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Marriage impossible?

Current status of Physics:

GR QM

No QG theory reconciling QM and GR.

Two strategies: Theoretical and Phenomenological.



Phenomenologists’ workflow
Phenomenology = Search empirical evidence of paradigm change.

List principles Select one

Parameterize 
all violations

Phenomenology

Experiment

Paradigm
change

Put bounds/
Reinforce current

theories No violations

Violations



List principles Select one

Parameterize 
all violations

Phenomenology

Experiment

Paradigm
change

Put bounds/
Reinforce current

theories No violations

Violations

Principles underlying GR

Causal structure.
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Einstein-Hilbert action.

Minimal coupling.
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LV = ∃ preferred spacetime
directions (tensors).

Why Lorentz violation?

Lorentz invariance underlies SM
and GR.

Associated with violations of
other principles/symmetries
(e.g., CPT).

Can be accommodated by QG
candidate theories.

New interactions could manifest
as LV.
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SME

Standard-Model Extension.

Colladay+Kostelecký (PRD 97,
98), Kostelecký (PRD 04), etc.

Effective field theory formalism.

LSME = LGR + LSM + LLV .

LLV ⊃ k · J
k “coefficients” for LV.
J standard field operators.
Scalar under coordinate
transformations.
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Experiments (partial list)

Accelerator/collider.

Astrophysical observations.

Birefringence/dispersion.

Clock-comparison.

CMB polarization.

Laboratory gravity tests.

Matter interferometry.

Neutrino oscillations.

Particle vs. antiparticle.

Resonant cavities and lasers.

Sidereal/annual time variations.

Spin-polarized matter.
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Bounds

Bounds in many SME sectors.

“Data Tables for Lorentz and CPT
Violation”

Kostelecký+Russell,
Rev. Mod. Phys. (2011),

last version arXiv:0801.0287v6.

Quotes > 150 papers.

Best bounds (matter sector):

|k| ≤ 10−33 GeV.

Coef. remain unmeasured.



Matter-gravity couplings offer sensitivity to SME

coefficients that are otherwise unobservable.

Goal of this work

Generate the most general nonrelativistic Hamiltonian for LV
matter fields in a uniform Newtonian potential.

Before describing the method:

1 Free Dirac-spinor minimal SME in flat spacetime.

2 Tetrads.

3 Generalization to curved spacetime.

4 Previous work: First-principles calculations.



Free Dirac-spinor minimal SME sector in flat spacetime

One free Dirac-spinor ψ.

Minimal = J of renormalizable dimension.

The Lagrangian density is

Lψ,η =
i

2
ψ̄Γµ
←→
∂ µψ − ψ̄Mψ,

where

Γµ = γµ − ηµνcρνγρ − ηµνdρνγ5γρ − ηµνeν

−iηµνfνγ5 −
1

2
ηµνgρσνσ

ρσ,

M = m+ aµγ
µ + bµγ5γ

µ +
1

2
Hµνσ

µν .

Γµ and M are the most general matrices.

γµ = Dirac matrices, γ5 = iγ0γ1γ2γ3, σµν = i
2 [γµ, γν ].

Coefficients controlling LV: aµ, bµ, cµν , dµν , eµ, fµ, gµνρ, Hµν .



Tetrad formalism reminder

Tetrad = Orthonormal basis of
tangent space (eµ)a.

Freedom to “rotate” {(eµ)a} ↔
Lorentz invariance.

Connection between spacetime
and tangent spaces (a vs. µ).

Fermions can only be treated
with tetrads.

“Spin connection”
ωaµν = (eµ)b∇a(eν)b.

Notation: e =
√
−g.

x

T
x
M

M

(e
0
)a

(e
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Dirac-spinor minimal SME sector in a general spacetime

Lagrangian density

Lψ,g =
i

2
e(eµ)aψ̄Γµ

←→
∇ aψ − eψ̄Mψ,

where

∇aψ = ∂aψ +
i

4
ωaρσσ

ρσψ, ∇aψ̄ = ∂aψ̄ −
i

4
ωaρσψ̄σ

ρσ,

Γµ = γµ − ηµνcab(eρ)a(eν)bγρ − ηµνdab(eρ)a(eν)bγ5γ
ρ

−ηµνea(eν)a − iηµνfa(eν)aγ5

−1

2
ηµνgabc(eρ)

a(eσ)b(eν)cσρσ,

M = m+ aa(eµ)aγµ + ba(eµ)aγ5γ
µ +

1

2
Hab(eµ)a(eν)bσµν .



Dirac-spinor minimal SME sector in a general spacetime

First-principles study (Kostelecký+Tasson, PRD 2011):

LSME ⊃ LGR(e, ω) + LSM (e, ω;ψ,∇ψ) + LLV (e, ω;ψ,∇ψ).

Pros

General spacetime.

Backreaction.

LV mechanism/coef.
fluctuations.

Cons

Complicated.

Use approximations:

Linearized metric.
Neglect k · ∂agbc.
No spin.

Bounds on “new” SME
coefficients (Hohensee, Chu,
Peters and Müller, PRL 2011).



Shortest path to the phenomenological Hamiltonian

Recall: looking for the SME nonrelativistic Hamiltonian in the
presence of a uniform Newtonian potential.
Rindler = Minkowski seen by uniformly accelerated observers.

Write Lψ,g in Rindler.

Get the equation of motion.

Interpret ψ as a wavefunction (go from QFT to RQM).

Read-off the Hamiltonian to first order in LV coefficients.

Take the nonrelativistic limit (Foldy-Wouthuysen transf.).

Identify constant acceleration with a uniform Newtonian
gravitational field Φ.

Pros

Relatively simple.

Phen. relevant.

All SME coefficients (spin).

Includes k · ∇Φ, Φn.

Cons

Particular metric/uniform
gravitational potential.

No backreaction/LV source.

No coefficient fluctuations.
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Shortest path to the phenomenological Hamiltonian

The resulting nonrelativistic Hamiltonian to first order in LV
coefficients and Φ is

HNR
ψ,g =

~p2

2m
(1 + Φ) +mΦ− i

2m
(∇Φ) · ~p+

1

4m
~σ · (∇Φ)× ~p

+
(
A+BΦ + Ci(∂iΦ)

)
+
(
Di + EiΦ + F ji (∂jΦ)

)
σi

+
(
Gi +H iΦ + Iij(∂iΦ)

)
pj +

(
J ji +Ki

jΦ + Ljki (∂kΦ)
)
σipj

+
(
M ij +N ijΦ

)
pipj +

(
Ojki + P jki Φ

)
σipjpk + ...

where the A, . . . , P jki are linear combinations of SME coefficients.
For instance,

H i =
1

m
ai − ei, Ki

j = −d00δij + dj
i − 1

2
εj
klgkl

i + εj
ikg0k0.



Shortest path to the phenomenological Hamiltonian

HNR
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Correct limits:

Lorentz invariant part ↔ Hehl+Ni, PRD 1990.

Φ = 0 ↔ Kostelecký+Lane, J. Math. Phys. 1999.

Where there is overlap, agreement with Kostelecký+Tasson,
PRD 2011.



Conclusions

HNR
ψ,g =

~p2

2m
(1 + Φ) +mΦ− i

2m
(∇Φ) · ~p+

1

4m
~σ · (∇Φ)× ~p

+
(
A+BΦ + Ci(∂iΦ)

)
+
(
Di + EiΦ + F ji (∂jΦ)

)
σi

+
(
Gi +H iΦ + Iij(∂iΦ)

)
pj +

(
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jΦ + Ljki (∂kΦ)
)
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M ij +N ijΦ
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pipj +

(
Ojki + P jki Φ

)
σipjpk + ...

General Hamiltonian for fermions in the lab’s gravitational field.

In the near future:
There are bounds on the parenthesis ⇒

Reinterpret/disentangle bounds (first or improved bounds?).
Couplings of LV, gravity and spin (σi) are interesting as the
experiments involving spin have very good sensitivity.
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