(r) = \mathcal{E}^2 - (1 - \frac{2m}{r})(1 + \frac{L^2}{r^2})$$

$$\rho(r) = -\frac{4}{r^4\sqrt{1 - 2Gm/r}\sin\theta} \int f(\mathcal{E}, L) \frac{\mathcal{E}}{u^r u^\theta} \mathrm{d}\mathcal{E}\mathrm{d}L^2 \mathrm{d}L_z$$

$$u^{\theta} = r^{-2} \sqrt{L^2 - \frac{L_z^2}{\sin^2 \theta}} \qquad \rightsquigarrow \qquad L_{z,min}, \quad L_{z,max}$$
$$u^r = \sqrt{V(r)}$$

$$V(r) = \mathcal{E}^2 - (1 - \frac{2m}{r})(1 + \frac{L^2}{r^2})$$

$$\rho(r) = -\frac{4}{r^4\sqrt{1-2Gm/r}\sin\theta}\int f(\mathcal{E},L)\frac{\mathcal{E}}{u^r u^\theta}\mathrm{d}\mathcal{E}\mathrm{d}L^2\mathrm{d}L_z$$

$$u^{\theta} = r^{-2} \sqrt{L^2 - \frac{L_z^2}{\sin^2 \theta}}$$

$$\rightsquigarrow \quad L_{z,min}, \quad L_{z,max}$$

 $u^r = \sqrt{V(r)}$

$$\leadsto \quad L^2_{max}$$

$$V(r) = \mathcal{E}^2 - (1 - \frac{2m}{r})(1 + \frac{L^2}{r^2})$$

7

$$\rho(r) = -\frac{4}{r^4\sqrt{1 - 2Gm/r}\sin\theta} \int f(\mathcal{E}, L) \frac{\mathcal{E}}{u^r u^\theta} \mathrm{d}\mathcal{E}\mathrm{d}L^2 \mathrm{d}L_z$$

$$u^{\theta} = r^{-2}\sqrt{L^2 - \frac{L_z^2}{\sin^2\theta}}$$

$$\rightsquigarrow \quad L_{z,min}, \quad L_{z,max}$$

 $u^r = \sqrt{V(r)}$

$$\sim L^2_{max}$$

$$V(r) = \mathcal{E}^2 - (1 - \frac{2m}{r})(1 + \frac{L^2}{r^2})$$

$$\rightsquigarrow L^2_{max}$$

$$\rho(r) = -\frac{4}{r^4\sqrt{1 - 2Gm/r}\sin\theta} \int f(\mathcal{E}, L) \frac{\mathcal{E}}{u^r u^\theta} \mathrm{d}\mathcal{E}\mathrm{d}L^2 \mathrm{d}L_z$$

$$u^{\theta} = r^{-2}\sqrt{L^2 - \frac{L_z^2}{\sin^2\theta}}$$

$$\rightsquigarrow \quad L_{z,min}, \quad L_{z,max}$$

 $u^r = \sqrt{V(r)}$

$$L_{max}^2$$

 $\sim \rightarrow$

$$V(r) = \mathcal{E}^{2} - (1 - \frac{2m}{r})(1 + \frac{L^{2}}{r^{2}})$$

$$V(r) = 0, \ \frac{dV}{dr} = 0$$

$$V(r) = 0$$

$$\rho(r) = -\frac{4}{r^4\sqrt{1-2Gm/r}\sin\theta}\int f(\mathcal{E},L)\frac{\mathcal{E}}{u^r u^\theta}\mathrm{d}\mathcal{E}\mathrm{d}L^2\mathrm{d}L_z$$

$$u^{\theta} = r^{-2}\sqrt{L^2 - \frac{L_z^2}{\sin^2 \theta}}$$

$$\leftrightarrow$$
 $L_{z,min}, L_{z,max}$

 $u^r = \sqrt{V(r)}$

$$\rightsquigarrow \quad L^2_{max}$$

 \rightsquigarrow

$$V(r) = \mathcal{E}^{2} - (1 - \frac{2m}{r})(1 + \frac{L^{2}}{r^{2}})$$

$$V(r) = 0, \ \frac{dV}{dr} = 0$$

$$V(r) = 0$$

$$\sum_{\substack{r \in \mathbb{Z}^{2} \\ m \in \mathbb{Z}^{2} \\$$

constant distribution function:

$$f(\mathcal{E}, L) = f_0 = \text{const}$$

Hernquist profile density: $ho_i(r) =
ho_H(r) = rac{
ho_0}{(r/a)(1+r/a)^3}$

If DM particles self-annihilate:

$$\rho(r) = \frac{\rho_{\rm core} \rho_f(r)}{\rho_{\rm core} + \rho_f(r)}$$

 $m_0 = \begin{cases} 10^3 \ M_{\odot} &, \quad q = 1 \quad \text{no self-annihilation} \\ 1 \ M_{\odot} &, \quad q = 3 \quad \text{with self-annihilation} \end{cases}, \quad r_0 = r_{\text{Sch}} \times 10^4 = 10^4 \times (2m)$

For S2 star (a = 4.6 mpc, e = 0.88, P = 15.5 years): $\Delta \omega_{\text{GR}} = 44 \text{ arc sec/yr}$ $\Delta \omega_{\text{DM}} = 7.5 \text{ arc sec/yr}$, (no annihilation)

summary:

- We have developed a fully relativistic approach for adiabatic growth of BH in DM distribution.
- Significant differences with results of G&S (1999) have been found: In particular ρ vanishes at r=4m not 8m, and it is substantially larger at small r than what G&S found (The profile is more cuspy).
- The pericenter precession caused by the DM spike is potentially detectable if DM does not self annihilate.

Future work:

- How will the enhancement of the DM density due to relativistic considerations boost the prospect for the indirect detection of DM?
- Considering a rotating BH: How non-spherical does the DM distribution become?

Dark Matter Distribution Around Massive Black Holes: A Fully General Relativistic Approach

Laleh Sadeghian, Francesc Ferrer, Clifford M. Will

Washington University in St. Louis University of Florida

7th Gulf Coast Gravity Meeting University of Mississippi, MS April 2013

