Resonant Ultrasound Spectroscopy Studies of Intermetallic and Quasicrystalline Hydrides

Keir Foster

Institute for Nanotechnology, Forschungszentrum Karlsruhe, Karlsruhe, D-76021 Germany

University of Mississippi
March 30th 2005
Introduction

Resonant Ultrasound Spectroscopy (RUS):
A tool for condensed matter physics research.

Physics Dept., Colorado State University

Prof. R. G. Leisure
Dr. J. E. Hightower
Dr. F. Willis
D. Agosta
S. Fairburn
J. Shakley
A. Aido
Presentation Outline

• Background Material
 – Review of elastic properties of solids
 – Resonant ultrasound spectroscopy (RUS)

• Motivation
 – Metal-Hydrogen (MH) systems

• Results
 – TaV$_2$H(D)$_x$ (Laves-phase hydride)
 • Ultrasonic attenuation due to H motion
 • Anomalous hydrogen-dependent elastic properties

• Summary

• Nano-structured Materials at Forschungszentrum Karlsruhe
 – Elastic and anelastic properties??
Elastic Properties of Solids

• Generalized Hooke’s law:

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}, \quad \varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \quad C_{ijkl}^S = \frac{\partial^2 U}{\partial \varepsilon_{ij} \partial \varepsilon_{kl}}$$

Strain tensor (u_i components of displacement vector)

• Elastic constants are related to…
 – Thermodynamic properties of the material (Debye theory)
 – Interatomic forces
 – Practical (engineering) moduli (Young’s, shear, bulk) and Poisson’s ratio
 – Phase transitions
Symmetry to the Rescue!

- Symmetry arguments lead to 6-d formalism

\[\sigma_{\alpha} = C_{\alpha\beta} \varepsilon_{\beta} \]

(Where \(\alpha \) and \(\beta \) = 1, 2, 3, 4, 5, 6)

- Crystal symmetry
 - Further reduces number of independent elastic constants
 - Polycrystalline materials often elastically isotropic
 - 2 independent elastic constants

For anisotropic crystal:

\[
C_{\alpha\beta} = \begin{pmatrix}
\lambda + 2\mu & c_{12} \lambda & c_{13} & 0 & c_{14} & \mu & c_{16} \\
\lambda & \lambda + 2\mu & c_{22} \lambda & 0 & c_{24} & \mu & c_{26} \\
& \lambda & \lambda + 2\mu & c_{33} + 2\mu & 0 & \mu & c_{36} \\
0 & c_{14} & c_{24} & 0 & c_{44} & \mu & c_{46} \\
0 & c_{15} & c_{25} & 0 & c_{45} & 0 & c_{56} \\
0 & c_{16} & c_{26} & 0 & c_{46} & 0 & c_{66}
\end{pmatrix}
\]
Ultrasonic Attenuation in Solids

- Exponential decrease of sound intensity with propagation due to coupling of ultrasonic vibrations with...
 - Thermal phonons
 - Conduction electrons
 - Dislocations / point defects
 - Coupling to the ‘order parameter’ of a phase transition

- **Relaxation-attenuation effects**
 - Re-orientation / hopping of a defect or light interstitial under the influence of strain
The Anelastic Solid

- Time delay between application of stress and resultant strain
 - Introduce relaxation time τ_R
 \[
 \sigma + \tau_R \frac{d\sigma}{dt} = c_R \epsilon + \tau_R c_U \frac{d\varepsilon}{dt}
 \]
 - Frequency-dependent complex elastic constant
 \[
 c^*(\omega) = c_U + \frac{c_R - c_U}{1 + \omega^2 \tau_R^2} + i(c_U - c_R) \frac{\omega \tau_R}{1 + \omega^2 \tau_R^2}
 \]
Relaxation Attenuation

• Derive expression for ultrasonic loss

\[\frac{1}{Q} = \left(\frac{\Delta c}{c} \right) \frac{\omega \tau_R}{1 + \omega^2 \tau_R^2} \], \quad \Delta c = c_U - c_R

 – Represents a Debye-time relaxation function
 – \(\Delta c/c \) = relaxation strength
 – \(c_U \) and \(c_R \) are the unrelaxed and relaxed elastic constants respectively

• Derive expression for associated shift in resonant frequencies

\[\delta f = \left(\frac{\Delta c}{c} \right) \left(\frac{f}{2} \right) \frac{\left(\omega \tau_R \right)^2}{1 + \omega^2 \tau_R^2} \]
The Two-Level-System (TLS)

- Model H-motion in a material by considering a TLS
 - H atom occupies one of two adjacent sites
 - Parameter A denotes site asymmetry
 - Tunneling matrix element, Δ_0, denotes the overlap of wave functions from two sites
 - Energies of system are, $E = \pm (\Delta_0^2 + A^2)^{1/2}$
 - Relaxation strength given by,

\[
\frac{\Delta c}{c} = \frac{nD^2}{k_B T c} \left[\frac{A}{E} \right] \text{sech}^2 \left[\frac{E}{k_B T} \right]
\]

\[
D = \frac{\partial (\Delta E)}{\partial \varepsilon}
\]

Deformation Potential
Resonant Ultrasound Spectroscopy (RUS)

• Excite vibrational eigenmodes of samples of well defined geometry
 – Frequencies are function of sample dimensions and shape, density, crystal symmetry, and the c_{ijkl}
 – Compute numerically resonant frequencies of a well-defined sample1,2
 – Derive full elastic constant tensor from single mechanical resonance spectrum

• Internal friction, Q^{-1}, determined from linewidth
 – In principle can determine internal friction matrix, Q_{ij}^{-1}

1I. Ohno, J. Phys. Earth \textbf{24}, 355 (1976)
2A. Migliori \textit{et al}. Physica B \textbf{183}, 1 (1993)
Resonant Ultrasound Spectroscopy (RUS)

- Sample-transducer assembly: He4 cryostat

![Diagram of sample-transducer assembly: He4 cryostat]

- Transducer housing
- Sample

Approximately 1 mm
Resonant Ultrasound Spectroscopy (RUS)

Typical RUS spectrum: TaV$_2$H$_{0.06}$

$T = 100.1$ K
Fitting the RUS Spectra

• Required for high-accuracy, especially for small, highly attenuating samples at low T

\[S_{RUS} = \frac{A e^{-i\theta}}{(f_0^2 - f^2) - i(f_0 f / Q)} + \left[b_1 + i b_2 + (c_1 + c_2)(\frac{f - f_0}{f_0}) \right] \]

Lorentzian lineshape

Detect and fit both in-phase and quadrature signals

Diagram:
- TaV₂D₅.17
- Q = 1054
- \(f_0 = 0.716900 \) MHz
- T = 204.8 K
Ultrasonic attenuation and dispersion due to hydrogen motion in the C15 Laves-phase compounds TaV$_2$H(D)$_x$
Metal-Hydrogen Systems

• Technological Interest
 – Hydrogen storage materials
 – Ni/MH re-chargeable batteries
 – Fuel-cell technologies
 – Hydrogen induced embrittlement of metals
 – Reversible mirrors and magnets

• Theoretical Interest
 – Diffusion of a light interstitial: classical versus quantum effects?
 – Electronic and magnetic effects
 – Thermodynamics
 – Lattice defects / strain
 – Vibrational modes
C15 Laves-phase: Crystal Structure

- TaV_2
 - Green spheres represent Ta atoms
 - Red spheres represent V atoms

- $\text{TaV}_2\text{H(D)}_x (x \leq 1.7)$
 - Absorbs and desorbs H
 - Solid-solution phase

- H occupies interstitial sites

C15 Laves-phase AB_2: Interstitial Sites

- Red – “g” sites
 (2 A and 2 B atoms)
- Green – “e” sites
 (1 A and 3 B atoms)
- Hydrogen usually occupies the “g” sites

(Figure courtesy of Dr. G. Majer, Max Planck Institute, Stuttgart, Germany.)
Why investigate TaV\textsubscript{2}H(D)\textsubscript{x}?

Two frequency scales of H motion

Vacant g sites
H

I. “slow”
II. “fast”

\(\omega \tau = 1 \)
Why do internal friction measurements??

- Ultrasound measurements complementary to NMR and QENS measurement techniques
 - Explore different time-scales
 - Isotope effect
 - Couples to H motion differently

- Little or no previous work using ultrasound to explore H motion in C15 intermetallic compounds
Internal Friction: TaV$_2$H$_x$

Ultrasonic loss (1/Q) vs Temperature (K)

Peak maximum where, $\omega \tau = 1$

TaV_2H_x

All modes
$\approx 99\% C_{44}(G)$

$f_n \approx 1 \text{ MHz}$

TaV_2H_x

≈ 0.53

≈ 0.34

≈ 0.18

≈ 0.10

≈ 0.06

≈ 0.06

≈ 0.00
Internal Friction: $\text{TaV}_2\text{H}_{0.34}$ and $\text{TaV}_2\text{H}_{0.53}$

- Data for $x > 0.18$ require single Arrhenius-type relaxation time

\[
\frac{1}{Q} = \left(\frac{\Delta C}{C} \right) \frac{\left(\omega \tau_R \right)}{1 + \omega^2 \tau_R^2} \quad \tau_R = \tau_0 \exp \left(\frac{E_A}{k_B T} \right)
\]

- $\text{TaV}_2\text{H}_{0.34}$
 - $E_A = 0.22 \text{ eV}$
 - $\tau_0 = 5.7 \times 10^{-12} \text{ s}$
 - $f = 0.68 \text{ MHz}$
 - $f = 0.82 \text{ MHz}$
 - $f = 1.20 \text{ MHz}$

- $\text{TaV}_2\text{H}_{0.53}$
 - $E_A = 0.23 \text{ eV}$
 - $\tau_0 = 3.9 \times 10^{-12} \text{ s}$
 - $f = 0.64 \text{ MHz}$
 - $f = 0.87 \text{ MHz}$
 - $f = 1.64 \text{ MHz}$
Dispersion and Attenuation: TaV$_2$H$_x$

- Relaxation causes frequency dependent shift in real part of elastic constant

\[\delta f = \left(\frac{\Delta C}{C} \right) \left(\frac{f}{2} \right) \left(\frac{\omega \tau_R}{1 + \omega^2 \tau_R^2} \right) \]

In novel approach both ultrasonic loss and frequency data fitted using same parameters for H motion.
Results Summary: TaV$_2$H$_{0.34}$ and TaV$_2$H$_{0.53}$

- Favourable comparison of parameters derived by RUS and NMR
 - Slower long-range (hex to hex) hopping mechanism

<table>
<thead>
<tr>
<th>Sample</th>
<th>Activation energy E_A (eV)</th>
<th>Relaxation Time τ_{R0} (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RUS) TaV2H${0.34}$</td>
<td>0.22</td>
<td>5.7 E-12</td>
</tr>
<tr>
<td>(RUS) TaV2H${0.53}$</td>
<td>0.23</td>
<td>3.9 E-12</td>
</tr>
<tr>
<td>(NMR) TaV2H${0.22}$</td>
<td>0.23</td>
<td>2.5 E-12</td>
</tr>
<tr>
<td>(NMR) TaV2H${0.56}$</td>
<td>0.24</td>
<td>1.1 E-12</td>
</tr>
</tbody>
</table>
Internal Friction: TaV$_2$H$_{0.06}$

• Data for $x \leq 0.18$ could not be fit by single Arrhenius expression

\[
\tau_i = \tau_{oi} \exp\left(\frac{E_i}{k_B T}\right) \quad (i = 1, 2) \quad \rightarrow \quad \tau_R^{-1} = \tau_1^{-1} + \tau_2^{-1}
\]

![Graphs showing ultrasonic loss (1/Q) versus temperature (K) for TaV$_2$H$_{0.06}$ at different frequencies.](image)
Internal Friction: \(\text{TaV}_2\text{H}_{0.10} \) and \(\text{TaV}_2\text{H}_{0.18} \)

- Data for \(x \leq 0.18 \) fit by two Arrhenius rates
Results Summary: TaV$_2$H$_x$, $x \leq 0.18$

- Data for $x \leq 0.18$ could not be fit by single Arrhenius expression

<table>
<thead>
<tr>
<th>Sample</th>
<th>E_{A1} (eV)</th>
<th>E_{A2} (eV)</th>
<th>τ_{01} (s)</th>
<th>τ_{02} (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaV2H${0.06}$</td>
<td>0.27</td>
<td>0.08</td>
<td>6.2 E-13</td>
<td>5.0 E-09</td>
</tr>
<tr>
<td>TaV2H${0.10}$</td>
<td>0.28</td>
<td>0.10</td>
<td>5.2 E-13</td>
<td>11.0 E-09</td>
</tr>
<tr>
<td>TaV2H${0.18}$</td>
<td>0.27</td>
<td>0.12</td>
<td>9.6 E-13</td>
<td>6.0 E-09</td>
</tr>
</tbody>
</table>

For Ta$_2$: Debye temperature $\Theta_D \approx 250$ K, Debye frequency $\omega_D \approx 6 \times 10^{12}$ s$^{-1}$
(c.f. $\tau_{01}^{-1} \approx 1$-2×10^{12} s$^{-1}$)
Relaxation Rates and Processes

Tunneling through ground state (process 2), may be suppressed at higher H concentrations due to lattice expansion.

\[\tau_R^{-1} (s^{-1}) \]

\[\frac{1000}{T} (K^{-1}) \]

\[\text{TaV}_2\text{H}_x \]
Relaxation Strength: Snoek Relaxation

- Find Δc is linear in H concentration n

$$\frac{\Delta c}{c} = \frac{nD^2}{k_B T c}$$

- From RUS experiments derive value for D

Experimental verification of Snoek effect for H in an intermetallic compound

$D = 0.17$ eV
Isotope Effect: \(\text{TaV}_2\text{H}_{0.18} \) and \(\text{TaV}_2\text{D}_{0.17} \)
Low-T Internal Friction: TaV$_2$D$_{0.17}$

- Peaks observed for all modes of TaV$_2$D$_{0.17}$
 - Associated with rapid local motion of D
 - Non-Arrhenius behavior

- Other form of relaxation time!

$$\tau_L = \tau_{L0} \exp\left(-\frac{T}{T_0}\right)$$

- Estimate fraction of D atoms participating in local motion

$$n_l = 3 \times 10^{-3} n_h$$
Low-T Shear Modulus: TaV$_2$D$_{0.17}$ / TaV$_2$H$_{0.18}$

- Resonant tunneling can lead to decrease in sound velocity
 - Relaxation rate determined by tunneling matrix elements $\Delta_H (\Delta_D)$
 - Magnitude of effect depends on Δ_0^2
 - Expect $\Delta_H >> \Delta_D$

$$\Delta C_{H,D} = -\frac{nD^2\Delta^2_{H,D}}{E^3} \tanh \left[\frac{E}{k_B T} \right]$$

Modulus effect larger for H but relaxation attenuation not observed as H motion remains too rapid
Summary: H(D) motion in TaV$_2$H(D)$_x$

- Two frequency scales of motion clearly resolved

- Low-temperature internal friction peak (intra-hexagon hopping)
 - Corresponds to “fast motion” seen in NMR and QENS
 - Hopping within hexagon of “g” sites
 - Non-Arrhenius behavior
 - Strong isotope effect (peak not observed for H) suggest tunneling motion
 - Appears H hopping rate $>>$ 1 MHz down to 3 K

- High-temperature internal friction peak (inter-hexagon hopping)
 - Distributions not required to fit results
 - Suggestive of tunneling through ground state and excited state
 - ΔC linearly dependent on H concentration – Snoek-type relaxation
Strong-hydrogen related effects on the shear elastic modulus of the C15 Laves-phase compounds TaV$_2$H(D)$_x$
Elastic Constants: Temperature Dependence

- Lattice and electronic contributions to U or F
 - Thermal expansion also plays a role

 \[
 C_{ijkl}^S(T) = C_{ijkl}^0 + \left[\frac{\partial^2 U_e}{\partial e_{ij} \partial e_{kl}} \right] + \left[\frac{\partial^2 U_{\ell}}{\partial e_{ij} \partial e_{kl}} \right] + \frac{dC_{ijkl}^0}{dV} \Delta V(T)
 \]

- In many cases:
 - Electronic effects $\propto T^2$, often negligible
 - Lattice effects $\propto T^4$ at low T, $\propto T$ at high T

Situation changed by unusual electronic structure or phase transitions

Example: Cu

Bulk modulus K (GPa)

Temperature (K)
Shear Modulus: C15 Laves Materials

• C15 Laves-phase intermetallics (TCP materials)
 – High m.p. temperatures and relatively low densities
Shear Modulus: C15 Laves Materials

- Anomalous elastic properties also observed in other C15 Laves-phases
 - HfV$_2$ and ZrV$_2$ show stiffening in shear and Young’s moduli with *increasing T* from ~ 120 K to m.p.1

- Results described by an electronic band-structure model2,3
 - Typically addition of H to metal raises Fermi Level
 - Could elastic properties of TaV$_2$ be affected by additional H??

Shear Modulus: TaV$_2$H$_x$, 0 \leq x \leq 0.54
Shear Modulus: \(TaV_2H_x, \quad 0 \leq x \leq 0.10 \)
Relaxed Shear Modulus: TaV$_2$H$_x$, $0 \geq x \leq 0.54$
Overview of Theoretical Model

• Symmetry of C15 lattice leads to doubly-degenerate electronic energy levels at X point of IBZ
 - Linear dispersion

\[E_{1,2} = \pm \sqrt{s k_{1,2}^2 + D^2 e_4^2} \]

• Helmholtz free energy of system of N electrons

\[F = N E_F - 2 \sum k_B T \ln \left[1 + \exp \left(\frac{E_F - E_{bk}}{k_B T} \right) \right] \]

Expect unusual effects if \(E_F \) lies near double-degeneracy level!
Overview of Theoretical Model

- Calculate $G(T, x)$ based on this electronic model

$$G(T, x) = C_{bg} (T) - K \int_{0}^{\Omega} \frac{d\varepsilon}{\varepsilon} \left[\frac{\sinh(\varepsilon / k_B T)}{\cosh(\varepsilon / k_B T) + \cosh(E_F / k_B T)} \right]$$

- For $C_{bg}(T)$ utilize the semi-empirical Varshni Model

$$C_{bg} (T) = C_o - \frac{S}{\exp \frac{t}{T}} - 1$$

Same background, for all x
Comparison of Model to Experimental Data

Calculated $G(T)$ for various E_F (K)

Experimentally determined $G(T)$ for various H concentrations
Theoretical Model: Some Conclusions

• For TaV$_2$, E_F lies very near double-degeneracy level (~ 2 meV)

• Addition of H shifts E_F away from this level
 - Is shift compatible with electronic DOS of TaV$_2$H$_x$??

• NMR measurements1 show linear decrease of $N(E_F)$ vs. x over x range of present measurements!!
 - Use NMR-derived $N(E_F)$ to calculate shift

$$E_F = \int_0^x \frac{fdx'}{N(E_F, x')}$$

f = fraction of an electron added at Fermi level due to each H atom

A.V. Skripov, J. Alloys and Compd, 177, 63 (1991)
Theoretical Model: More Conclusions

• Results in good agreement?
 - Each H atom donates \(\approx 1 \) electron
 - \(E_F \) lies very near double-degeneracy point in TaV\(_2\) (\(\approx 2 \) meV)
 - Addition of H shifts \(E_F \) away from this level

\[f = 1 \]
Theoretical Model: Conclusions

• Discrepancy?
 - Calculations\(^1\) indicate that for TaV\(_2\) \(E_F \approx 1000\) K above double-degenerate levels??

• Simple model may still apply
 - Perhaps it is not the X-point which is responsible for softening in aggregate shear modulus
 - Single crystal measurements required
 - We found bulk modulus \(K(T)\) only weakly dependent on temperature

\[
K_V = \left(c_{11} + 2c_{12} \right) / 3 \\
G_V = \left(c_{11} - c_{12} + 3c_{44} \right) / 5
\]

\(^1\)F. Chu et al. Phil Mag. B 70, 867 (1994)

Voigt averages for a polycrystalline material containing cubic crystallites
General Conclusions

• Observed remarkable hydrogen-related electronic effect for shear modulus of TaV$_2$H$_x$

• Magnitude and temperature dependence highly dependent on x
 - Hydrogen to ‘tune’ elastic properties of Laves-phase materials?

• Results in good agreement with model detailing electronic contributions to single-crystal c_{44}

• Increase in E_F determined from elastic constant and NMR data in remarkable agreement

• Results indicate that H contributes approximately one electron to conduction band at Fermi level
Summary

• RUS has been used to make high quality ultrasonic loss and elastic constants measurements of TaV_{2}H(D)_{x} between 0.3 - 345 K
 - Loss and dispersion results used to derive parameters of H diffusion
 - Strong isotope effect on rapid local H(D) motion

• Remarkable electronic hydrogen-related effects on $G(T)$

• Use of ultrasound for exploring H motion in intermetallics has been extended

• Results extremely difficult to obtain with other acoustic techniques
Acknowledgments

Colorado State University
Prof. R. G. Leisure
Dr. J. E. Hightower
Dr. F. Willis
D. Agosta
S. Fairburn
J. Shakley
A. Aido

Forschungszentrum Karlsruhe
Dr. J. Weißmüller
Prof. H. Hahn
Dr. R. N. Viswanath
Dr. H. Rösner
Dr. D. Kramer
Dr. G. Balaji

Research at CSU supported by the US National Science Foundation