Characteristics of Kantowski Sachs space time in Loop Quantum Cosmology

Anton Joe

Louisiana State University

April 19, 2013

Work done with Parampreet Singh

We acknowledge NSF for financial support
Homogenous and anisotropic cosmological model with spatial topology $R \times S^2$

Metric: $ds^2 = -N(t)^2 dt^2 + g_{xx}(t) dx^2 + g_{\Omega \Omega}(t) (d\theta^2 + \sin^2 \theta d\phi^2)$

Interior of Schwarzschild black hole can be treated as vacuum Kantowski Sachs space time for which,

$$N(t)^2 = \left(\frac{2m}{t} - 1\right)^{-1}, \quad g_{xx} = \left(\frac{2m}{t} - 1\right), \quad g_{\Omega \Omega} = t^2.$$ \hfill (1)

Loop Quantum gravity is a non-perturbative canonical quantization of gravity. It’s cosmological offshoot is loop quantum cosmology.

Singularity at the center of Schwarzschild black hole resolved in effective Loop Quantum Cosmological (LQC) model of Kantowski Sachs space time\(^1\).

The LQC description of Kantowski Sachs (KS) is given in terms of triads, which are related to metric coefficients as,

\[p_b = L \sqrt{g_{xx} g_{\Omega\Omega}}, \quad p_c = g_{\Omega\Omega} \]

and their corresponding conjugate variables \(b \) and \(c \). Here \(L \) is the length of the fiducial cell. Volume of the fiducial cell \(V = 4\pi p_b \sqrt{p_c} \).

For classical Schwarzschild BH interior:
- Horizon: \(p_b = 0, \quad p_c = 4m^2 \),
- Center of BH: \(p_b = 0, \quad p_c = 0 \).

The Hamiltonian in these variables is

\[
H = \frac{-N}{2G\gamma^2} \left(2bc \sqrt{p_c} + \left(b^2 + \gamma^2 \right) \frac{p_b}{\sqrt{p_c}} \right) + N4\pi p_b \sqrt{p_c} \rho_m,
\]
In the effective description of LQC, KS Hamiltonian with matter can be written as

\[H = -\frac{N}{2G}\gamma^2 \left(2 \sin \frac{b\delta_b}{\delta_c} \sin \frac{c\delta_c}{\delta_c} \sqrt{p_c} + \left(\frac{\sin^2 \frac{b\delta_b}{\delta_c}}{\delta_b^2} + \gamma^2 \right) \frac{p_b}{\sqrt{p_c}} \right) + N4\pi p_b \sqrt{p_c} \rho_m, \]

where,

\[\delta_b = \sqrt{\frac{\Delta}{p_c}}, \quad \delta_c = \frac{\sqrt{\Delta p_c}}{p_b} \]

with \(\gamma = 0.2375 \) and \(\Delta = 4\sqrt{3\pi\gamma l_p^2} \).

In Loop Quantum Gravity, the Hamiltonian is constrained to be zero, which gives

\[\rho_m = \frac{1}{8\pi G\gamma^2\Delta} \left(2 \sin b\delta_b \sin c\delta_c + \sin^2 b\delta_b + \frac{\gamma^2\Delta}{p_c} \right) \]

\[\Rightarrow |\rho_m| \leq \frac{3}{8\pi G\gamma^2\Delta} + \frac{1}{8\pi Gp_c} \]

\(\rho_m \) is not bounded as \(p_c \to 0 \), indicating the need for inverse triad correction.
Inverse triad correction for Kantowski Sachs space time

\[
\frac{1}{\sqrt{p_c}} = \frac{2|p_b|}{\gamma \sqrt{\Delta l_p^2}} \left(\sqrt{\frac{2p_b \sqrt{p_c}}{\gamma \sqrt{\Delta l_p^2}}} + 1 \right) - \sqrt{\frac{2p_b \sqrt{p_c}}{\gamma \sqrt{\Delta l_p^2}} - 1} \right)^2.
\]

(8)

The inverse triad correction substitutes \(\frac{1}{\sqrt{p_c}} \) with a function that does not blow up as \(p_c \) or \(p_b \) tend to zero.
Energy density

With the inverse triad correction, the bound on energy density becomes,

$$|\rho_m| \leq \frac{3}{8\pi G \gamma^2 \Delta} + \frac{p_b}{4\pi G \gamma \sqrt{\Delta} p_c l_P^2} \left(\sqrt{\left| \frac{2p_b \sqrt{p_c}}{\gamma \sqrt{\Delta} l_P^2} + 1 \right|} - \sqrt{\left| \frac{2p_b \sqrt{p_c}}{\gamma \sqrt{\Delta} l_P^2} - 1 \right|} \right)^2. \quad (9)$$

The first term is same as the bound on ρ_m in isotropic and Bianchi I cosmologies. The second term remains bounded except when $p_b \to \infty$ and $p_c \to 0$ simultaneously.
Convergence or divergence of geodesic congruences can be understood by looking at the expansion scalar.

\[
\Theta = \frac{\dot{V}}{V} = \frac{\dot{p}_b}{p_b} + \frac{1}{2} \frac{\dot{p}_c}{p_c}
\]

(10)

(11)

Using Hamilton’s equations of motion for \(\dot{p}_b \) and \(\dot{p}_c \),

\[
|\Theta| \leq \frac{3}{2\gamma \sqrt{\Delta}} \approx \frac{2.78}{l_p}
\]

(12)

Hence the expansion scalar is bounded in LQC description of Kantowski Sachs. The value of bound is same as that for isotropic and Bianchi I cosmologies. The bound goes to infinity as \(\Delta \to 0 \).
Bound on shear scalar

The shear scalar in Kantowski Sachs cosmology is given by

\[\sigma^2 = \frac{1}{6} \left(\frac{\dot{g}_{xx}}{g_{xx}} - \frac{\dot{g}_{\Omega\Omega}}{g_{\Omega\Omega}} \right)^2 \] \hspace{1cm} (13)

\[= \frac{2}{3} \left(\frac{\dot{p}_b}{p_b} - \frac{\dot{p}_c}{p_c} \right)^2 \] \hspace{1cm} (14)

Following bound was obtained numerically

\[|\sigma^2| \leq \frac{3.3581}{\gamma^2 \Delta} = \frac{11.52}{l_p^2} \] \hspace{1cm} (15)

The above bound is slightly lower than the one for Bianchi I\(^2\) (11.57).

Inverse triad corrections are important in loop quantum cosmological Kantowski Sachs space time.

Energy density, expansion scalar and shear scalar are bounded for finite values of triads.

Boundedness of studied quantities indicates singularity resolution for generic matter. Future study would be directed to find if Kantowski Sachs space time is never singular.