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Extreme Mass Ratio Inspirals (EMRI’s).

I EMRI’s are expected to be important sources for future space
based gravitational wave detectors.

I EMRI’s are intractable with standard numerical relativity
methods.

I Smallness of mass ratio suggests using perturbation techniques
instead (point particle moving in the backgorund field).

I To zeroth order the motion of a point particle is geodesic.

I To first order the point particle experiences an acceleration
caused by it’s interaction with it’s own field.

I The field at particle location can be decomposed into a
singular piece and a regular piece ψ = ψS + ψR.

I The singular piece ψS does not contribute to the self-force.

I The regular piece ψR contains a tail contribution.

I The ultimate goal is a fully self-consistent evolution.



Traditional approaches to self-force calculations.

Most calculations of the self-force uses a δ-function source.

I Using a δ-function source requires subtraction of the singular
part of the field in a mode sum regularization scheme.

I This can be fairly expensive especially at high eccentricity
where many modes has to be taken into account.

This can be done in both the frequency and time domain.

Frequency domain Requires a prescribed geodesic orbit. Very
accurate.

Time domain Requires evolving many modes simulteneously. Less
accurate.



Traditional approaches to EMRI evolutions.

I Adiabatic approaches without explicit self-force calculation.
I Energy and angular momentum fluxes through horizon and

infinity are integrated over a complete geodesic orbit.
I The geodesic orbit is then “evolved” by changing the orbital

parameters according to the energy and angular momentum
losses.

I This approach ignores the conservative part of the self-force.

I Geodesic self-force evolution.
I Build up a large table of self-force calculations in geodesic

orbit parameter space.
I Evolve the orbit according to the “geodesic self-force”

(interpolated from the table) as if the particle had been
moving on that geodesic forever.

I This does take into account the conservative part of the
self-force but ignores part of the tail contribution coming from
the evolving orbit.



Effective source approach.

... is a general approach to self-force and self-consistent orbital
evolution that doesn’t use any delta functions.

Key ideas

I Compute a regular field, ψR, such that

(self-force) ∝ ∇ψR

where ψR = ψ − ψS, and ψS can be approximated via local
expansions.

I The effective source, S, for the field equation for ψR is regular at
the particle location.

�ψR = �ψ −�ψS = −4πq
∫
γ

δ(4)(x− z(τ))√
−g

dτ −�ψS = S(x|z, u)

where S(x|z, u) is regular at the particle location.



Effective source approach.

Evolve the coupled particle-field dynamics:

�ψR = S(x|z(τ), u(τ))

Duα

dτ
=

q

m(τ)
(gαβ + uαuβ)∇βψR

dm

dτ
= −quβ∇βψR

A bound orbit can be specified by its eccentricity (e) and semi-latus
rectum (p):

r1 =
pM

1 + e
, r2 =

pM

1− e
where r1 and r2 are the turning points of the radial motion.
e = 0, stable circular orbits
p = 6 + 2e, (separatrix), unstable circular orbits

0 ≤ e < 1, p > 6 + 2e, bound orbit



Evolution code.
I A 3D multi-block scalar

wave equation code.

I Kerr background
spacetime in Kerr-Schild
coordinates.

I Spherical inner boundary
placed inside the black
hole.

Equations:

�ψR = S(x|zα(τ), uα(τ)),
Duα

dτ
=

q

m(τ)

(
gαβ + uαuβ

)
∇βψR,

dm

dτ
= −quβ∇βψR.

I Spherical outer boundary placed at I + using Hyperboloidal
slicings.

I The field and the particle are evolved together.
I The particle location zα(τ) and four-velocity uα(τ) gives the

effective source that determines ψR.
I ∇βψR at the location of the particle in turn affects the orbit.

I We use 8th order summation by parts finite differencing and
use penalty boundary conditions at patch boundaries.

I We can evolve the orbit using the geodesic equations directly
as well as using the osculating orbits framework.



Comparison with (1+1) results.
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Self-forced orbit.

See: Phys.Rev.Lett. 108 (2012) 191102.
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Self-forced orbit: e-p space.

Some features: p monotonically decreases, while e oscillates. e
decreases secularly far from the separatrix (e.g. weak field regime),
but then enters an increasing phase as the particle nears plunge.
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Waveform at I + (e = 0.5 and p = 7.2).

-0.001

 0.003

 0.007

 0.011

 0.015

 0  1000  2000  3000  4000  5000

Φ
 / 

q

Time (M)

q=1/8 q=1/16 q=1/32 q=1/64



Energy flux through I + (e = 0.5 and p = 7.2).
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Energy flux through I + (e = 0.1 and p = 10).
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Movie (e = 0.5, p = 7.2, q = 1/32).



Conclusions and future work.

Conclusions

I We have computed the first self-consistent evolutions and
waveforms of a scalar charge in orbit around Schwarzschild.

I The code is robust, well parallelized and fully generic.

I The main limitations are the expense of evaluating the
effective source and the cost of evolving in 3D.

Future work.

I We plan to do self-consistent orbits in Kerr.

I We would like to compare evolutions based on the geodesic
self-force.

I The extension of the method to the gravitational case is
underway.


