
Scalar wigs and galactic dark matter halos

Miguel Megevand
LSU & UNAM

in colaboration with:

M Alcubierre, J Barranco, A Bernal, J C Degollado,
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Introduction

• Scalar fields have been proposed as candidates to describe the dark matter
component of the universe1, as opposed to other more accepted candidates, like
WIMPs.

• Since super-massive black holes seem to exist at the center of most galaxies, scalar
field configurations can be viable as dark matter halos only if they can “survive” in
the presence of a central black hole.

• This idea may seem to be in conflict with the no-hair theorems. However, a
scalar field may only look like hair for practical reasons, without violating these
theorems. We will see that some configurations can last around the black hole for
cosmological timescales. We call them “scalar wigs.”

1Turner, 1983; Peebles, 2000; Matos et al, 2000; Hu et al, 2000; Arbey, 2001; Harko et al, 2011; Briscese, 2011; etc.
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Scalar field on a Schwarzschild background

We solve for a massive Klein-Gordon scalar field with mass parameter µ on a
Schwarzschild space-time:

∇α∇αφ− µ2φ = 0 .

ds2 = −

(

1−
2M

r

)

dt2 +

(

1−
2M

r

)

−1

dr2 + r2 (dθ2 + sin2 θ dϕ2) ,

An expansion in spherical harmonics of the form

φ(t, r, θ, ϕ) =
1

r

∑

ℓ,m

ψℓm(t, r)Y ℓm(θ, ϕ) ,

gives

{

(

1−
2M

r

)

−1
∂2

∂t2
−
∂

∂r

[(

1−
2M

r

)

∂

∂r

]

+
ℓ(ℓ+ 1)

r2
+

2M

r3
+ µ2

}

ψℓm(t, r) = 0 .

GCGM7 – Oxford, Apr 19, 2013 M. Megevand – LSU



Separation of variables

We use the ansatz: bla bla bla bla

ψℓm(t, r) = eiωℓmt uℓm(r) ,

and obtain an eigenvalue ODE with eigenvalues ω2,
{

−

(

1 −

2M

r

)

d

dr

[(
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r

)

d

dr

]

+

(
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r

)(

ℓ(ℓ + 1)

r2
+

2M

r3
+ µ

2
)}

u(r) = ω
2
u(r) .

Changing to tortoise coordinates,

r∗ := r + 2M ln(r/2M − 1) ,

we get a Schrödinger-like equation,

[

−
d2

dr∗2
+ Veff(r

∗)

]

u(r∗) = ω2u(r∗) ,

with effective potential

Veff(r
∗) =

(

1−
2M

r(r∗)

)(

ℓ(ℓ+ 1)

r(r∗)2
+

2M

r(r∗)3
+ µ2

)

.
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Effective potentials
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• Continuous eigenvalue spectrum ω2, no bound states.

• Discrete spectrum of resonant modes ω2
n.
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Resonant modes as initial data

• Initial energy density distributions, ρE, corresponding to different resonant modes
n and mass parameters µ:
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(we are back in Schwarzschild coordinates)
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Numerical evolution

• We evolve numerically the original PDE using initial data as shown in the previous
slide:

{
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[(
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+
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}

ψℓm(t, r) = 0 .
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Energy decay
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• The energy decays as E(t) = E0 exp (−k t)

• The half-life time is t1/2 = ln(2)/k

• For very small µ the numerical evolutions have problems, but in those cases one
can use an analytical approximation (Detweiler, 1980) to calculate t1/2.
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Regions in (M,µ) where t1/2 > 1010 years
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primordial black holes

galactic center black holes

We see that even the less lasting mode (l = 0, n = 1) has a half-life larger than
the age of the universe for values of µ and M that are consistent with scalar field
dark matter and black holes at galactic centers, respectively.
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Mode size

• To get an idea of the “size” of the resonant modes, we calculate the position rmin

of the effective potential’s local minimum, which actually gives a lower bound for
the scalar field spatial extension.

• This is consistent with typical galaxy sizes. (note that the spatial extention of the
modes may be much larger than this lower bound).
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Evolution of more general initial data
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Evolution of more general initial data

Fourier transform in time of ψ(r, t):
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• Generic initial scalar field distributions evolve, after some time, as a combination
of the resonant modes.
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Combined modes oscillations

• We saw that the density profile, ρnℓ, of each resonant mode φnℓ is quasi static.

• However, a combination of different modes will give rise to an oscillating density
profile (due to the non-linear dependence)

• For example, combining two modes with frequencies ω1 and ω2, the energy density
will show oscillations with frequency ωr = |ω1 − ω2|.

• If galactic halos are actually described as scalar fields, these oscillations might be
observable, for example, by observing changes in rotation curves (maybe over a
few years) with frequency ωr.
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Self gravitating scalar field (work in progress)

0 20000 40000 60000 80000 1e+05
t/M

0.01

0.1

1

M
sf

 / 
M

sf
 0

mode 1
test field
0.10M
0.20M
0.40M

Evolutions with Msf0 = 0.01MBH, 0.10MBH, 0.20MBH and 0.40MBH.
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Self gravitating scalar field (work in progress)
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Evolutions with Msf0 = 0.01MBH, 0.10MBH, 0.20MBH and 0.40MBH.
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Analytical results for small µ (work in progress)

• At late times, the scalar field around the black hole behaves as a combination of
the resonant modes.

• It is possible to calculate the modes amplitudes at late times for any given initial
configuration in the small µ approximation.

• We can then determine a priori “how much” of the initial state “remains” at long
times given arbitrary initial data (without the need of numerical evolutions).
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Conclusions

• Resonant scalar field modes last for cosmological timescales when the parameters
(M and µ) are within accepted values for super-massive black holes and scalar
field dark matter.

• The “size” of these modes is also compatible with what is believed to be the size
of dark matter halos.

• Generic scalar field distributions evolve at late times as a combination of resonant
modes.

• Characteristic frequencies of combined resonant modes might be observable.

• Preliminary self gravitating evolutions are showing similar results.
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