Spin alignment as a diagnostic of black-hole binary formation

Emanuele Berti, University of Mississippi/Caltech GCGM7, Oxford (MS), April 19 2013 1) Spin in stellar-mass BH binaries 2) Astrophysics and post-Newtonian 3) Spin-orbit resonance locking 4) Role of tides and mass transfer 5) Can Advanced LIGO reconstruct the physics of population synthesis?

Gerosa, Kesden, EB, O'Shaughnessy, Sperhake, arXiv:1302.4442

#### **Properties of stellar-mass black holes**

| Mass                                    |                      | _                                 |                        | Newtonian          |
|-----------------------------------------|----------------------|-----------------------------------|------------------------|--------------------|
| Spin                                    |                      |                                   |                        |                    |
| Mass estimates:                         | System               | Estimated spin                    | Method                 |                    |
|                                         |                      | Stellar-ma                        | ss BHs                 |                    |
| LMXBs                                   | Cygnus X-1           | $0.05\pm0.01$                     | Line spectroscopy      | Special relativity |
|                                         | LMC X-3              | ≈0.2–0.4                          | Continuum              | Special relativity |
|                                         | 4U 1543-475          | $0.3 \pm 0.1$                     | Line spectroscopy      |                    |
| Spin estimates:                         |                      | 0.75-0.85                         | Continuum              |                    |
|                                         | SAX J1711.6-3808     | $0.6^{+0.2}_{-0.4}$               | Line spectroscopy      |                    |
|                                         | XTE J1550-564        | $\approx 0.1 - 0.8$               | Continuum              |                    |
| <ul> <li>Continuum fitting</li> </ul>   |                      | $0.76 \pm 0.01$                   | Line spectroscopy      |                    |
| <ul> <li>✓ Line spectroscopy</li> </ul> | SWIFT J1753.5-0127   | $0.76^{+0.11}_{-0.15}$            | Line spectroscopy      |                    |
|                                         | M33 X-7              | $0.77\pm0.05$                     | Continuum              | General relativity |
|                                         | XTE J1908+094        | $0.75 \pm 0.09$                   | Line spectroscopy      | λı                 |
| Model-dependent –                       | XTE J1650-500        | $0.79 \pm 0.01$                   | Line spectroscopy      |                    |
| •                                       | GRS 1915+105         | 0.7–0.8<br>0.98–1                 | Continuum              | / \/               |
| highly uncertain!                       | LMC X-1              | 0.98-1<br>$0.90^{+0.04}_{-0.09}$  | Continuum<br>Continuum |                    |
|                                         | GX 339-4             | $0.90_{-0.09}$<br>$0.94 \pm 0.02$ | Line spectroscopy      |                    |
|                                         | GRO J1655-40         | $0.94 \pm 0.02$<br>$\geq 0.25$    | QPOs                   | $\frown$           |
| Theoretical expectation:                | <b>GRO J</b> 1055-40 | ≥ 0.25<br>0.65–0.75               | Continuum              | Line profile       |
| black holes retain natal spin           |                      | ≈0.1–0.8                          | Continuum              |                    |
| •                                       |                      | $0.98 \pm 0.01$                   | Line spectroscopy      |                    |
| [King & Kolb, astro-ph/9901296]         | XTE J1655-40         | ≈1                                | Line spectroscopy      |                    |
| [Belczynski++, astro-ph/0703131]        | XTE J1550-564        | $\approx 1$                       | Line spectroscopy      |                    |
|                                         |                      |                                   |                        |                    |

red  $\Delta \nu$ 

blue

## **Black-hole binary formation rates**

Compact binary formation rates depend on poorly known physics:

- **Supernova kicks** can unbind binary
- **Common-envelope phase** crucial envelope binding energy  $\lambda$ ?
- Mass transfer
- Tidal interactions

| "Official" rates for Initial and Advanced LIGO [ | [LSC, | 1003.2480] |
|--------------------------------------------------|-------|------------|
|--------------------------------------------------|-------|------------|

| IFO      | $Source^{a}$   | $\dot{N}_{ m low}$ | $\dot{N}_{ m re}$  | $\dot{N}_{ m high}$ | $\dot{N}_{ m max}$ |
|----------|----------------|--------------------|--------------------|---------------------|--------------------|
|          |                | $\mathrm{yr}^{-1}$ | $\mathrm{yr}^{-1}$ | $\mathrm{yr}^{-1}$  | $\mathrm{yr}^{-1}$ |
|          | NS-NS          | $2 \times 10^{-4}$ | 0.02               | 0.2                 | 0.6                |
|          | NS-BH          | $7 \times 10^{-5}$ | 0.004              | 0.1                 |                    |
| Initial  | BH-BH          | $2 \times 10^{-4}$ | 0.007              | 0.5                 |                    |
|          | IMRI into IMBH |                    |                    | $< 0.001^{b}$       | $0.01^{c}$         |
|          | IMBH-IMBH      |                    |                    | $10^{-4d}$          | $10^{-3e}$         |
|          | NS-NS          | 0.4                | 40                 | 400                 | 1000               |
| Advanced | NS-BH          | 0.2                | 10                 | 300                 |                    |
|          | BH-BH          | 0.4                | 20                 | 1000                |                    |
|          | IMRI into IMBH |                    |                    | $10^b$              | $300^c$            |
|          | IMBH-IMBH      |                    |                    | $0.1^d$             | $1^e$              |

## **Black-hole binary formation rates**

Compact binary formation rates depend on poorly known physics:

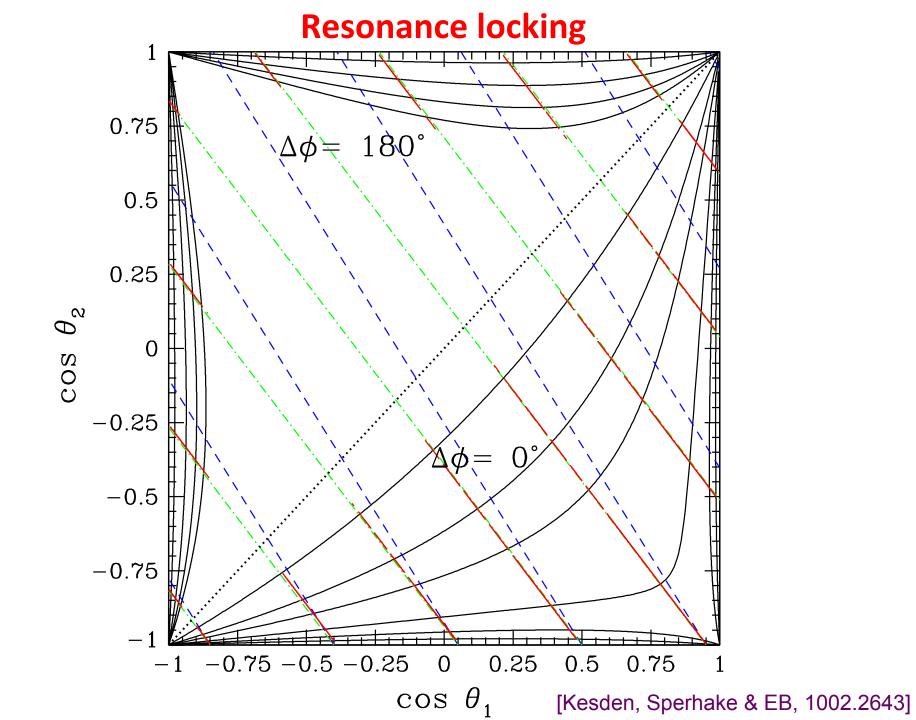
- Supernova kicks can unbind binary
- **Common-envelope phase** crucial envelope binding energy  $\lambda$ ?
- Mass transfer
- Tidal interactions
- Metallicity

"Updated" rates for Advanced LIGO [1208.0358; see also 1202.4901]

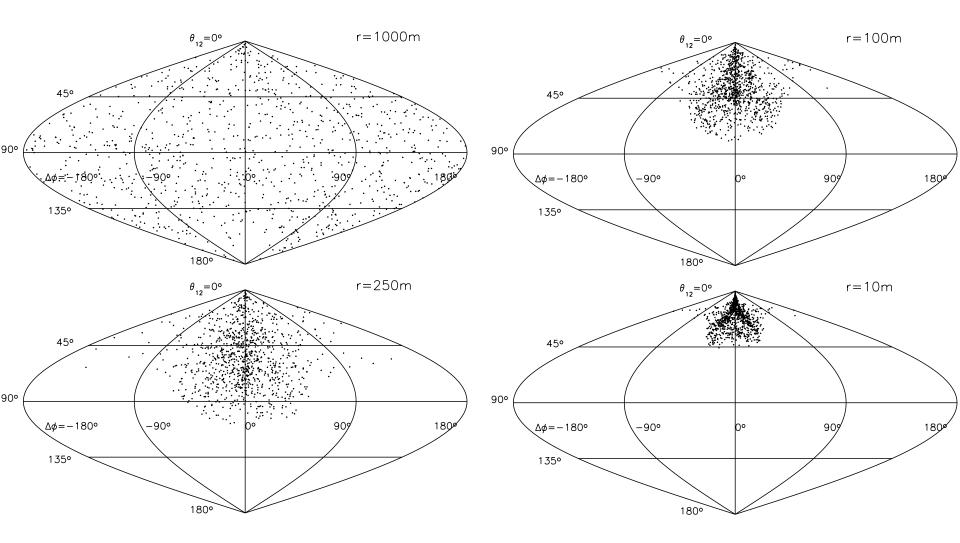
Advanced LIGO/VIRGO Detection Rates  $[{\rm yr}^{-1}]^{\rm a}$ 

| Model | NS-NS     | BH-NS      | BH-BH             |
|-------|-----------|------------|-------------------|
| S     | 3.9(1.3)  | 9.7(5.1)   | 7993.4(518.7)     |
| V5    | 3.9(1.3)  | 9.4(4.8)   | $8057.8\;(533.7)$ |
| V6    | 3.9(1.3)  | 9.3(4.7)   | 8041.7(523.6)     |
| V7    | 5.0(1.5)  | 14.8(8.3)  | 8130.1 (574.2)    |
| V8    | 3.9(1.3)  | 1.2(0.3)   | 172.2(14.0)       |
| V9    | 3.9(1.3)  | 11.8(6.7)  | 8363.6 (654.9)    |
| V10   | 5.2(1.7)  | 5.7(4.9)   | 7762.7 (487.0)    |
| V11   | 3.9(1.1)  | 10.5(6.3)  | 12434.4 (888.1)   |
| V12   | 11.7(0.8) | 7.6(5.8)   | 8754.6 (275.3)    |
| V13   | 3.7~(0.9) | 76.9(62.1) | 1709.6~(966.1)    |

## Spin alignment and resonance locking


Spin alignment is affected by the same physics:

- Supernova kicks: misalignment [Kalogera, astro-ph/9911417]
- Tidal interactions: asymmetry
- Mass transfer: selection of primary (standard/reversed mass ratio)


Late-time evolution well approximated by post-Newtonian dynamics Alignment depends on astrophysical initial conditions: inverse problem?

2

[Schnittman, astro-ph/0409174]

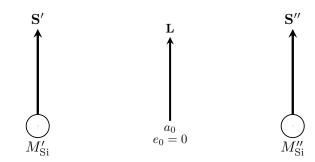


#### Spin-orbit resonances and spin alignment

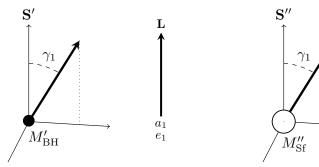


 $\theta_1(t_0) = 10$  degrees, evolution starts at r = 1000M

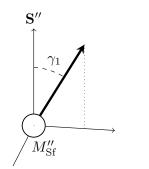
#### [Schnittman, astro-ph/0409174]


## Astrophysical initial conditions: a simple model

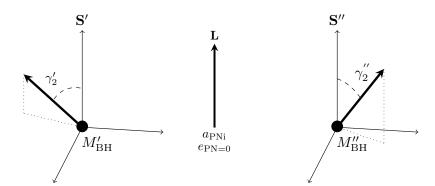
**1.** Upper main sequence


2. Mass-transfer phase

 $\mathbf{S}'$ 


 $M'_{\rm C}$ 

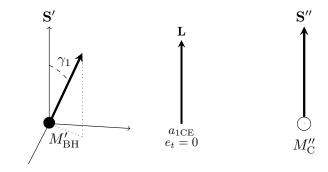



**3.** 1<sup>st</sup> Supernova explosion

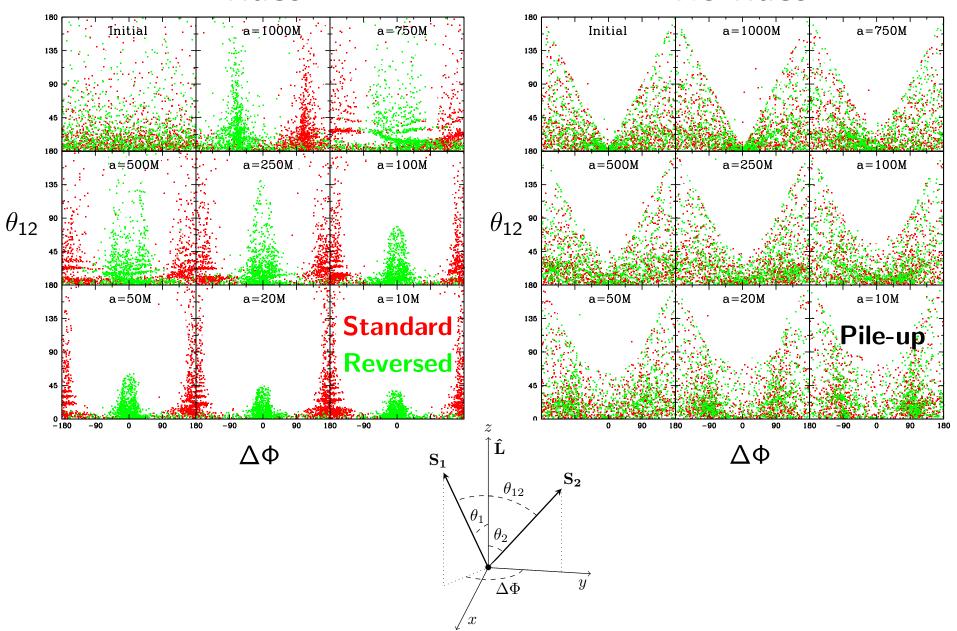


- **5.** 2<sup>nd</sup> Supernova explosion

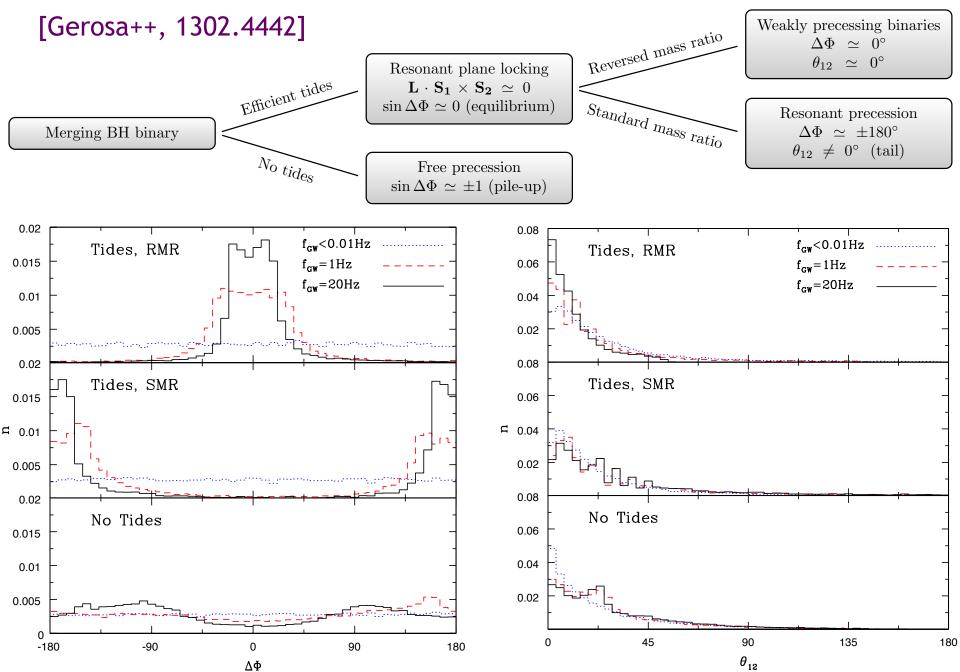



6. Post-Newtonian evolution




4. Tides, common-envelope, BH precession

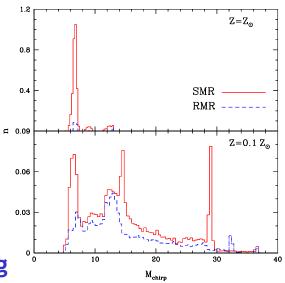
 $e_0^{a_0} = 0$ 


 $\mathbf{S}''$ 



#### Effect of tides and mass-ratio reversal Tides No Tides




#### Inverse problem: binary evolution from GW observations



# Outlook

Implement spin evolution in population synthesis codes! What are the obstacles? What shall we learn?

- **Combine measurements of**  $\Delta \Phi$  and (chirp) mass How accurate can these be? Systematics?
- Low metallicity: more likely mass-ratio reversal
- **C** Envelope binding energy  $\lambda$  (variations 1-4)
- Supernova kick strength (variations 8 and 9)
- Wind mass loss (variation 11)



#### http://www.syntheticuniverse.org

|     | Variation                      | Subvariation A      |       |       | Subvariation B      |       | Subvariation A |                   |       | Subvariation B |                   |       |       |
|-----|--------------------------------|---------------------|-------|-------|---------------------|-------|----------------|-------------------|-------|----------------|-------------------|-------|-------|
|     |                                | $Z/Z_{\odot} = 0.1$ |       |       | $Z/Z_{\odot} = 0.1$ |       |                | $Z/Z_{\odot} = 1$ |       |                | $Z/Z_{\odot} = 1$ |       |       |
|     |                                | SMR                 | RMR   | #     | SMR                 | RMR   | #              | SMR               | RMR   | #              | SMR               | RMR   | #     |
| 0:  | Standard                       | 63.2%               | 36.8% | 32496 | 66.8%               | 33.2% | 17038          | 91.9%             | 8.1%  | 10160          | 92.9%             | 7.1%  | 8795  |
| 1:  | $\lambda = 0.01$               | 67.9%               | 32.1% | 12368 | 67.4%               | 32.6% | 11401          | 93.6%             | 6.4%  | 8171           | 93.6%             | 6.4%  | 8171  |
| 2:  | $\lambda = 0.1$                | 62.7%               | 37.3% | 27698 | 65.2%               | 34.8% | 16885          | 88.9%             | 11.1% | 11977          | 92.1%             | 7.9%  | 8577  |
| 3:  | $\lambda = 1$                  | 54.2%               | 45.8% | 51806 | 65.7%               | 34.3% | 19415          | 79.1%             | 20.9% | 15820          | 91.6%             | 8.4%  | 8442  |
| 4:  | $\lambda = 10$                 | 50.1%               | 49.9% | 50884 | 62.9%               | 37.1% | 17939          | 73.2%             | 26.8% | 14425          | 91.6%             | 8.4%  | 8321  |
| 5:  | $M_{\rm NS} = 3M_{\odot}$      | 62.5%               | 37.5% | 32236 | 66.2%               | 33.8% | 16868          | 91.6%             | 8.4%  | 9972           | 92.8%             | 7.2%  | 8589  |
| 6:  | $M_{\rm NS} = 2M_{\odot}$      | 62.3%               | 37.7% | 32535 | 65.9%               | 34.1% | 16804          | 91.5%             | 8.5%  | 9922           | 92.5%             | 7.5%  | 8590  |
| 7:  | $\sigma = 132.5 \mathrm{km/s}$ | 58.2%               | 41.8% | 36546 | 63.1%               | 36.9% | 18935          | 88.9%             | 11.1% | 11099          | 89.6%             | 10.4% | 9334  |
| 8:  | $v_k = v_{obs}$ (BHs)          | 56.2%               | 43.8% | 948   | 72.5%               | 27.5% | 207            | 56.2%             | 43.8% | 16             | 0%                | 100%  | 2     |
| 9:  | $v_k = 0 \text{ (BHs)}$        | 56.3%               | 43.7% | 52832 | 58.8%               | 41.2% | 34569          | 66.3%             | 33.7% | 35267          | 65.2%             | 34.8% | 32547 |
| 10: | Delayed SN                     | 61.4%               | 38.6% | 27310 | 66.3%               | 33.7% | 13841          | 81.5%             | 18.5% | 1032           | 81.2%             | 18.8% | 881   |
| 11: | Weak winds                     | 58.4%               | 41.6% | 33872 | 63.6%               | 36.4% | 17765          | 70.5%             | 29.5% | 21786          | 64.2%             | 35.8% | 16182 |

## Summary

**Compact binary formation rates depend on poorly known physics:** 

- ✓ Supernova kicks
- ✓ Tidal interactions
- ✓ Mass transfer
- ✓ Metallicity
- ✓ Common-envelope evolution

□ Spin alignment is crucially affected by the same physics

- ✓ Supernova kicks: misalignment
- ✓ Tides: asymmetry ( $\theta_1 < \theta_2$ ?)
- ✓ Mass transfer: selection of primary  $(m_1 > m_2?)$
- Resonance locking implies that this physics affects observable distribution of precessional configurations

□ Black-hole binary formation astrophysics with Advanced LIGO!

- ✓ Assess systematic/statistical errors
- ✓ Combine with additional information (mass distribution...)