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Integral BH mass fct starts at ⇠ 3 106 M�
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Figure 1 Integral mass function corrected for Hubble type sampling, 2928 objects, the slope of the lines is: red
�2.0 fitting > 108 M�, and blue �1.0 fitting between 107 M� and 108 M�. See Caramete & PLB, 2010 AA.
This mass function suggests that black holes start near 3 106 M�, possibly at redshift of order <⇠ 50, and grow by
merging (see PLB & Kusenko 2006 PRL). Lower mass objects included here are probably nuclear star clusters.
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Bekenstein and consequences?

Bekenstein (1973 PRD) writes: Black hole entropy must
be a property of the universe. Entropy is information, and
information needs a carrier. Gravitational waves?
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Can black holes match dark energy?

• NBH,0 = 10�2.2 Mpc�3 to 1 Mpc�3

Systematic errors, statistical errors, merging dominant?

•MBH = 106 M� to 107 M�
From cut in mass function, instability, and Galactic
Center black hole (Caramete & PLB 2010 AA)

• z? = 25 to 70 (PLB & Kusenko 2006 PRL)
Very early massive star formation? Black holes?
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3 ' 10�8.1 erg cm�3 = DE

From 3 · 106 M� with z? = 50 to 1 · 107 M� with
z? = 30 at the same density 1 Mpc�3
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Three questions - three answers?

Requirement: EBH = 1
2 MBH c2

⇣
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1+z

⌘3

• Initial shell of gravitational waves, thought of as coher-
ent burst (soliton).

• Question: Gravitons as a soliton shell? What frame of
reference possible?

• It grows from itself, so like stimulated emission.

• Question: What is the phase space density in this case?

• The energy comes from a background. Inspired by
Randall & Sundrum (1999), but variable in time

• Question: What exactly is the nature of the back-
ground? Energy density?
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Boltzmann equation derivation

The distribution function N (k, t) for coherent production
of gravitons in a Friedman-Robertson-Walker (FRW) uni-
verse, frequency of the wave at emission ⌫0
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where R�3 for quadrupoles, R =
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. With con-

ditions for coherence and some numerical simplifications
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Heuristic derivation

Four steps: 1) Reference frame � = 1
2
r(z,z?)
lP l

{H(z)⌧Pl}1/2 ,

2) occupation number first bracket
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s
�
⌘
,

3) coherence patch ⇡�2BH ,
4) one per coherence patch per Planck time in comov-

ing frame (interaction probability unity with resonant 3D
momentum phase space).
For stimulated emission familiar non-linear form (Kom-

paneets 1957):
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In observer frame we obtain again
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Summary

• Dark energy drives universe apart with acceleration.

•We propose: Dark energy is ensemble of coherent bursts
(soliton-like) gravitational waves originally produced
when first generation of super-massive back holes was
formed.

• These solitons get their initial energy as well as keep up
their energy density throughout evolution of universe
by stimulating emission from background.

• Key tests involve pulsar timing, clock jitter, the radio,
X-ray, �-ray and neutrino background, early formation
of pure-disk galaxies, and magnetization of IGM.

• First steps are in (PLB & Harms) arXiv:1205.4016, and
in arXiv:1302.0040.
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Abstract

Dark energy drives the universe apart with acceleration.
We propose to develop quantitative tests of a concept
for dark energy, and to evolve it further to a full theory.
The concept is that dark energy is the ensemble of coher-
ent bursts of (soliton-like) gravitational waves originally
produced when the first generation of super-massive back
holes were formed. These solitons get their initial energy
as well as keep up their energy density throughout the
evolution of the universe by stimulating emission from a
background. Key tests involve pulsar timing, clock jitter,
the radio-, X-ray, gamma- and neutrino-background, and
the early formation of pure-disk galaxies. First steps are
in arXiv:1205.4016, and arXiv:1302.0040 (PLB & Harms).
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