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Scalar-Tensor Gravity — Broad Definition

I A relativistic theory of gravitation which contains light scalars
in addition to the usual metric tensor.



Scalar-Tensor Gravity — Several Motivations

I Development of alternative theories leads to better
understanding of general relativity and gravitation on both
theoretical and experimental levels.

I Direct detection of gravitational waves will test general
relativity in the fast-motion-strong-field regime for the first
time.



Scalar-Tensor Gravity — Several Motivations

I Strong CP problem in QCD.

I Accelerated expansion of the universe.

I Unification of general relativity with quantum mechanics at
high energies.

I Caveat: quantum loop corrections to scalar masses.



Scalar-Tensor Gravity — Several Examples

I Jordan-Fierz-Brans-Dicke Theory and Generalizations

I f (R) Theories (formally equivalent to above)

I Dynamical Chern-Simons Gravity

I Einstein-Dilaton-Gauss-Bonnet Gravity

I Chameleons

I Galileons

I Symmetrons

I Quintessence

I Inflationary Models



Scalar-Tensor Gravity — Action

I Build a relativistic field theory with metric tensor g̃µν , scalar
fields ϕa, and matter fields ΨA.

I Action is required to be invariant under space-time and
target-space diffeomorphisms.

I In order to incorporate the weak equivalence principle, matter
fields ΨA couple only to the metric g̃µν and not to the scalars
ϕa.

I In the framework of effective field theory, the action is
expanded in numbers of space-time derivatives.



Scalar-Tensor Gravity — Action

I The most general action satisfying these requirements has the
(Jordan-frame) form:

∫
d4x

√
−g̃

(
−V (ϕ) + F(ϕ)R̃ − 1

2
g̃µνGab(ϕ)∇µϕa∇νϕb + . . .

)
+Smatter[Ψ; g̃µν ] .

I The field redefinition g̃µν = A2(ϕ)g?µν transforms the action
into the Einstein-frame form:

c4

4πG?

∫
d4x

c

√
−g?

(
−B(ϕ) +

R?
4
− 1

2
gµν? γab(ϕ)∇µϕa∇νϕb + . . .

)
+Smatter[Ψ; A2(ϕ)g?µν ] .



Scalar-Tensor Gravity — Field Equations

R?
µν − 2γab(ϕ)∇µϕa∇νϕb − 2B(ϕ)g?µν =

8πG?
c4

(
T ?
µν −

1

2
T?g?µν

)
,

�?ϕ
a + γabc(ϕ)gµν? ∇µϕb∇νϕc − Ba(ϕ) = −4πG?

c4
αa(ϕ)T? ,

where

αa(ϕ) :=
∂ log A(ϕ)

∂ϕa
, Ba(ϕ) :=

∂B(ϕ)

∂ϕa
,

γabc(ϕ) =
1

2
γad(ϕ)

(
∂γcd(ϕ)

∂ϕb
+
∂γbd(ϕ)

∂ϕc
− ∂γbc(ϕ)

∂ϕd

)
.



Scalar-Tensor Gravity — Scalar Masses and Couplings

I For an isolated system with asymptotically constant scalar
ϕ∞, it is natural to carry out an expansion of the form

B(ϕ) = B∞ + B∞
a (ϕa − ϕa

∞) +
1

2
(m2

s )ab(ϕa − ϕa
∞)(ϕb − ϕb

∞) + . . . ,

αa(ϕ) = α∞
a + (β∞

ab + γc∞abα
∞
c )(ϕb − ϕb

∞) + . . . ,

γab(ϕ) = γ∞ab + (γ∞abc + γ∞bac)(ϕc − ϕc
∞) + . . . ,

where the eigenvalues of m2
s are the scalar masses, and α∞

and β∞ are the leading-order scalar-matter coupling
parameters.



Scalar-Tensor Gravity — Constraints on Simple
Single-Scalar Models

I Brans-Dicke Model: constant scalar-matter coupling
α(ϕ)→ α∞:

α2
∞ < 1.2 · 10−5 for ms = 0

from Cassini mission.

I Quadratic Model: linear scalar-matter coupling
α(ϕ)→ α∞ + β∞(ϕ− ϕ∞):

β∞ & −5 for ms = 0
from binary pulsar timing.



Binary Systems — Effective Point Particle Theory

I Consider a bound binary system of compact objects with
comparable masses M1,2, radii R1,2, and orbital separation
D � R1,2.

I In order to describe the orbital dynamics, it is useful to
‘integrate out’ length scales smaller than R1,2, obtaining a
point-particle effective field theory with matter action of the
form

Smatter =
2∑

A=1

∫
ΓA

LA dsA , LA = −cMA(ϕ) + . . . ,

where ΓA is the worldline of body A, and LA is the
point-particle Lagrangian of body A, which is expanded in
numbers of derivatives.



Binary Systems — Energy Flux

I Consider an observer at a distance D � D from the binary.
Our goal is to calculate the energy flux seen by this observer
in the limit D/D → 0.

I This flux receives contributions from both tensor and scalar
modes, and has a multipolar expansion of the form

Fϕ = Fmon
ϕ + F dip

ϕ + F quad
ϕ + F oct

ϕ + . . . ,

Fg = F quad
g + F oct

g + . . . .

I Each term in the above series has a Post-Newtonian
expansion in powers of v/c .



Flux Formulas — Hierarchy of Length Scales

I For a widely-separated binary, we have:

R1,2 � D � D

v/c
∼ λGW .

I We will additionally assume that:

R1,2 � D � ~
msc
∼ λs .

I We make no assumptions about:

ζ :=
msc

2

~ω
∼ λGW

λs
.



Flux Formulas — Quantum-Classical Intuition

I In order for a highly-excited oscillator of frequency ω to

radiate a particle of mass ms , we must have:

~ω & msc
2 .

I An eccentric Kepler trajectory is a non-harmonic oscillator
with frequencies ω, 2ω, 3ω, etc.

I In the circular limit, the oscillator becomes harmonic, with a
single frequency ω.



Flux Formulas — Dipole

F dip
ϕ =

G?
3c3

(
G ?

12M1M2

D2

)2

D2
ϕ ×{

1 + e2/2

(1− e2)5/2
− ζ2 − 2

K∑
k=1

(k2 − ζ2)

(
J ′2k (ke) + (e−2 − 1)J2

k (ke)

)}
.

I G ?
12 is the gravitational coupling between the two bodies.

I Dϕ is related to the scalar dipole moment of the binary.

I K := bζc is the largest integer with the property K~ω ≤ msc2.

I e is the orbital eccentricity.

I Jk(z) are Bessel functions of the first kind.

I In the circular limit, {· · · } → (1− ζ2)Θ(1− ζ).



Flux Formulas — Quadrupole

∼
G?

c3

(
G?12ΓM1M2

D2

)2

(Dω/c)2

{
1 + 73

24
e2 + 37

96
e4

(1 − e2)7/2
−

[(6 + e2)
√

1 − e2 + 6 − 2e2]

6
√

1 − e2(1 +
√

1 − e2)2
ζ

2 +
(3 − e2)

48
ζ

4

−
1

2

bζc∑
k=1

(
k −

ζ2

k

)2 [
(1 − e2)3

e4
k2J2

k (ke) +
1 − e2 + e4/3

e4
J2
k (ke) +

1 − e2

e2
J′2k (ke)

+
(1 − e2)2

e2
k2J′2k (ke) +

(1 − e2)(3e2 − 4)

e3
kJk (ke)J′k (ke) ,

]}

where ω is the orbital frequency, and Γ depends on the mass ratio
M1/M2 and sensitivities α1,2.



Flux Formulas — Monopole

∼ G?
c3

(
G?

12M1M2

D2

)2

(Dω/c)2

{
(Γ + 3Λ/G)2 e2(1 + e2/4)

(1− e2)7/2

+
2Γ(Γ + 3Λ/G)e2

√
1− e2(1 +

√
1− e2)

ζ2 +
e2Γ2

4
ζ4

− 4

bζc∑
k=1

k2J2
k (ke)

[
Γ

(
1 +

ζ2

2k2

)
+

3Λ

G

]2
}
,

where ω is the orbital frequency, G, Λ, and Γ depend on the mass
ratio M1/M2, sensitivities α1,2, and second-order sensitivities β1,2.



Summary

I Scalar-tensor theories of gravity contain uncharted territory at
second order in the derivative expansion of the action.

I The effective field theory framework is useful not only in
particle physics, but also in classical gravitational physics.

I Scalar gravitational wave fluxes emitted from an eccentric
binary system of compact objects were calculated analytically
in massive scalar-tensor theory.

I In this calculation, no assumptions have been made about the
size of ζ = msc2/~ω. The fluxes are non-analytic at ζ ∈ N.

I Work in progress: obtaining bounds on (ms , α∞, β∞) from
binary pulsars

I Of particular interest is the eccentric WD-NS binary PSR
J1141-6545 with e ∼ 0.172.


	Scalar-Tensor Gravity
	Binary Systems
	Flux Formulas
	Summary

