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Introduction

Introduction

This course is designed to introduce the basic techniques needed to study the dif-

ferential equations which arise in acoustics and vibration. There are no generally applicable

techniques for solving differential equations. There are specific techniques which work in

special cases, but in general solving an arbitrary system of differential equations is considered

a hopeless task. Luckily, some of the special cases are of physical interest.

There are several ways that differential equations are classified. The order of a dif-

ferential equation is the highest derivative appearing in the equation. A differential equation

is said to be linear if the unknown functions appear linearly, otherwise the equation is said to

be nonlinear. A differential equation in which only one independent variable is differentiated

is said to be an ordinary differential equation. If several independent variables are differenti-

ated then these derivatives are necessarily partial derivatives and the equation is said to be a

partial differential equation. A differential equation is said to be homogeneous if multiplying

the unknown function by a constant has the effect of multiplying the entire equation by a

constant.

Example 1.1: The n-dimensional wave equation,

(
∆− 1

c2
∂2

∂t2

)
p = 0,

is a second order linear partial differential equation.

..................

Example 1.2: The n-dimensional plate equation,

(
∆2 +K

∂2

∂t2

)
u = 0,

is a fourth order linear partial differential equation.

..................
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Example 1.3: Assuming a sinusoidal time dependence p(x, t) = f(x) sin(ωt) in the wave

equation one obtains the n-dimensional Helmholtz equation,

(
∆+

ω2

c2

)
f = 0,

a second order linear partial differential equation if n > 1. If n = 1 it is a second order linear

ordinary differential equation.

..................

Example 1.4: Newton’s law,

m
d2x

dt2
= F (x)

is a second order nonlinear ordinary differential equation except in the special case F = −kx
when it becomes a 1-dimensional Helmholtz equation.

..................

Example 1.5: The equations of lossless fluid mechanics; the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0,

and the Euler equation,

ρ
( ∂
∂t

+ v · ∇
)
v = −∇P

along with an isentropic equation of state, ρ = f(P ); are a system of nonlinear first order

partial differential equations. Here ρ is the density, p the pressure and v the velocity of the

fluid at a given point in time and space.

..................

In the above ∇ is the n-dimensional gradient operator

∇ · v =
n∑

j=1

∂vj
∂xj
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and ∆ is the n-dimensional Laplace operator

∆ = ∇ · ∇

=
n∑

j=1

∂2

∂x2j
.

Most of our time will be spent on linear problems. The solutions to a homogeneous

linear differential equation satisfy the principle of superposition. Let L be a linear differential

operator so that Lf = 0 is a homogeneous linear differential equation. Then for any functions

f1 and f2 and constants a and b

L
(
af1 + bf2

)
= aLf1 + bLf2.

In particular, if both f1 and f2 are solutions, Lf1 = 0 and Lf2 = 0, then af1 + bf2 is also a

solution. This is never the case for nonlinear equations.

Inhomogeneous linear differential equations are of the form

Lf = g

where g is known. If f1 and f2 are solutions of this inhomogeneous problem then

L(f1 − f2) = g − g = 0

so that f1 and f2 differ by a solution of the homogeneous problem Lf = 0.

If the solution to a differential equation is to represent a physical quantity it must

be real valued. However it is sometimes more convenient to find complex valued solutions.

For linear equations Lf = 0 with L and f both real, both the real and imaginary parts of f

are also solutions, and are real valued.

A large class of solvable (in the sense that they can be reduced to algebraic equations)

linear equations are those with constant coefficients. The solutions to such equations are

superpositions of exponential functions. That is because

d

dx
ekx = kekx

so that differentiation can be replaced by multiplication by a number, k.
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Example 1.6: An example of a linear system of ordinary differential equations with constant

coefficients is
(
2
d2

dx2
− d

dx
+ 1
)
u+ 3

d

dx
v − d2

dx2
w = 0

−2
d

dx
u+

( d2
dx2

− 2
)
w = 0

(
− d2

dx2
+ 2

d

dx

)
v +

d

dx
w = 0.

The general solution will be superpositions of solutions of the form


u(x)
v(x)
w(x)


 =



A
B
C


 ekx.

To see what restrictions are placed on the constants A, B, C and k substitute into the

differential equation. One obtains the algebraic equation



2k2 − k + 1 3k −k2
−2k 0 k2 − 2
0 −k2 + 2k k





A
B
C


 =




0
0
0


 .

Thus, k must be chosen so that the above matrix has determinant 0 and then, for such k,

the vector



A
B
C


 must be an eigenvector of eigenvalue 0.

..................

Example 1.7: If c is a constant then the n-dimensional wave equation has constant coeffi-

cients. The exponential solutions are the so-called plane wave solutions

p(x, t) = Aeik·x−iωt.

Substituting into the wave equation one finds that

k · k =
ω2

c2
.

..................

Example 1.8: Acoustics is typically based on a linear approximation to fluid dynamics.

Consider an undisturbed fluid at rest with constant density ρ0 and pressure P0 and no velocity.

Let primed variables denote small disturbances from this quiescent state:

ρ = ρ0 + ρ′,
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P = P0 + P ′

v = v′.

Expanding the equations of fluid dynamics in the primed variables and keeping only linear

terms one obtains, identifying ρ0 = f(P0),

ρ′ = f ′(P0)P
′,

f ′(P0)
∂P ′

∂t
+ ρ0∇ · v′ = 0

and

ρ0
∂v′

∂t
+∇P ′ = 0.

One finds plane wave solutions
(
P
v

)
=

(
A
B

)
eik·x−iωt

with

−f ′(P0)ωA+ ρ0k ·B = 0

and

−ρ0ωB+ kA = 0.

Note first that if k · B = 0 then A = 0 and the solution is trivial. Assuming that

k ·B 6= 0 the second equation implies that

k · kA = ρ0ωk ·B.

Substituting into the first equation one finds

ω2 =
k · k
f ′(P0)

.

Any k and ω satisfying this relation and any B with k ·B 6= 0 leads to a solution with

A =
ρ0ωk ·B
k · k .

The factor 1
f ′(P0)

is identified with the speed of sound squared.

..................
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Review of Linear Algebra

In this chapter the basic concepts of linear algebra are reviewed. Most often our

field of scalar quantities will be the field of complex numbers C, however, we will sometimes

have occasion to restrict our scalars to being real. Thus, when generality seems desirable,

the symbol K will be used to denote either the set of real numbers R or the set of complex

numbers C.

Vector Spaces:

Crudely put, a vector space is a set which is closed under linear superposition: for

vectors v and w, av+ bw is also a vector. Here a and b are scalars (ordinary numbers). Most

often our field of scalar quantities will be the field of complex numbers C, however, we will

sometimes have occasion to restrict our scalars to being real.

The precise definition is: V is vector space over K if the elements of V can be

multiplied by elements of K and added to each other so that given any a, b ∈ K and v, w ∈ V

av + bw ∈ V.

Example 2.1: R is a vector space over itself. C is both a vector space over itself and over

R.

..................

Example 2.2: The set of n-vectors

x =




x1
x2
...
xn




where xj ∈ R is a vector space over R. This space is called n-dimensional Euclidean space

and is denoted Rn.

Similarly, if xj ∈ C the space is called n-dimensional complex space and is denoted

Cn. Cn is a vector space over both R and C.
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..................

Example 2.3: The set of all complex valued functions of a real variable is a vector space

over both R and C since if f and g are any functions then af + bg is also a function. Note

that a function f is said to be 0, f = 0, only if f(x) = 0 regardless of x.

..................

Given a vector space V , N elements of V , v1, v2, . . . , vN , are said to be linearly

independent if the only linear combination of the vectors to add up to 0 is the trivial one in

which all the coefficients are 0: linear independent if

a1v1 + a2v2 + . . .+ aNvN = 0

only for a1 = a2 = . . . = aN = 0.

If v1, v2, . . . , vN are not linearly independent then there is a linear dependence re-

lation between them. That is, there are coefficients a1, a2, . . . , aN not all of which are 0, for

which

a1v1 + a2v2 + . . .+ aNvN = 0.

This means that these vectors are not independent in the sense that any one of them can be

expressed as a linear combination of the rest.

v

w

v
w

For N = 1 the situation is trivial: one vector is always linearly dependent on itself.

For N = 2 the vectors v1 and v2 are linearly dependent if they are proportional to each other:
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a1v1 + a2v2 = 0 =⇒ v2 = −a2

a1
v1. Geometrically, representing vectors in the usual way as

arrows pointing out from the origin in an n-dimensional Euclidean space, two vectors are

linearly dependent if they are parallel. Conversely, while one vector determines a line, two

linearly independent vectors determine a plane. Similarly, given two linearly independent

vectors v1 and v2 and a third vector v3, there is a linear dependence relation between v1, v2

and v3 only if v3 lies in the plane determined by v1 and v2. Otherwise v1, v2 and v3 determine

a 3-dimensional subspace of V .

In general, given v1, v2, . . . , vN ∈ V , the subspace of V given by the set of all linear

combinations

a1v1 + a2v2 + . . .+ aNvN

is itself a vector space and is called the vector space spanned by v1, v2, . . . , vN . The largest

number of linearly independent vectors among the v1, v2, . . . , vN is called the dimension of

this subspace. It can be shown that in an n-dimensional vector space V

i) Any n linearly independent vectors in V span V .

ii) No set of m vectors can span V if m < n.

iii) No set of m vectors is linearly independent if m > n.

It follows that, given any n linearly independent vectors b1, b2, . . . , bn in V , any vector v can

be written as a linear combination of the bj ,

v = c1b1 + c2b2 + . . .+ cnbn.

Here the cj are in K. This follows since V is n-dimensional and thus there must be a

linear dependence relation between any vector v and the set of the b′js. A set of n linearly

independent vectors in an n-dimensional vector space is called a basis for the vector space.

Example 2.4: Rn is an n-dimensional vector space over R since the vectors




1
0
0
...
0



,




0
1
0
...
0



,




0
0
1
...
0



, . . . ,




0
0
0
...
1




are linearly independent. These n vectors form a basis for Rn known as the standard basis.
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A non-standard basis for R3 is




1
0
−1


 ,




−1
2
0


 ,




0
1
1


 .

Similarly Cn is an n-dimensional vector space over C. However, Cn is also a 2n-

dimensional vector space over R since the vectors




1
0
0
...
0



,




i
0
0
...
0



,




0
1
0
...
0



,




0
i
0
...
0



,




0
0
1
...
0



,




0
0
i
...
0



,




0
0
0
...
1



, . . . ,




0
0
0
...
i




are linearly independent.

..................

Example 2.5: The set of nth degree polynomials with complex coefficients,

a0 + a1x+ a2x
2 + . . .+ anx

n,

is an (n+1)-dimensional vector space over C since the monomials

1, x, x2, . . . , xn

are a basis for this set. Note that the set of all polynomials with complex coefficients, without

restriction on degree, is infinite dimensional over C.

..................

An inner product on a vector space V is a function of two vectors, say v and w,

usually denoted by 〈v, w〉, which satisfies

i) 〈v, w〉 ∈ K

ii) 〈v, w〉 = 〈w, v〉
iii) 〈v, aw1 + bw2〉 = a〈v, w1〉+ b〈v, w2〉.
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iv) 〈v, v〉 > 0 if v 6= 0.

Here z is the complex conjugate of z, a and b are in K and w1 and w2 are in V .

Inner products are generalizations of the dot product in Rn. In fact, for x,y ∈ Rn,

〈x,y〉 = x · y is an inner product. In Cn the standard inner product is 〈x,y〉 = x · y. Once

one has an inner product one can speak of orthogonality. Two vectors, v, w, are orthogonal

if 〈v, w〉 = 0. Similarly, the norm of a vector is ‖v‖ =
√
〈v, v〉. An orthonormal basis for a

vector space is a basis whose elements are all mutually orthogonal and whose norms are all 1.

Recall that in the case of the standard inner product in Rn orthogonality means geometrically

perpendicular and norm means geometric length. vw
θ

v • w =    v w cos θ

If b1, . . ., bn is an orthonormal basis then

〈bj , bk〉 = δj,k.

The nice thing about an orthonormal basis is that if one wishes to express any vector v as a

linear superposition of the bj ,

v = c1b1 + c2b2 + . . .+ cnbn,

then the coefficients cj are easy to find:

cj = 〈bj , v〉.

Example 2.6: Let f and g be functions on [−1, 1]. Define

〈f, g〉 =
∫ 1

−1

f(x) g(x) dx.
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It’s easy to check that this is an inner product on the vector space of functions on [−1, 1].

Note that with respect to this inner product the functions

sn(x) = sin(nπx)

cn(x) = cos(nπx),

for n = 1, 2, 3, . . ., and c0 = 1√
2
are all mutually orthogonal. Further, they all have norm

1. The basic fact of Fourier analysis is that the span of these functions is large enough

function space to satisfy all of our needs. Thus, they can be used as if they were an ordinary

orthonormal basis. The precise statement is that if ‖f‖ is finite then, given the Fourier

coefficients

an =

∫ 1

−1

cn(x) f(x) dx

bn =

∫ 1

−1

sn(x) f(x) dx,

one has

lim
N→∞

∥∥∥f −
N∑

n=0

(
ancn + bnsn

)∥∥∥ = 0.

The way to read this expression is that any f with finite norm can be well approximated,

with respect to this norm, by superpositions of sine and cosine functions.

The difference between equality with respect to this norm and actual equality is

that the Fourier series can differ from the function but only on a set which is so small that it

doesn’t effect the integral giving the norm (most often an isolated point). This is the origin

of the Gibbs phenomenon.

It turns out to be true in a similar sense that any function with finite norm can be

well approximated by polynomials. However, the monomials fn(x) = xn are neither mutually

orthogonal nor of norm 1. They can be orthogonalized by the Gram-Schmidt procedure, and

then normalized (by dividing an unnormalized function by the square root of its norm).

The standard choice of orthogonal polynomials with respect to this norm are known as the

Legendre polynomials. The first few are

P0(x) = 1
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P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x)

P4(x) =
1

8
(35x4 − 30x2 + 3)

and so on. These functions are not normalized,

∫ 1

−1

Pj(x)
2 dx =

2

2j + 1
,

but can be used as if they formed an orthogonal basis.

..................

Matrices and Linear Operators:

Matrices arise in several ways. The most straightforward way is from systems of

linear equations: a system of m linear equations for n unknowns x1, x2, . . . , xn,

n∑

k=1

ajkxk = bj

for j = 1, 2, . . . ,m, can be written as




a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

am1 am2 · · · amn







x1
x2
...
xn


 =




b1
b2
...
bm




or

Ax = b

where A is the obvious m × n matrix, x ∈ Rn and b ∈ Rm. This looks very much like the

1-dimensional linear equation ax = b and should be thought of (as much as possible) in the

same way.
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Given an m× n matrix A the transpose of A, At, is the n×m matrix obtained by

exchanging rows for columns,

At =




a11 a21 · · · am1

a12 a22 · · · am2
...

... · · ·
...

a1n a2n · · · amn


 .

The adjoint of A, A∗, is the complex conjugate of the transpose,

A∗ =




ā11 ā21 · · · ām1

ā12 ā22 · · · ām2
...

... · · ·
...

ā1n ā2n · · · āmn


 .

We will restrict out attention to the casem = n in which there are as many equations

as unknowns. By analogy with the one dimensional case we would like to express the solution

of Ax = b as x = A−1b, if this can be done. Clearly this procedure works if A is invertible

in the sense that there is a matrix A−1 with A−1A = I (here I is the n× n identity matrix,

with 1 on the diagonal and 0 elsewhere).

If A is invertible then the only solution to Ax = 0 is the trivial solution x = 0. The

converse turns out to be true as well: if the only solution to Ax = 0 is the trivial solution

x = 0 then A is invertible. Also, it can be shown that A−1A = I implies that AA−1 = I

from which it follows that (At)−1 = (A−1)t.

If one writes the columns of A as vectors

aj =




a1j
a2j
...
anj




then

Ax = x1a1 + x2a2 + . . . xnan.

Thus Ax = 0 for x 6= 0 is a linear dependence relation between the columns of A. Similarly

Atx = 0 for x 6= 0 is a linear dependence relation between the rows of A (note that if the

rows of A are not linearly independent then the n equations in the linear system Ax = b

are not independent). It follows that A is invertible if either its columns or rows are linearly

independent.
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A final criteria for the invertibility of A is based on the determinant. The determi-

nant of an n × n matrix, detA, may be defined inductively as follows. If n = 1, so that A

is just a number, let detA = A. If n > 1 let A(jk) be the n− 1× n− 1 matrix obtained by

removing the jth row and kth column from A. Then define

detA =

n∑

k=1

(−1)ka1k detA
(1k).

Properties of the determinant are

det(AB) = detA detB.

If A′ is obtained from A by exchanging neighboring rows then detA′ = − detA. Similarly

if A′ is obtained from A by exchanging neighboring columns then detA′ = − detA.

The determinant is a bit abstract. Unfortunately it arises often. For example, it

turns out that A is invertible if and only if detA 6= 0. In fact, if detA 6= 0, there is an

explicit formula for A−1. If

A−1 =




α11 α12 · · · α1n

α21 α22 · · · α2n
...

... · · ·
...

αn1 αn2 · · · αnn




then

αjk =
(−1)j+k

detA
detA(kj).

To summarize: the following statements are equivalent.

i) For any b ∈ Cn the equation Ax = b has a solution.

ii) A is invertible.

iii) The columns of A are linearly independent.

iv) The rows of A are linearly independent.

v) detA 6= 0.

vi) The only solution of Ax = 0 is the trivial solution x = 0.

Example 2.7: The system of equations

2x− y + z = 1

−x+ 2y = −1

y − z = 2
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is equivalent to 


2 −1 1
−1 2 0
0 1 −1





x
y
z


 =




1
−1
2


 .

Using the formula one finds that

det




2 −1 1
−1 2 0
0 1 −1


 = −4 + 1− 1 = −4

and 


2 −1 1
−1 2 0
0 1 −1




−1

= −1

4




−2 0 −2
−1 −2 −1
−1 −2 3




so that 

x
y
z


 =

1

4




2 0 2
1 2 1
1 2 −3






1
−1
2




=




3
2

1
4

− 7
4


 .

..................

Example 2.8: If b1, . . ., bn is a basis for a vector space V , with inner product 〈·, ·〉, to find

the coefficients cj in the expansion v = c1b1+c2b2+ . . .+cnbn one must solve the n equations

〈bj , v〉 =
n∑

k=0

〈bj , bk〉ck.

It follows that


c1
...
cn


 =




〈b1, b1〉 · · · 〈b1, bn〉
... · · ·

...
〈bn, b1〉 · · · 〈bn, bn〉




−1


〈b1, v〉
...

〈bn, v〉


 .

Note that the condition that the matrix in this last expression be invertible is equivalent to

the linear independence of the basis vectors.
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..................

A linear transformation T on a vector space V is a function for which Tv ∈ V for

all v ∈ V and which is linear, T (av + bw) = aTv + bTw. Given a basis for V , b1, b2, . . . , bn,

any v ∈ V can be written

v = c1b1 + c2b2 + . . .+ cnbn.

If T is linear one has

Tv = c1Tb1 + c2Tb2 + . . .+ cnTbn.

But Tbj ∈ V can be written as a superposition of the bj ,

Tbj = a1jb1 + a2jb2 + . . .+ anjbn,

so that

Tv =
∑

jk

ckajkbj .

It follows that

Tv =
∑

j

αjbj

with 


α1

α2
...
αn


 =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

an1 an2 · · · ann







c1
c2
...
cn


 .

The matrix in this last expression is the matrix representing T in the basis b1, b2, . . . , bn.

Example 2.9: Let V be the vector space of polynomials of degree 3 or less. Then the

derivative operator is a linear transformation from V into itself. Explicitly, if

p(x) = a0 + a1x+ a2x
2 + a3x

3

is an element of V then the derivative of p is

d

dx
p(x) = a1 + 2a2x+ 3a3x

2.
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With respect to the basis {1, x, x2, x3} one has

d

dx
=




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0




in the sense that if one specifies a third degree polynomial by listing the coefficients of the

various powers in a 4 vector, arranged in increasing powers beginning with the constant term,

p(x) =



a0
a1
a2
a3


 ,

then one has

d

dx
p(x) =




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0






a0
a1
a2
a3




=



a1
2a2
3a3
0


 .

..................

A vector v spans a 1-dimensional subspace. Eigenvectors of a linear transformation

T are vectors which, under the action of T , are not moved out of the subspace they span.

That means that there is some number λ for which

Tv = λv.

λ is an eigenvalue of T and v is an eigenvector corresponding to λ.

Now consider matrices A with complex matrix elements ajk. Recall the adjoint of

A, A∗, is the matrix with matrix elements ākj , that is, the complex conjugate of the transpose

of A. There is a class of matrices called normal which satisfy A∗A = AA∗. The importance

of normal matrices is that their eigenvectors can be chosen to give an orthonormal basis.

While the concept of a normal matrix is a bit abstract, for us it will be sufficient to note

that self-adjoint matrices, those for which A∗ = A, are normal. Thus any self-adjoint n× n

matrix has n orthonormal eigenvectors which can be used as a basis.
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Note that given a self-adjoint matrix A and eigenvectors b1, b2, . . . , bn chosen to be

orthonormal one can form the matrix U whose columns are the bj . Then one finds that

U∗AU =




λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
... . . .

...
0 0 0 . . . λn




where λj is the eigenvalue corresponding to bj . Further, U
∗U = I so that 〈Uv, Uw〉 = 〈v, w〉.

Given any vector v one has

v =
n∑

j=1

〈bj ,v〉 bj .

But

U∗v =




〈b1,v〉
...

〈bn,v〉




so that U∗v is the vector of the coefficents of the expansion of v with respect to the basis of the

bj . Noting that U∗(Av) = (U∗AU)(U∗v) one sees that U∗AU is the matrix representation

of A with respect to the basis of eigenvectors bj .

Note that finding eigenvalues is equivalent to asking if there is any λ with

(A− λI)v = 0.

In turn, this is possible only if the secular equation,

det(A− λI) = 0,

is satisfied. In general this is an nth degree polynomial equation for λ which has at most n

roots.

Example 2.10: Consider the 2× 2 matrix

(
1 −1
−1 2

)
.

the secular equation is

(1− λ)(2− λ)− 1 = λ2 − 3λ+ 1 = 0
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which has roots

λ± =
3

2
±

√
5

2
.

To find eigenvectors we need to solve
(
0
0

)
=

[(
1 −1
−1 2

)
−
(

3
2 ±

√
5
2 0

0 3
2 ±

√
5
2

)](
x
y

)

=

(
− 1

2 ∓
√
5
2 −1

−1 1
2 ∓

√
5
2

)(
x
y

)
.

Although this is two equations they are not independent (since the determinant of the matrix

is zero). It follows that

(−1

2
∓

√
5

2
)x− y = 0.

The eigenvectors can be chosen to be
(

1
− 1

2 −
√
5
2

)
,

(
1
2 +

√
5
2

1

)
,

the first corresponding to λ+, the second to λ−.

..................

Example 2.11: The matrix (
1 1
0 1

)

is a simple example of a 2 × 2 matrix which only has one linearly independent eigenvector.

The secular equation is

(1− λ)2 = 0

so that there is only one eigenvalue, λ = 1. The eigenvectors must satisfy
(
0 1
0 0

)(
a
b

)
=

(
0
0

)

so that b = 0. Thus all eigenvectors are of the form

a

(
1
0

)

which is, up to linear lindependence, one vector.

..................
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Review of Calculus of Several Variables

Differentiation:

Derivatives of functions of one variable are straightforward to define:

df

dx
= lim

h→0

f(x+ h)− f(x)

h
.

Other notation for the derivative is f ′(x). Note that the equation for the line tangent to the

graph y = f(x) at the point (a, f(a)) is

y = f(a) + f ′(a)(x− a).

For functions of several variables this definition won’t work since h would have to

be a vector and one can’t divide by vectors. What is straightforward to define are the partial

derivatives

∂f

∂xj
= lim

h→0

f(x1, . . . , xj−1, xj + h, xj+1, . . . , xn)− f(x1, . . . , xn)

h
.

Let f : Rn → Rm be an m-dimensional vector. The 1-dimensional definition is

usually generalized by introducing an m× n matrix Df(x), depending on x, for which

lim
h→0

1

‖h‖
∥∥f(x+ h)− f(x)−Df(x)h

∥∥ = 0.

If such a matrix exists, it turns out there can be only one, and Df(x) is called the derivative

of f . Note that the derivative matrix gives the best linear approximation to f about x.

Luckily, if the derivative of f exists at a point x,

Df(x) =




∂f1
∂x1

. . . ∂f1
∂xn

... · · ·
...

∂fm
∂x1

. . . ∂fm
∂xn


 .

The partial derivative matrix might exist even if the derivative does not, but we will not have

occasion to deal with such pathologies. Further, if they are continuous, then mixed partial

derivatives are equal:
∂2f

∂xj∂xk
=

∂2f

∂xk∂xj
.
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Note that if f : Rn → R then

Df(x)t = ∇f.

Let f : Rn → Rm and g : Rk → Rn be functions. Recall the chain rule,

∂

∂xj
f
(
g(x)

)
=

n∑

k=1

∂f

∂xk

∣∣
g(x)

∂gk
∂xj

.

In this matrix notation the chain rule has an appealing form. Recall the notation (f ◦g)(x) =
f
(
g(x)

)
. The chain rule becomes matrix multiplication,

D(f ◦ g)(x) = Df
(
g(x)

)
Dg(x).

Example 3.1: Consider a partical moving under the influence of a potential energy V (x).

Let x(t) be the curve describing the partical’s trajectory; t is time. Recall that the force felt

by the partical is the gradient of V , F = ∇V while the velocity with which the partical moves

is v(t) = dx(t)
dt

. The rate of change of potential energy with time is

∂V
(
x(t)

)

∂t
= ∇V (x) · dx(t)

dt

= F · v.

This last expression is known as the mechanical power gained by the partical.

..................

Example 3.2: Let f : Rn → R be a function of n variables. Let x0 ∈ Rn. The direction

of ∇f(x0) is the direction of greatest increase of f at x0. The level surface of f at x0 is

orthogonal to ∇f(x0). In particular, ∇f(x) is normal to the surface given by f(x) = 0.

To see this one need only consider the curve x0 = x0 + d̂s. Then

df(x0 + d̂s)

ds

∣∣
s=0

= ∇f(x0) · d̂.

Clearly this is maximal when d̂ is in the same direction as∇f(x), and is zero when d̂ ⊥ ∇f(x).
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..................

Example 3.3: The formalism of Thermodynamics consists of arcane notation for variants

of the chain rule. In the simplest situations three macroscopic quantities are used to specify

the state of a system: pressure P , temperature T and density ρ. In general an equation

connecting these three variables, called an equation of state, is either derived or inferred from

the microscopic properties of the system. The equation of state can generally be written

F (P, ρ, T ) = 0

for some function F . In the case of an ideal gas F (P, ρ, T ) = P − ρRT where R is the gas

constant (Boltzman’s constant divided by particle mass) and one has the familiar

P = ρRT.

In particular, only two of the variables P , ρ, T are independent, however, one is free to decide

which. For example, in an ideal gas, if one decides that P and T should be the independent

variables then ρ is given by P
RT

.

It is common in thermodynamics to use a differential relation to express the equation

of state. Imagine that the state of the system varies with some parameter t. Then through

the equation of state the derivatives of P , T and ρ are related,

d

dt
F (P, ρ, T ) =

∂F

∂P

dP

dt
+
∂F

∂T

dT

dt
+
∂F

∂ρ

dρ

dt

= 0.

If, as an example, one decides that P and T should be the independent variables then ρ

becomes a function of P and T for which

dρ

dt
= −

∂F
∂P
∂F
∂ρ

dP

dt
−

∂F
∂T
∂F
∂ρ

dT

dt
.

By the chain rule

−
∂F
∂P
∂F
∂ρ

=
∂ρ

∂P
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and

−
∂F
∂T
∂F
∂ρ

=
∂ρ

∂T
.

In thermodynamics these equation are given the shorthand notation

dρ =
∂ρ

∂P

)
T
dP +

∂ρ

∂T

)
P
dT

with
∂ρ

∂P

)
T
= −

∂F
∂P
∂F
∂ρ

and
∂ρ

∂T

)
P
= −

∂F
∂T
∂F
∂ρ

.

In general, the notation ∂f
∂x

)
y
means choose x and y as the independent variables, solve the

equation of state to express the remaining variable as a function of x and y, substitute into

f and then differentiate with respect to x. Of course, if one can explicitly solve the equation

of state there is no need to use these implicit relations. For the case of the ideal gas law one

finds
dρ

ρ
=
dP

P
− dT

T
.

Now consider some quantity G(P, ρ, T ), G might be the entropy or the total energy.

Then
d

dt
G(P, ρ, T ) =

∂G

∂P

dP

dt
+
∂G

∂T

dT

dt
+
∂G

∂ρ

dρ

dt
.

But dρ
dt

can be expressed in terms of dP
dt

and dT
dt

as above, so that one has

d

dt
G(P, ρ, T ) =

(∂G
∂P

+
∂G

∂ρ

∂ρ

∂P

)dP
dt

+
(∂G
∂T

+
∂G

∂ρ

∂ρ

∂T

)dT
dt
,

generally written in the shorthand notation

dG =
∂G

∂P

)
T
dP +

∂G

∂T

)
P
dT

with
∂G

∂P

)
T
=
∂G

∂P
+
∂G

∂ρ

∂ρ

∂P
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and
∂G

∂T

)
P
=
∂G

∂T
+
∂G

∂ρ

∂ρ

∂T
.

In practice, one often solves for the dependent variable and substitutes into G, obtaining a

new function of 2 variables, for example G(P, P
RT

, T ), which can be differentiated without the

chain rule.

A function which arises in Acoustics is the entropy

S = S(P, ρ, T ).

Choosing P and ρ for the independent variables one has

S = S(P, ρ,
P

Rρ
).

Making the approximation that acoustic processes are isentropic (that is, occur without a

change in entropy) one has

S(P, ρ,
P

Rρ
) = const .

This is now a relation between ρ and P . Solving, if one can, gives

ρ = f(P )

for some function f , or, if one prefers,

P = g(ρ)

for some function g.

The quantity

g′(ρ0) =
∂P0

∂ρ0

)
S

arises in linear acoustics (Example 1.8) as the speed of sound squared. Note that

f ′(P0) =
∂ρ0
∂P0

)
S

=
1

g′(ρ0)
.

25



Multi-Variable Calculus

This quantity can be obtained without producing explicit functions g(ρ) or f(P ). Note that

the ideal gas law implies that
1

P
dP =

1

ρ
dρ+

1

T
dT.

The chain rule gives

dS =
∂S

∂P

)
ρ
dP +

∂S

∂ρ

)
P
dρ.

If the entropy is constant then any derivative of S is 0. In particular,

∂S

∂ρ

)
S
= 0 =

∂S

∂P

)
ρ

∂P

∂ρ

)
S
+
∂S

∂ρ

)
P

so that

∂P

∂ρ

)
S
= −

∂S
∂ρ

)
P

∂S
∂P

)
ρ

.

At this point one introduces the specific heats

cV = T
∂S

∂T

)
ρ
= T

∂S

∂P

)
ρ

∂P

∂T

)
ρ

and

cp = T
∂S

∂T

)
P
= T

∂S

∂ρ

)
P

∂ρ

∂T

)
P
.

Using the ideal gas law

cV = P
∂S

∂P

)
ρ

and

cp = −ρ∂S
∂ρ

)
P

so that
∂P

∂ρ

)
S
=
P

ρ

cp
cV
.

..................

Change of variables:

An important class of functions are the change of variables. These have n = m and

the determinant of their derivative matrix is non-zero. Let g be a change of variables. Then
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it can be shown that g is invertible. That is, for every x there is one y with x = g(y). y is

called g−1(x) and

D(g−1)(x) =
(
Dg(y)

)−1

.

Thus, if we are concerned with some function f(x) for which (f ◦ g)(y) is somehow simpler,

we can study f ◦ g and invert back to f later. If m = 1, that is f : Rn → R, then the chain

rule gives

D(f ◦ g)(y) = Df(x)Dg(y)

= ( ∂f
∂x1

. . . ∂f
∂xn

)




∂g1
∂y1

. . . ∂g1
∂yn

... · · ·
...

∂gn
∂y1

. . . ∂gn
∂yn




or, taking transposes,




∂
∂y1

...
∂

∂yn


 (f ◦ g) =




∂g1
∂y1

. . . ∂gn
∂y1

... · · ·
...

∂g1
∂yn

. . . ∂gn
∂yn







∂
∂x1

...
∂

∂xn


 f.

Often one sees this formula written in shorthand, setting x = g(y) and writing




∂
∂y1

...
∂

∂yn


 =




∂x1

∂y1
. . . ∂xn

∂y1

... · · ·
...

∂x1

∂yn
. . . ∂xn

∂yn







∂
∂x1

...
∂

∂xn


 .

Further, since the matrix on the right is a function of y, one obtains a formula for the change

of variables in the gradient operator,




∂
∂x1

...
∂

∂xn


 =




∂x1

∂y1
. . . ∂xn

∂y1

... · · ·
...

∂x1

∂yn
. . . ∂xn

∂yn




−1


∂
∂y1

...
∂

∂yn


 .

Example 3.4: Spherical coordinates in 3-dimensions can be given by



x
y
z


 =



r sin θ cosφ
r sin θ sinφ
r cos θ


 .
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θ

Φ

r
The matrix of partial derivatives for this transformation is




∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ


 =




sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0




and has determinant r2 sin θ. Note that this change of variables is singular at r = 0 and

sin θ = 0. The singularity at sin θ = 0 is fairly benign, however, this change of variables does

introduce complications at r = 0.

To express the Cartesian gradient in spherical coordinates use the formula above:




∂
∂x
∂
∂y
∂
∂z


 =




sin θ cosφ sin θ sinφ cos θ
r cos θ cosφ r cos θ sinφ −r sin θ
−r sin θ sinφ r sin θ cosφ 0




−1


∂
∂r
∂
∂θ
∂
∂φ




=




sin θ cosφ 1
r
cos θ cosφ − sinφ

r sin θ

sin θ sinφ 1
r
cos θ sinφ cosφ

r sin θ

cos θ − 1
r
sin θ 0






∂
∂r
∂
∂θ
∂
∂φ




or

∂

∂x
= sin θ cosφ

∂

∂r
+

1

r
cos θ cosφ

∂

∂θ
− sinφ

r sin θ

∂

∂φ
,

∂

∂y
= sin θ sinφ

∂

∂r
+

1

r
cos θ sinφ

∂

∂θ
+

cosφ

r sin θ

∂

∂φ

28



Multi-Variable Calculus

and

∂

∂z
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
.

To compute the Laplace operator in spherical coordinates, substitute the above

expressions into ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . After a somewhat long calculation, making sure to

use the product rule for differentiation ( ∂
∂x
f(x) ∂

∂x
= ∂f

∂x
∂
∂x

+ f(x) ∂2

∂x2 ), one finds

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

( 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
. (3.1)

Two other important changes of variables are polar coordinates in R2,

(
x
y

)
=

(
r cos θ
r sin θ

)

and cylindrical coordinates in R3,



x
y
z


 =



r cos θ
r sin θ
z


 .

..................
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Taylor expansions:

Taylor’s formula is one of the more useful tools around. In one dimension it reads

f(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2 + . . .+

1

n!
f (n)(a)(x− a)n + . . . .

The question of how many terms to keep in this sum depends on the application, as does

the choice of a. If the infinite series converges then f is said to be analytic at a. If f is not

analytic at a the series might still be useful. It often happens that, even though the entire

series diverges, the first few terms in the series are a reasonable approximation to f near a.

Example 3.5: Consider sinx. It turns out that sin is analytic for all x. Even though sinx

is analytic about x = 0 so that the Taylor series for sinx about x = 0,

sinx =

∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1,

converges, if x is not very close to 0 one needs to keep a prohibitively large number of terms

to get a good approximation. In order to uniformly approximate sinx for some range of x

using relatively low order polynomials one needs to piece together different expansions about

different points.

Consider x ∈ [0, π2 ]. About x = π
2 it is

sinx =

∞∑

n=0

(−1)n

(2n)!
(x− π

2
)2n.

To get a good uniform approximation over this interval it suffices to use these two expansions

up to order 5. Between 0 and π
4 use the expansion about 0. Between π

4 and π
2 use the

expansion about π
2 .

..................

A convenient formula for the error in Taylor series is available. Write

f(x) =
N∑

n=1

1

n!
f (n)(a)(x− a)n + EN (f, a, x).
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The error E is given by

EN (f, a, x) =
1

(N + 1)!
f (N+1)(c) (x− a)N+1

where c is unknown, but is between a and x. It is often possible to bound the derivatives of

a function over some interval, giving a bound on the error. For example, for all n,

|d
n sinx

dxn
| ≤ 1

so that approximating sinx about x = 0 by an nth order Taylor polynomial incurs an error

no larger than

1

(N + 1)!
|x|N+1.

To obtain a Taylor expansion for functions of several variables one needs only apply

the one variable formula several times. In, say, 3 dimensions, first do a Taylor expansion in

x. The coefficients depend on y and z. Expand them in y, and then again in z. One obtains

f(x, y, z) =

N∑

j+k+n=0

1

j!k!n!

∂j+k+nf

∂xj∂yk∂zn
∣∣
x=a,y=b,z=c

(x− a)j(y − b)k(z − c)n + . . . .

This formula gives us a way to look for local max and min for functions of several

variables. Again, at a local max or min the graph of the function must flatten out (think of

the top of a hill, at the very top you’re neither climbing up nor down). Thus one must have

∇f = 0 (a max or min in any direction). To second order the Taylor expansion becomes

(setting a = b = c = 0)

f(x, y, z) = f(0) +∇f(0) ·



x
y
z


+

1

2



x
y
z


 ·




∂2f
∂x2

∣∣
0

∂2f
∂x∂y

∣∣
0

∂2f
∂x∂z

∣∣
0

∂2f
∂x∂y

∣∣
0

∂2f
∂y2

∣∣
0

∂2f
∂y∂z

∣∣
0

∂2f
∂x∂z

∣∣
0

∂2f
∂y∂z

∣∣
0

∂2f
∂z2

∣∣
0






x
y
z


+ . . .

The second derivative matrix




∂2f
∂x2

∣∣
0

∂2f
∂x∂y

∣∣
0

∂2f
∂x∂z

∣∣
0

∂2f
∂x∂y

∣∣
0

∂2f
∂y2

∣∣
0

∂2f
∂y∂z

∣∣
0

∂2f
∂x∂z

∣∣
0

∂2f
∂y∂z

∣∣
0

∂2f
∂z2

∣∣
0
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is symmetric and thus has three orthogonal eigenvectors with real eigenvalues. Let these

eigenvalues be λ1, λ2 and λ3 and let the corresponding eigenvectors be v(1), v(2) and v(3).

Assume they are normalized. Then one can write



x
y
z


 = t1v

(1) + t2v
(2) + t3v

(3)

where

tj = v(j) ·



x
y
z


 .

Thus, if ∇f(0) = 0, then

f(x, y, z) = f(0) +
1

2

(
λ1t

2
1 + λ2t

2
2 + λ3t

2
3

)
.

If all the λj > 0 one has a min. If all the λj < 0 one has a max. If some λj < 0 while

others are > 0 then one has a saddle, neither max nor min (like a mountain pass between

two peaks). If any of the λj = 0 then it’s not clear what’s happening and one must do more.

Integration:

Integration of functions of one variable is relatively straightforward. The integral of

a function of one variable is defined geometrically to be the area between the graph of the

function and the x-axis, with a positive contribution from the part above the x-axis and a

negative contribution from the part below. Analytically, one has the Fundamental Theorem

of Calculus which says that derivatives and integrals undo each other,

∫ x

a

f ′(t) dt = f(x)− f(a)

or
d

dx

∫ x

a

g(t) dt = g(x).

Thus, integration of functions of one variable is reduced to guessing at anti-derivatives. Recall

that inverse to the chain rule one has the technique of substitution (one dimensional change

of variables), ∫ b

a

f(x) dx =

∫ g−1(b)

g−1(a)

f
(
g(y)

)
g′(y) dy
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and inverse to the product rule one has integration by parts

∫ b

a

f(x)g′(x) dx = f(x)g(x)
∣∣b
a
−
∫ b

a

f ′(x)g(x) dx.

Numerically, efficient algorithms can be devised to estimate areas under curves.

Example 3.6: Integration by parts is sometimes usefull in generating asymptotic expansions

to integrals. A classic example is the Riemann-Lebesgue lemma which is the J = 1 version of

the following.

Let f : R −→ R be J times differentiable with the nth derivatives |f (n)| integrable
over R for n = 0, 1, 2, . . . , J . Then necessarily f (n)(±∞) = 0. Consider the large ω behavior

of the Fourier transform of f ,

f̂(ω) =
1√
2π

∫ ∞

−∞
f(t)eiωt dt.

Noting that

eiωt =
1

iω

deiωt

dt

and integrating by parts J times one finds that

f̂(ω) =
(−1)J

(iω)J
1√
2π

∫ ∞

−∞
f (J)(t)eiωt dt.

It follows that

|f̂(ω)| ≤ 1

ωJ

1√
2π

∫ ∞

−∞
|f (J)(t)| dt

so that the Fourier transform goes to zero as ω → ∞ at least as fast as 1
ωJ . If J = ∞ then

the Fourier transform is said to go to zero “exponentially fact”. If J is finite and f does not

have an intrgrable J + 1 derivative then its Fourier transform decreases precisely as 1
ωJ as

ω → ∞.

Another example is provided by the large x asymptotic expansion for the integral

(related to the Error function) ∫ ∞

x

e−t2 dt.

Using

e−t2 = − 1

2t

de−t2

dt
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and integrating by parts repeatedly one finds

∫ ∞

x

e−t2 dt =
1

2x
− 1

4x3
+

3

8x5
+ . . . .

..................

Integration of functions of several variables is a problem. For one thing, the possible

regions one can integrate over increases in complexity as the number of dimensions increases.

Further, the only analytical tool available is to transform an integral over several variables into

several integrals over one variable, and this can be done only for relatively simple functions

integrated over extremely simple domains. In addition, while numerical methods exist to

estimate integrals over several variables they are by no means as efficient as the one variable

algorithms.

To attempt to simplify integrals over several variables there are essentially only two

tricks available. The first is to use a change of variables, if one can be found, which either

simplifies the function which is being integrated or the domain over which one is integrating.

If g is an n-dimensional change of variables then

∫

D

f(x) dnx =

∫

g−1(D)

f
(
g(y)

)
| det

(
Dg(y)

)
| dny.

Here g−1(D) is the set of points that gets mapped to D by g. The factor det
(
Dg(y)

)
is

known as the Jacobian determinant for the change of variables. Note the absolute value.

(Why is there no absolute value in the 1-dimensional case?)

Example 3.7: Let D be the 3-dimensional ball of radius R centered at the origin. Let q

be a vector in R3 and consider ∫

D

eq·x dx dy dz.

First, choose the coordinate system so that q is parallel to the z axis and let

q =




0
0
q


 .
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Thus q · x = qz. Then change variables to spherical coordinates so that D becomes simple.

The points that get mapped to D in spherical coordinates are r ∈ [0, R], θ ∈ [0, π] and

φ ∈ [0, 2π). Thus

∫

D

eq·x dx dy dz =

∫ 2π

0

∫ π

0

∫ R

0

eqr cos θ r2 sin θ dr dθ dφ.

The integral over φ can be done immediately. To do the integral over θ make a one dimensional

change of variables η = cosθ. Then dη = − sin θ dθ and

∫ 2π

0

∫ π

0

∫ R

0

eqr cos θ r2 sin θ dr dθ dφ = 2π

∫ 1

−1

∫ R

0

eqηrr2 dr dη

=
2π

q

∫ R

0

(
eqr − e−qr

)
r dr

= 2π
[(R
q2

− 1

q3

)
eqR +

(R
q2

+
1

q3

)
e−qR

]
.

..................

The second tool is the n-dimensional generalization of the fundamental theorem of

calculus called Stoke’s theorem. In it’s general form it is deceptively complex and requires

a lot of mathematical machinery just to write down. This complexity arises both from the

variety of surfaces over which one can integrate in n dimensions as well as from the variety

of ways one can take a first derivative.

For our purposes it is sufficient to restrict our attention to two simple low dimen-

sional cases known as Stoke’s and Gauss’ theorem (classically, Stoke’s theorem was the low

dimensional case, when the generalization was found it was also called Stoke’s theorem).

For functions f : R2 → R2 there are two types of first derivatives of interest. The

divergence of f is a scalar given by

∇ · f = ∂f1
∂x

+
∂f2
∂y

.

Similarly the curl is also a scalar given by

∇× f =
∂f2
∂x

− ∂f1
∂y

.
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For functions f : R3 → R3 there are also two types of first derivatives of interest. The

divergence of f is a scalar given by

∇ · f = ∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

.

However the curl is a vector given by

∇× f =




∂f3
∂y

− ∂f2
∂z

∂f1
∂z

− ∂f3
∂x

∂f2
∂x

− ∂f1
∂y


 .

Both Stoke’s and Gauss’ theorem deal with functions of two or three variables.

Gauss’ theorem for functions of three variables is as follows: let V be a volume in R3 denote

by ∂V the boundary of V and by n the outward pointing unit normal vector field to ∂V .

Then if u : R3 → R3 is a vector field

∫

V

∇ · u d3x =

∫

∂V

n · u dσ.

Here dσ is the surface element on ∂V . A general discussion of surface elements is beyond

the scope of this course. In general it is required to have a parameterization of the surface,

x(v, w), and a change of variables in a neighborhood of the surface from x, y, z to v, w, t

where t is the distance along the normal vector from the surface.

Finding a surface element is simplified if a change of variables can be found so that

the surface in question is obtained by holding one of the new variables constant. For example,

consider a sphere of radius R. In spherical coordinates this is a surface of constant r, r = R.

The volume element in spherical coordinates is

r2 sin θ dθ dφ dr.

Thus, the surface element to a sphere of radius R can be taken to be R2 sin θ dθ dφ.

Normal vectors are easier. Consider a surface given by an equation

f(x) = 0.

Recall that ∇f is a vector pointing in the direction in which f changes most rapidly. This

implies that ∇f is normal to the surface.
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Example 3.8: Consider a fluid. As before let ρ(x) and v(x) be the density and velocity at

point x. Then ρv is the mass flux in the system. It gives the mass per unit area and time

transported in the direction of v. Given a volume V the change in mass in V is given by

∂

∂t

∫

V

ρ d3x = −
∫

∂V

ρv · n dσ.

That is, the change of mass in V is negative of the rate at which mass enters or leaves V . By

Gauss’ theorem ∫

∂V

ρv · n dσ = −
∫

V

∇ · (ρv) d3x.

Since this must be true for any volume V one can conclude that the equation of continuity,

∂ρ

∂t
= −∇ · (ρv)

must be true.

..................

Stokes theorem relates the integral of the curl of a function over a surface to the

integral of the function over the boundary of the surface. Let S be a surface in R3. Then

∫

S

(∇× u) · n dσ =

∫

∂S

u · dl.

Here dl is the line element over the boundary ∂S of S. Line elements are easier to handle

than surface elements. If x(t) is a parameterization of a curve then the line element along

this curve is

dl = x′(t) dt.

An identity which follows from Gauss’ theorem and which is used often in Acoustics

is Green’s theorem. It is a 3-dimensional version of integration by parts. Let f and g be

functions on R3. Green’s theorem states that

∫

v

(
f∆g − g∆f

)
d3x =

∫

∂V

(
f∇g − g∇f

)
· n dσ.
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It follows from Gauss’ theorem on noting that

f∆g − g∆f = ∇ ·
(
f∇g − g∇f

)
.

Dirac delta function:

The Dirac delta function is not a function at all, but is useful notation for the linear

transformation which takes a function into it’s value at a given point, say w. The rule is

∫

V

f(x)δ(x−w) dnx =
{
f(w) if w ∈ V
0 if w /∈ V .

Note that this is a linear operation. An integral with a delta function in it is easy, it’s not

an integral at all.

Example 3.9: Let f be continuous at y and let gǫ be any family of functions satisfying

lim
ǫ↓0

gǫ(x) = 0

if x 6= 0 and ∫ ∞

−∞
gǫ(x) dx = 1

for all ǫ > 0. Then

lim
ǫ↓0

∫ ∞

−∞
f(x)gǫ(x− y) dx = f(y).

In this sense

lim
ǫ↓0

gǫ(x− y) = δ(x− y).

Examples of such families are

gǫ(x) =

{
0 if |x| > ǫ
1
2ǫ if |x| < ǫ

or

gǫ(x) =
1√
πǫ
e−

1
ǫ
x2

.
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Example 3.10: If f is continuous at y note that, ignoring the singularity at y = 0 and using

formal integration by parts,

∫ ∞

−∞
f(x)

d2

dx2
|x− y| dx = lim

ǫ↓0

∫ y+ǫ

y−ǫ

f(x)
d2

dx2
|x− y| dx

= f(y) lim
ǫ↓0

d

dx
|x− y|

∣∣
x=y−ǫ

x = y + ǫ

= 2f(y).

In this sense
d2

dx2
|x− y| = 2 δ(x− y).

..................

There is a subtlety under change of variables. Let g be a change of variables. Then,

taking the integral notation above seriously (even though δ(x) is really nonsense) one has,

assuming that 0 ∈ V ,

∫

V

f(x)δ(x) dnx =

∫

g−1(V )

f
(
g(y)

)
δ
(
g(y)

)
| detDg(y)| dny

= f(0).

Thus we find that in order for this notation to be self-consistent we must have

δ
(
g(y)

)
| detDg(y)| = δ

(
y − g−1(0)

)
.

One often sees this formula expressed by saying that under the change of variables g, δ(x)

becomes
1

| detDg(y)|δ
(
y − g−1(0)

)

or even
1

| detDg
(
g−1(0)

)
|δ
(
y − g−1(0)

)
.

Unfortunately this doesn’t work if g is singular where it’s 0, that is, if

detDg
(
g−1(0)

)
= 0.
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This is the case in polar coordinates where detDg(r, θ, φ) = r2 sin θ, and g−1(0) means r = 0.

In polar coordinates there are many ways to see what’s going on, but the simplest is to guess.

One wants
∫
f(x)δ(x) dnx =

∫
f(r sin θ cosφ, r sin θ sinφ, r cos θ) r2 sin θ δ(x) dr dθ dφ

= f(0).

In δ(x) one expects a factor of 1
r2
, by analogy with the regular case, and clearly a factor of

δ(r) is needed, but what does one do with θ and φ? The problem is that, at r = 0, θ and φ

make no difference. However, formally putting r = 0 in f and integrating over θ and φ gives

the correct answer up to a factor of 4π. Thus, choosing

δ(x) =
1

4πr2
δ(r)

seems to be a good guess. It turns out to be right.

Example 3.11: Here we show that in three dimensions

∆
1

‖x− y‖ = −4πδ(x− y)

in the sense that if f is continuous at 0 then

∫
f(x)∆

1

‖x− y‖ d3x = −4πf(y).

First note that the shift of variables x 7→ x−y is a change of variables whose partial

derivative matrix is the identity matrix

I =




1 0 0
0 1 0
0 0 1


 .

Thus, under a shift of variables, partial derivatives don’t change. It follows that the formula

is true in general if it’s true for y = 0.

The representation of ∆ in spherical coordinates developed in Example 3.4 is valid

everywhere except at r = 0. For r 6= 0 it shows that

∆
1

‖x‖ = 0.
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Thus only r = 0 can contribute to this integral. To see what’s happening at r = 0 integrate

over a small ball of radius ǫ centered at x = 0, B, and then let ǫ ↓ 0. Since f is continuous

at 0 it approaches f(0) and can be replaced by f(0) in the integral. One has from Gauss’

theorem ∫

B

∆
1

‖x‖ d3x =

∫

∂B

n ·
(
∇ 1

‖x‖
)
dσ

= −
∫ 2π

0

∫ π

0

sin θ dθ dφ

= −4π.

Here, that

n · ∇ =
∂

∂r

on the surface of a sphere, is used.

..................
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Review of Complex Analysis

The set of complex numbers, C, is a 2-dimensional vector space over R with, in

addition to the vector space structure, a multiplication defined. The standard basis for C is

the set {1, i} where 1 is the real number and i is anything whose square is −1, i2 = −1. Any

complex number can be written as a linear combination x+ iy where x and y are real. Given

z = x+ iy, x is called the real part of z, x = Re z, and y the imaginary part, y = Im z. The

complex conjugate of z is z̄ = x− iy. z
θ

y xz=x+iy|z|
Taking seriously the representation of complex numbers as 2-dimensional vectors

over R and representing them graphically using the real part as the x component and the

imaginary part as the y component one sees that |z| defined by

|z|2 = z̄z

is the Euclidean norm
√
x2 + y2. In polar coordinates z = x+ iy becomes

z = |z|(cos θ + i sin θ)

where θ is the angle between the x-axis and the vector (x, y). It is a fact, known as DeMoivre’s

Theorem that

eiθ = cos θ + i sin θ. (4.1)

This can be seen as a definition of the complex exponential once one has checked that it has

all the desired properties. There are many ways to do this. The easiest is to note that

d

dθ
(cos θ + i sin θ) = i(cos θ + i sin θ),
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as one expects from eiθ, and, setting θ = 0 one obtains 1, also as expected.

Example 4.1: The set of 2×2 antisymmetric matrices with real matrix elements and equal

diagonal elements is algebraically identical to the set of complex numbers. Such a matrix is

of the form (
x −y
y x

)

for real x and y. This is a 2-dimensional vector space over R with a basis given by

(
1 0
0 1

)
,

(
0 −1
1 0

)
.

Note that (
0 −1
1 0

)(
0 −1
1 0

)
= −

(
1 0
0 1

)

so that

(
0 −1
1 0

)
acts like i.

Many interesting conclusions can be drawn from this representation. For example,

note that multiplying a complex number z by eiθ rotates the vector representing z through

an angle θ. It follows that

eiθ =

(
cos θ − sin θ
sin θ cos θ

)

is the matrix which rotates 2-dimensional vectors through an angle θ.

..................

Functions, f : C → C, given by

f(x+ iy) = u(x, y) + iv(x, y)

are really functions from R2 → R2 given by

F (x, y) =

(
u(x, y)
v(x, y)

)
.

This leads to some subtleties when one tries to speak of differentiation. On the one hand,

one would like the derivative of f to be a complex valued function f ′. On the other, the
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derivative of F is a 2 × 2 matrix given by the partial derivative matrix. The condition that

these two notions be identical leads to the notion of an analytic function as follows.

Note that multiplication by a complex number a+ ib is linear and induces a linear

transformation of R2. Explicitly

(a+ ib)(x+ iy) = ax− by + i(ay + bx)

is the same as (
ax− by
ay + bx

)
=

(
a −b
b a

)(
x
y

)
.

A function f = u+ iv : C → C is said to be analytic if the derivative matrix of the associated

function from R2 → R2 corresponds, as a linear transformation, to multiplication by a

complex number. Explicitly, if

DF =

( ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

=

(
a −b
b a

)

for some numbers a and b then f = u + iv is analytic. The Cauchy-Riemann Equations for

an analytic function follow immediately:

∂u

∂x
=
∂v

∂y
= a

and

−∂u
∂y

=
∂v

∂x
= b.

The derivative of f is then defined to be

f ′ = a+ ib.

Analyticity (or complex differentiability) turns out to be a very strong condition,

much more restrictive than ordinary differentiability. Analytic functions are extremely regular

in their behavior. It turns out that if a function f is analytic at some point, say w ∈ C, then

f is infinitely differentiable at w and the Taylor series for f about w converges (this is often

taken as an alternative definition of analyticity). In fact the radius of convergence of the

Taylor expansion is the distance from w to the closest point of non-analyticity. For example,

the expansion

1

1 + z
=

∞∑

n=0

(−1)nzn

converges for all z with |z| < 1.
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Example 4.2: A function f is analytic if it is complex differentiable. Checking for complex

differentiability amounts to checking that the Cauchy-Riemann equations hold. This is often

straightforward, although sometimes checking that the Taylor series converges is easier. That

ex+iy = ex
(
cos y + i sin y

)

is analytic everywhere follows easily from the Cauchy-Riemann equations. That any polyno-

mial

p(z) = a0 + a1z + a2z
2 + . . .+ anz

n

is analytic everywhere follows since p(z) is its own Taylor series and, since it is a finite sum,

converges everywhere. If j < 0 the function zj is analytic everywhere except at z = 0 where

it’s not differentiable and if j > 0 but is not an integer then zj is also analytic everywhere

except at z = 0, although if j > 1 the reason is subtle (see below).

The Cauchy-Riemann equations show that the function f(z) = z̄, complex conjuga-

tion, is not analytic anywhere. Neither is any polynomial in z̄.

..................

Complex integration is also more involved than real integration since it is an essen-

tially 2-dimensional concept and necessarily involves integration over curves. Let Γ be some

curve in C. In order to integrate a function f over Γ one needs a parameterization of Γ, that

is a function w : [a, b] → C whose image is Γ. Then

∫

Γ

f(z) dz =

∫ b

a

f
(
w(t)

)
w′(t) dt.

Clearly, given a geometric curve Γ there are many ways to parameterize it. For example, the

circle of radius r centered at 0 can be parameterized by w(t) = reit for t ∈ [0, 2π] as well as

by w(t) = t + i
√
r2 − t2 for t ∈ [0, r], or even w(t) = rti for t ∈ [1, e2π]. However, one can

show that the integral over Γ is independent of what function w(t) is used to parameterize

it. Note as well that there are no subtleties involved with w′ since w is a function (or in fact

two real valued functions) of one variable.
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A great aid in integrating analytic functions is Cauchy’s Theorem which is a direct

application of Gauss’ theorem to the real and imaginary parts of fw′. Consider a region S.

Then Cauchy’s theorem can be stated as
∫

∂S

f(z) dz = 0 (4.2)

if f is analytic in S. The reason is simple. Let f = u + iv and w(t) = x(t) + iy(t) be a

parameterization of ∂S. Then

fw′ = ux′ − vy′ + i(uy′ + vx′)

so that
∫

∂S

f(z) dz =

∫ (
u
(
x(t), y(t)

)

−v
(
x(t), y(t)

)
)
·
(
x′(t)
y′(t)

)
dt+ i

∫ (
v
(
x(t), y(t)

)

u
(
x(t), y(t)

)
)
·
(
x′(t)
y′(t)

)
dt

=

∫

∂S

(
u
−v

)
· dl+ i

∫

∂S

(
v
u

)
· dl

where

dl =

(
x′(t)
y′(t)

)
dt

is a line element along ∂S. Gauss’ law implies that
∫

∂S

(
u
−v

)
· dl =

∫

S

∇ ·
(
u
−v

)
d2x

=

∫

S

(∂u
∂x

− ∂v

∂y

)
d2x

and that ∫

∂S

(
v
u

)
· dl =

∫

S

∇ ·
(
v
u

)
d2x

=

∫

S

(∂v
∂x

+
∂u

∂y

)
d2x.

However, if f is analytic then u and v satisfy the Cauchy-Riemann equations which state

that the integrands in the two expressions above are 0.

An immediate consequence of Cauchy’s theorem is the notion of path independence.

Let f : C → C and let Γ1 and Γ2 be different curves in C, open or closed, for which either

curve may be continuously deformed into the other without encountering any point at which

f is not analytic. In particular, Γ1 and Γ2 enclose a region in which f is analytic. Then
∫

Γ1

f(z) dz =

∫

Γ2

f(z) dz.
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Γ2

Γ1

z2

z1

S

t

n

Γ2

Γ1n

n

t
t

S

In the figures above two situations are depicted. In one the points z1 and z2 are

connected by two dinstinct paths. The region S is the interior of the closed curve formed

by the union of Γ1 and Γ2. In the other both curves Γj are closed, but one is contained in

the interior of the other. The region S is the annular region between the two curves. The

orientation of the boundary ∂S is determined by the convention that the outward pointing

normal n and the tangent t have the orientation of x̂ and ŷ respectivlely. The orientations

of the curves Γj are indicated with arrow heads. Note that the orientations of the Γj and ∂S

need not coincide.

2Γ

Γ1

R

Example 4.3: Since eiz

z+i
is analytic in the upper half-plane one may, for any R > 0, replace

the integral over [−R,R] (the contour Γ1 in the figure above) by the integral over the semi-

circle of radius R (the contour Γ2 in the figure above). Parameterizing the semi-circle with

Reiθ and then letting R→ ∞ one has

∫ ∞

−∞

eix

x+ i
dx = lim

R→∞

[ ∫ −R

−∞

eix

x+ i
dx+

∫ 0

π

eiReiθ

Reiθ + i
iReiθ dθ +

∫ ∞

R

eix

x+ i
dx
]

= 0.

Note that this argument requires that the integrand decrease more rapidly with increasing R

than R−1.
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..................

S wε ∂S

An immediate consequence of path independence is the Calculus of Residues: Let

S be a region in which f is analytic everywhere except at an isolated point w in the interior

of S. Let Cǫ(w) be the circle of radius ǫ centered at w. Then
∫

∂S

f(z) dz = lim
ǫ↓0

∫

Cǫ(w)

f(z) dz.

The quantity
1

2πi
lim
ǫ↓0

∫

Cǫ(w)

f(z) dz = lim
ǫ↓0

ǫ

2π

∫ 2π

0

f(w + ǫeit) eit dt,

if it exists, is called the residue of f at w and will be denoted by Res(f, w).

Example 4.4: Using the calculus of residues the integral
∫ ∞

−∞

eix

x2 + 1
dx

can be calculated with very little effort. Let SR be that part of the disk of radius R which is

in the upper half plane. Since eiz

z2+1 has isolated singularities at z = ±i
∫

SR

eiz

z2 + 1
dz = 2πiRes(

eiz

z2 + 1
, i).

But

lim
R→∞

∫

SR

eiz

z2 + 1
dz =

∫ ∞

−∞

eix

x2 + 1
dx

so that ∫ ∞

−∞

eix

x2 + 1
dx = 2πiRes(

eiz

z2 + 1
, i)

= lim
ǫ↓0

ǫi

∫ 2π

0

ei(i+ǫeit)

(i+ ǫeit)2 + 1
eit dt

=
1

2e

∫ 2π

0

dt

=
π

e
.
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To get from the second to the third lines in this last expression the integrand was expanded

in series in ǫ using

ei(i+ǫeit) = e
1

e

(
1 + ǫeit + . . .

)

and
1

(i+ ǫeit)2 + 1
=

1

2iǫeit + ǫ2e2it

=
1

2iǫeit

(
1− 1

2
ǫeit + . . .

)

and noting that all but the first terms vanish in the limit ǫ ↓ 0.

..................

Consider a function f which has non-analytic (to be called singular) behavior at

an isolated point w. There are three possibilities. w is either a pole, a branch point or an

essential singularity.

A function f has a pole at z = w if there is some m ∈ {1, 2, 3, . . .} for which

(x−w)mf(z) is analytic at w. The smallest such m is called the order of the pole. A pole is

thus a singularity of the form

f(z) ∼ const

(z − w)m

for some positive integer n. The integer m is the order of the pole. If m = 1 the pole is said

to be simple. Functions which have poles in some region S but are otherwise analytic in S

are said to be meromorphic in S. The function

1 + z − 3z2

(z − 1)2

is meromorphic in C with a pole of order 2 at 1. The function

1

sin z

is meromorphic in C with simple poles at mπ for any integer m. Similarly tan z has simple

poles at (m+ 1
2 )π for any integer m. The function

eiz

z2 + 1
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has simple poles at ±i.

A branch point is a point around which a function is multivalued. These typically

arise with inverse functions when there isn’t a unique inverse. The simplest example is the

square root. Any number w 6= 0 has two square roots. Explicitly, given z with z2 = w

the number −z also satisfies (−z)2 = w. Thus, in defining a square root a choice must be

made. In R one generally chooses
√

to be the positive square root. In C things are more

subtle and there are many more possible choices. Note that this structure collapses at 0 since

−0 = 0, so
√
0 is unique. If z = |z|eiφ then the two possible square roots of z are |z| 12 e i

2φ

and |z| 12 eiπ+ i
2φ. Here |z| 12 is the positive root of |z|. Choose the first and follow a path which

surrounds 0 and comes back to z. The simplest is a circle of radius |z|. After going around

once φ has increased by 2π which means the first square root has changed to the second.

The canonical example of a multivalued function is the natural logarithm, ln z. The

defining relation for the natural logarithm is

eln z = z.

But this equation does not have a unique solution: any integer multiple of 2πi can be added

to ln z since

e2mπi+ln z = e2mπieln z = z.

Thus, there are an infinite number of natural logarithms, all differing by integer multiples of

2πi. Again, the point at which this degenerates is 0. Note that if

ln(|z|eiφ) = ln |z|+ iφ

then traversing a circle around 0 adds 2πi to the logarithm.

Essential singularities are isolated singularities which are neither poles nor branch

points. An example is e
1
z at z = 0. Essential singularities are as messy they get. We won’t

encounter them often.

For functions with poles there is an extension of the notion of a Taylor expansion

called a Laurent expansion. Explicitly, given a function f with a pole of order m at w one
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can write

f(z) =

∞∑

n=−m

an(z − w)n

=
a−m

(z − w)m
+

a−m+1

(z − w)m−1
+ . . .+

a−1

z − w
+ a0 + a1(z − w) + a2(z − w)2 + . . .

(4.3)

for z sufficiently close to w. A Laurent expansion gives complete information about the

behavior of f near w. In particular, for z very close to w one can approximate f(z) by

f(z) ≈ a−m

(z − w)m
.

The coefficients an can be determined using the formula

∫

Cǫ(w)

(z − w)ndz = iǫn+1

∫ 2π

0

ei(n+1)t dt

= 2πiδn,−1

where δj,k is 1 if j = k and 0 if j 6= k. Thus

an =
1

2πi

∫

Cǫ(w)

(w − z)−n−1f(z) dz. (4.4)

Note that

a−1 = Res(f, w).

Although formula (4.4) for an works fine, in practice it is often easier to note that (z −
w)mf(z) is analytic at w and Taylor expand it. Then an is the (n +m)th Taylor coefficient

of (z − w)mf(z),

an =
1

(n+m)!

dn+m

dzn+m
(z − w)mf(z)

∣∣∣
z=w

.

Example 4.5: Rather than using either of the above formulae to find the coefficients an

it’s often easier to just expand. The first few terms of the Laurent series about 0 for

1

ez − 1
=

1

z + 1
2z

2 + 1
6z

3 + . . .

=
1

z

1

1 + 1
2z +

1
6z

2 + . . .

=
1

z

(
1− 1

2
z +

1

12
z2 + . . .

)

=
1

z
− 1

2
+

1

12
z + . . . .
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If ln z is chosen so that ln 1 = 0 the first few terms of the Laurent series about 1 for

1

ln z
=

1

ln
(
1 + (z − 1)

)

=
1

(z − 1)− 1
2 (z − 1)2 + 1

3 (z − 1)3 + . . .

=
1

z − 1

1

1− 1
2 (z − 1) + 1

3 (z − 1)2 + . . .

1

z − 1

(
1 +

1

2
(z − 1)− 1

12
(z − 1)2 + . . .

)

=
1

z − 1
+

1

2
− 1

12
(z − 1) + . . . .

..................
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Linear O.D.E.

Linear Ordinary Differential Equations

The most general inhomogeneous nth order linear ordinary differential equation may

be written (
an(x)

dn

dxn
+ an−1(x)

dn−1

dxn−1
+ . . .+ a0(x)

)
f(x) = g(x). (5.1)

Here g is known. It turns out that to solve this equation it is necessary to have completely

solved the equation with g = 0. We will thus begin with

(
an(x)

dn

dxn
+ an−1(x)

dn−1

dxn−1
+ . . .+ a0(x)

)
f(x) = 0. (5.2)

(5.2) is a homogeneous equation.

We’ve already seen two things: there are in general many solutions to a linear ODE

and linear combinations of solutions are also solutions. The immediate problem is to write

down a general form for the solutions of the equation.

Regular Points:

A regular point for (5.2) is a point at which the aj(x) are all continuous and an 6= 0.

The basic fact about linear ODEs is that at regular points a there is a unique solution f with

prescribed values of f(a), f ′(a), . . ., f (n−1)(a). Thus, given any n numbers α0, α1, . . . , αn−1

and given any regular point a there is a solution whose first n− 1 derivatives at a are the αj .

Since any solution obviously has n− 1 derivatives at a there is a one to one correspondence

between the set of n independent numbers, in other words Rn or Cn, and the set of solutions

to the linear ODE.

Imagine that we have somehow produced n linearly independent solutions of (5.2),

f1, f2, . . . , fn. Then the linear combinations

f = c1f1 + c2f2 + . . .+ cnfn (5.3)

are all solutions. The set of all such combinations is an n-dimensional vector space. In other

words, the general such linear combination has n free parameters. One can hope that by

choosing these parameters correctly one can give f whatever n − 1 derivatives one wants at

a prescribed point a. (To see that this is possible choose the fk so that f
(j)
k (a) = δk,j+1 so
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that ck = αk+1. Any other choice for the fk amounts to a change of basis.) Thus, in order to

completely solve an nth order linear ODE it is sufficient to produce n linearly independent

solutions.

Example 5.1: Fortunately (or perhaps intentionally) one of the most commonly used

equations in applications is the simplest: the 1-dimensional Helmholtz equation

( d2
dx2

+ k2
)
f(x) = 0.

This equation is a linear ODE which is regular on all of R. The general solution may be

written

f(x) = c1 cos kx+ c2 sin kx.

Note that c1 = f(0) and c2 = f ′(0)
k

.

Linear superposition is not the only way to parameterize solutions to linear equa-

tions. A common parameterization of solutions to the 1-dimensional Helmholtz equation

is

f(x) = A cos(kx− φ).

Here A and the phase φ are the parameters. One can easily show that

A2 = c21 + c22

and

tanφ =
c2
c1
.

..................

Example 5.2: Consider time harmonic solutions of the 1-dimensional bending equation,

u(x, t) = f(x) sin(ωt).

With the notation k =
√
K ω one has

( d4
dx4

− k2
)
f = 0.
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The four solutions cos(
√
k x), sin(

√
k x), cosh(

√
k x) and sinh(

√
k x) are clearly linearly

independent since no combination of trigonometric and hyperbolic functions of a real variable

can be zero everywhere. Thus

f(x) = c1 cos(
√
k x) + c2 sin(

√
k x) + c3 cosh(

√
k x) + c4 sinh(

√
k x).

Imagine that the rod is subjected to a periodic stress at x = 0 in such a way that

the deflection at 0, α0, is negative the amount of bending α1 = −α0. Assume further that

the second and third derivatives, α2 and α3, are 0 at x = 0. Then




1 0 1 0
0 k

1
2 0 k

1
2

−k 0 k 0
0 −k 3

2 0 k
3
2






c1
c2
c3
c4


 = α0




1
−1
0
0


 .

This system is most easily solved directly (without trying to invert the matrix). One finds

c3 = c1, c4 = c2, c1 = α0

2 and c2 = − α0

2
√
k
. Thus

f(x) =
α0

2

(
cos(

√
k x) + cosh(

√
k x)− sin(

√
k x) + sinh(

√
k x)√

k

)
.

..................

The fact that a solution is completely determined by it’s 0th through (n − 1)st

derivatives at one point allows one to study models in which different differential equations

are solved in different regions. If the model is L1f = 0 for x < a and L2f = 0 for x > a

the way to proceed is to find the general solution to L1f1 = 0 and the general solution to

L2f2 = 0 and then impose the constraint that

f
(j)
1 (a) = f

(j)
2 (a)

for j = 0, 1, . . . , n− 1.

Example 5.3: Consider a model in which f satisfies 1-dimensional Helmholtz equations

with different values of k for x > 0 and x < 0:

d2f

dx2
=

{
−k2−f if x < 0
−k2+f if x > 0.
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For x < 0 one has

f(x) = a1 cos(k−x) + a2 sin(k−x)

and for x > 0

f(x) = b1 cos(k+x) + b2 sin(k+x).

At x = 0 we must have

a1 = b1

and

k−a2 = k+b2.

Thus the general solution may be written

f(x) =

{
a1 cos(k−x) + a2 sin(k−x) if x < 0

a1 cos(k+x) +
k−

k+
a2 sin(k+x) if x > 0.

..................

The set of equations f (j)(a) = αj is a set of n linear equations for the coefficients

ck. Explicitly




f1(a) f2(a) · · · fn(a)
f ′1(a) f ′2(a) · · · f ′n(a)
...

... · · ·
...

f
(n−1)
1 (a) f

(n−1)
2 (a) · · · f

(n−1)
n (a)







c1
c2
...
cn


 =




α0

α1
...

αn−1


 .

This equation has a solution for any choice of the αj only if the matrix on the left is invertible.

One can conclude that the following statements are equivalent:

i) Any solution of (5.2) may be written in the form (5.3).

ii) The fj are n linearly independent solutions of (5.2).

iii) The fj are solutions of (5.2) for which the determinant

W(f1, . . . , fn) = det




f1(a) f2(a) · · · fn(a)
f ′1(a) f ′2(a) · · · f ′n(a)
...

... · · ·
...

f
(n−1)
1 (a) f

(n−1)
2 (a) · · · f

(n−1)
n (a)




6= 0

(5.4)
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for any a. The determinant in (5.4) is known as the Wronskian of f1, . . . , fn.

In general, producing n linearly independent solutions to an nth order ODE can be

extremely difficult if n > 1. Often one needs to resort to numerical procedures. As a rule

the difficulty increases with n. However, most of the problems we will encounter are second

order.

The most general second order linear ODE is

(
a2(x)

d2

dx2
+ a1(x)

d

dx
+ a0(x)

)
f(x) = 0.

As indicated we restrict ourselves to x for which a2 6= 0. Thus we can divide by a2 writing

the equation ( d2
dx2

+ p(x)
d

dx
+ q(x)

)
f(x) = 0 (5.5)

with obvious definitions of p and q. The Wronskian of two functions has a simple form

W(f1, f2) = f1f
′
2 − f ′1f2.

If f1 and f2 are solutions of (5.2) then one finds by direct calculation that

( d
dx

+ p
)
W(f1, f2) = 0.

This first order equation can be solved immediately giving Abel’s identity

W(f1, f2) = Ke−
∫

p dx

where K is a constant. In particular, to determine W(f1, f2) one need only find K, and this

can be done at any point x. Further, since ex is never 0, f1 and f2 are linearly independent

solutions if their Wronskian is non-zero anywhere.

Given one solution to a second order linear ODE a second solution can be constructed

using the method called reduction of order. Let f1 be a solution of (5.5). We will look for

another solution of the form

f2 = uf1

and will obtain an equation for u by substituting f2 into (5.5). One obtains

( d2
dx2

+ (2
f ′1
f1

+ p)
d

dx

)
u = 0.
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This is a first order equation for u′ which can be solved immediately,

u′ = const
1

(f1)2
e−
∫

p dx.

The constant is uninteresting and can be set to 1.

A final comment about regular points. If the coefficients aj(x) are analytic at x

then it turns out that the solutions f are analytic at x as well. (Note that this holds for the

solutions of the Euler equations of Example 5.5 except at x = 0.) Since the solutions are

analytic at any regular point they have convergent Taylor expansions about regular points.

Example 5.4: Consider a linear second order ODE with analytic coefficients. Let a be a

regular point. Then the Taylor expansions of the solutions can be obtained directly from the

differential equation as follows. Write the equation in the form (5.5) and expand everything

in sight in a Taylor expansion about a:

p(x) =

∞∑

j=0

pj(x− a)j ,

q(x) =
∞∑

j=0

qj(x− a)j

and

f(x) =

∞∑

j=0

cj(x− a)j .

Then ( d2
dx2

+
∞∑

k=0

pk(x− a)k
d

dx
+

∞∑

m=0

qm(x− a)m
) ∞∑

j=0

cj(x− a)j = 0

from which it follows that

∞∑

j=0

[
(j + 2)(j + 1)cj+2 +

∑

k+m=j

(
(m+ 1)cm+1pk + cmqk

)]
(x− a)j = 0.

In order for a power series to be 0 each coefficient must be 0. Thus

(j + 2)(j + 1)cj+2 +
∑

k+m=j

(
(m+ 1)cm+1pk + cmqk

)
= 0.

At j = 0 one has

2c2 + c1p0 + c0q0 = 0.
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Note that c2 can be expressed as a function of c0 and c1

c2 = −p0c1 + q0c0
2

.

At j = 1,

6c3 + 2c2p0 + c1(q0 + p1) + c0q1 = 0

giving c3 as a function of c0 and c1,

c3 = − (q0 + p1 − p20)c1 + (q1 − p0q0)c0
6

.

Ultimately, all the Taylor coefficients cj can be expressed as some combination of the pj and

qj times c0 plus some other combination of the pj and qj times c1, determining the solutions

up to two free parameters, c0 and c1.

Note that the solution with f(0) = 1 and f ′(0) = 0, call it f1(x), is obtained by

setting c0 = 1 and c1 = 0 while the solution with f(0) = 0 and f ′(0) = 1, call it f2(x) is

obtained by setting c0 = 0 and c1 = 1. Then

f(x) = c0 f1(x) + c1 f2(x).

Of course the expressions for cj generally get more complicated as j increases. As a

general technique, this approach is useful only for obtaining the first few terms in the Taylor

expansions of f . There are, however, special cases. One classic example is Airy’s equation,

( d2
dx2

− x
)
f(x) = 0. (5.6)

One finds that

(j + 2)(j + 1)cj+2 − cj−1 = 0

for j > 0 and 2c2 = 0 for j = 0. This is a fairly simple recursion relation. Note that it relates

coefficients c3j to c3j−3, c3j+1 to c3j−2 and c3j+2 to c3j−1. One finds, working from j = 1

out, that

c3j =
1

(3j)(3j − 1)(3j − 3)(3j − 4) · · · (3)(2)c0,

c3j+1 =
1

(3j + 1)(3j)(3j − 2)(3j − 3) . . . (4)(3)
c1
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and

c3j+2 = 0.

Thus we have produced two linearly independent solutions to Airy’s equation: one by choosing

c0 = 1 and c1 = 0,

f1(x) = 1 +
1

3 · 2x
3 +

1

6 · 5 · 3 · 2x
6 +

1

9 · 8 · 6 · 5 · 3 · 2x
9 + · · · ,

and another by choosing c0 = 0 and c1 = 1,

f2(x) = x+
1

4 · 3x
4 +

1

7 · 6 · 4 · 3x
7 +

1

10 · 9 · 7 · 6 · 4 · 3x
10 + · · · .

..................

Regular Singular Points:

If an(a) = 0 in (5.2) then a is a singular point. We will restrict our attention to

second order equations. In the form (5.5) a singular point x is a point at which p and q diverge.

Loosely put, regular singular points are points at which the divergence of p is first order and

the divergence of q is second order. We begin with an example which is characteristic of and

neccesary for the whole theory.

Example 5.5: A class of exactly solvable linear ODEs are the Euler equations,

(
ax2

d2

dx2
+ bx

d

dx
+ c
)
f(x) = 0.

Note that at x = 0 the coefficient of d2

dx2 is 0 and the basic facts quoted above don’t apply.

x = 0 is said to be a singular point for these equations. For x 6= 0 we can expect that all

solutions can be built from linear combinations of any two linearly independent solutions.

Try the form f(x) = xr. Then

ar(r − 1) + br + c = 0

so that we find

r =
a− b±

√
(a− b)2 − 4ac

2a
.
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Thus, if (a− b)2 − 4ac 6= 0 two solutions have been produced,

f1(x) = x
a−b+

√
(a−b)2−4ac

2a

and

f2 = x
a−b−

√
(a−b)2−4ac

2a .

If (a− b)2 − 4ac = 0 only one solution

f1(x) = x
a−b
2a

has been produced. The other is of the form

f2(x) = u(x)x
a−b
2a

where

u′(x) = x
b−a
a e−

b
a

∫
1
x
dx

=
1

x
.

Thus we may choose

f2(x) = x
a−b
2a lnx

and the general solution can be written

f(x) = x
a−b
2a

(
c1 + c2 lnx

)
.

Note that even though the coefficient of d2

dx2 is 0 at x = 0 one can obtain solutions

for all x 6= 0. Note that there are always solutions which are singular at x = 0.

..................

The general approach will be the same as taken for the Euler equations of

Example 5.5: solve the equations near, but not at a, and see how they behave as x ap-

proaches a. We saw for the Euler equations that there is a variety of possible behavior:

solutions can have poles or branch points at singular points or can be regular.
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Example 5.6: Unfortunately singular ODEs arise often in applications. Consider the

3-dimensional Helmholtz equation

(
∆+ k2

)
Ψ = 0.

In a homework problem you are asked to transform the Laplacian into cylindrical coordinates

obtaining

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
+

∂2

∂z2
. (5.7)

In this coordinate system the Helmholtz equation is separable in the sense that solutions in

the form of a product

Ψ(r, φ, z) = R(r)Φ(φ)Z(z)

can be found, reducing a PDE to three ODEs. In fact, setting Φ(φ) = eimφ and Z(z) = eikzz

one finds that
( d2
dr2

+
1

r

d

dr
− m2

r2
− k2z + k2

)
R(r) = 0. (5.8)

This equation is singular at r = 0.

In Example 3.4 the Laplacian was expressed in spherical coordinates, (3.1). Again,

the Helmholtz equation is separable in this coordinate system. Setting

Ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ)

one obtains solutions if Φ(φ) = eimφ,

( 1

sin θ

d

dθ
sin θ

d

dθ
− m2

sin2 θ

)
Θ(θ) = −l(l + 1)Θ(θ) (5.9)

and then
( d2
dr2

+
2

r

d

dr
− l(l + 1)

r2
+ k2

)
R(r) = 0. (5.10)

Equation (5.9) is singular at θ = 0 and θ = π. Equation (5.10) is singular at r = 0. The

choice of l(l + 1) as separation parameter in (5.9) turns out to be convenient.

Equations (5.8), (5.9) and (5.10) will have to be dealt with in detail in this course.
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..................

A singular point a of a second order linear ODE (5.5) is said to be a regular singular

point if p and q are both meromorphic with a pole at a of order no larger than 1 for p and 2

for q. It follows that, for x close enough to a,

p(x) =
p−1

x− a
+ p0 + p1(x− a) + p2(x− a)2 + . . .

and

q(x) =
q−2

(x− a)2
+

q−1

x− a
+ q0 + q1(x− a) + q2(x− a)2 + . . . .

To understand the behavior of solutions to (5.5) as x approaches a it seems reason-

able to approximate p and q by their most divergent terms,

p(x) ≈ p−1

x− a

and

q(x) ≈ q−2

(x− a)2
.

Substituting these approximations into (5.5) and shifting variables so that a = 0 one obtains

an Euler equation ( d2
dx2

+
p−1

x

d

dx
+
q−2

x2

)
f(x) ≈ 0.

Thus, it seems reasonable to expect that the behavior, as x approaches a regular singular

point, of the correct solution f is similar to the behavior of the related Euler equation.

Recalling Example 5.5 this behavior is (x− a)r where r satisfies the indicial equation

r(r − 1) + p−1r + q−2 = 0.

The facts are as follows. Let r1 and r2 be the roots of the indicial equation. Assume

that r1 ≥ r2 and set a = 0. Then

i) If r1 − r2 is not an integer then there are analytic functions g1 and g2 so that g1(0) =

g2(0) = 1 and

f1(x) = xr1 g1(x)
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f2(x) = xr2 g2(x)

are linearly independent solutions.

ii) If r1 = r2 then there are analytic functions g1 and g2 so that g1(0) = g2(0) = 1 and

f1(x) = xr1 g1(x)

f2(x) = f1(x) lnx+ xr1 g2(x)

are linearly independent solutions.

iii) If r1 − r2 is a positive integer then there are analytic functions g1 and g1 and a constant

c so that g1(0) = g2(0) = 1 and

f1(x) = xr1 g1(x)

f2(x) = c f1(x) lnx+ xr2 g2(x)

are linearly independent solutions.

The Taylor coefficients of the gj and the constant c can be determined by substituting

into the differential equation as in Example 5.4. The procedure is tedious but straightforward.

However, the Taylor expansion of the gj is not very interesting. What is important about

these results is that the nature of the solutions singularities is made explicit:

f1(x) = xr1
(
1 + a1x+ . . .

)

and

f2(x) = cf1(x) lnx+ xr2
(
1 + b1x+ . . .

)

for some coefficients aj , bj and c. In case (i) c = 0 and in case (ii) c = 1.

Example 5.7: Bessel’s differential equation is

( d2
dx2

+
1

x

d

dx
− m2

x2
+ 1
)
f(x) = 0. (5.11)

Choose m > 0. The solutions of this equation are known as Bessel functions. Note that if f

is a solution to Bessel’s equation then

R(r) = f
(√

k2 − k2z r
)
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is a solution to the radial part of the Helmholtz equation in cylindrical coordinates, (5.8).

Note that there is no apriori restriction on the sign of k2 − k2z .

Bessel’s equation is singular at 0 with

p(x) =
1

x

and

q(x) =
−m2

x2
+ 1.

The indicial equation is
0 = r(r − 1) + r −m2

= r2 −m2.

Thus r1 = m and r2 = −m.

The nature of the solutions depends on m. The case of interest for the Helmholtz

equation is m = 0, 1, 2, . . .. There is always a solution which is regular at 0, the f1 given

above. The standard notation for this solution is Jm(x) and is called the Bessel function of

order m of the first type. It is generally chosen so that

Jm(x) =
1

m!

(x
2

)m(
1 + c1x+ c2x

2 + . . .
)
.

The second solution which arises from the analysis above, the f2, is called the mth order

Bessel function of the second type and is denoted by Ym(x) (although notation varies: Morse

and Ingard call it Nm). It is generally chosen so that,

Ym(x) =
2

π
Jm(x) lnx− (m− 1)!

π

(x
2

)−m
(
1 + d1x+ d2x

2 + . . .
)
.

The coefficients cj are determined by substituting into the differential equation and setting

the coefficients of the different powers of x equal to 0, beginning with the lowest power and

working out. The dj are more subtle since adding any multiple of Jm to Ym doesn’t effect

the stated properties of Ym: Ym + cJm is a solution to Bessel’s equation which diverges as

x→ 0 in the same way that Ym does. Note that this has no effect on the coefficients dj until

j = 2m (see problem 24).

Note that, up to a multiplicative constant, Jm is the only solution which is finite at

x = 0. Further, for m > 0 the solution Ym diverges like 1
xm and for m = 0 like lnx. Jm is

analytic while Ym, because of the natural logarithm, is multivalued with a branch point at

x = 0.
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..................

Example 5.8: Now consider (5.10). Solutions to this equation can be given by

R(r) = f
(
kr
)

where f satisfies ( d2
dx2

+
2

x

d

dx
− l(l + 1)

x2
+ 1
)
f(x) = 0. (5.12)

Solutions to (5.12) are sometimes called spherical Bessel functions. This equation has a

regular singular point at x = 0. The indicial equation is

0 = r(r − 1) + 2r − l(l + 1)

= (r − l)(r + l + 1).

Thus, r1 = l and r2 = −l − 1. It follows that there is a one solution (up to an overall

multiplicative constant) which behaves like xl as x→ 0. It is generally given as

jl(x) =
xl

(2l + 1)(2l − 1) · · · (3)(1)
(
1 + a1x+ a2x

2 + . . .
)
.

Any other solution which is linearly independent of jl must diverge as x → 0, behaving like

x−l−1. Further, this second solution might also have a logarithmic divergence and thus be

multi-valued about 0 since r1 − r2 = 2l + 1 is an integer. In this case, however, we turn out

to be lucky: there is no logarithmic term (the coefficient c in case (iii) turns out to be 0). A

standard choice is

yl(x) = − (2l + 1)(2l − 1) · · · (3)(1)
xl+1

(
1 + b1x+ b2x

2 + . . .
)
.

Note that replacing x by −x in (5.12) doesn’t change the differential equation. Thus

jl(−x) and yl(−x) are solutions as well. But jl(−x) ∼ xl as x → 0 implying that jl(x) and

jl(−x) are linearly dependent, which means that they are proportional to each other. Thus

xl

(2l + 1)(2l − 1) · · · (3)(1)
(
1 + a1x+ a2x

2 + . . .
)

= const (−1)l
xl

(2l + 1)(2l − 1) · · · (3)(1)
(
1− a1x+ a2x

2 + . . .
)
.
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This is only possible if const = (−1)l and 0 = a1 = a3 = a5 = . . . .

For yl the situation is a bit more subtle and depends on the choice of yl. One can

add factors of jl to yl without effecting the behavior of yl at 0. Further, since yl(−x) is also
a solution which diverges like 1

xl+1 at 0, the best one can say is that

yj(−x) = c1yl(x) + c2jl(x).

However, one can insist that yl(−x) = (−1)l+1yl(x) since if this were not the case for yl one

could choose yl(x) + (−1)l+1yl(−x) as the second solution. Thus, with this choice for yl,

0 = b1 = b3 = b5 = . . . . The coefficients a2 and b2 can now be determined by substituting

into the differential equation.

..................

Large x Asymptotics:

We’ve seen how to estimate the local behavior of solutions to second order linear

ODEs at regular points and in the neighborhood of a regular singular point. We saw that near

a regular point the solutions don’t behave in any spectacular way in the sense that nothing

particular stands out. The solutions are analytic and, if we want, we can generate their Taylor

expansions. Near a singular point, on the other hand, the solutions can be singular. We can

find the precise form of the singular parts and, since they dominate near a singularity, from

them we know what the solution has to look like as one closes in on the singularity. Thus,

in a sense, singular points make things easier: there is some distinctive asymptotic behavior

which can be extracted without fully solving the equation.

A similar thing often happens as x → ∞. There is often some explicit behavior

which can be extracted without fully solving the equation. As a simple example consider

( d2
dx2

+ κ2 +
λ

x2

)
f(x) = 0. (5.13)

As x→ ∞ one expects that the term λ
x2 might become negligible compared to κ2. If so then

one should have

f(x) ≈ c1e
iκx + c2e

−iκx
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for sufficiently large x. To see if this works let’s try to generate a series

f(x) = e±iκx
(
1 +

a1
x

+
a2
x2

+ . . .
)
.

Substituting into the differential equation one finds

0 =
( d2
dx2

+ κ2 +
λ

x2

)
e±iκx

(
1 +

a1
x

+
a2
x2

+ . . .
)

= e±iκx
( d2
dx2

± 2iκ
d

dx
+

λ

x2

)(
1 +

a1
x

+
a2
x2

+ . . .
)

= e±iκx
(
(∓2iκa1 + λ)

1

x2
+ (2a1 ∓ 4iκa2 + λa1)

1

x3
+ . . .

)
.

It follows that

a1 = ± λ

2iκ
,

a2 = − (λ+ 2)λ

8κ2

and so on. Thus there are two linearly independent solutions, f±, whose asymptotic forms,

as x→ ∞ are

f±(x) = e±iκx
(
1± λ

2iκ

1

x
− (λ+ 2)λ

8κ2
1

x2
+ . . .

)
. (5.14)

The general term in this expansion is not hard to find. One has a one step recursion obtained

from the coefficient of 1
xj+2 ,

(
λ+ j(j + 1)

)
aj ∓ 2iκ(j + 1)aj+1 = 0.

By starting at j = 1 and working up one finds

aj+1 = (±1)(j+1)

(
λ+ j(j + 1)

)(
λ+ (j − 1)j

)
· · · (λ+ 2)λ

(j + 1)!(2iκ)j+1
.

Note that the even and odd coefficents have different behavior. For j even, j = 2k,

a2k = (−1)k
(
λ+ 2k(2k + 2)

)(
λ+ (2k − 2)2k

)
· · · (λ+ 2)λ

(2k)!(2κ)2k

is real and independent of ±. For j odd, j = 2k + 1,

a2k+1 = ±(−1)k+1i

(
λ+ (2k + 1)(2k + 3)

)(
λ+ 2k(2k + 1)

)
· · · (λ+ 2)λ

(2k + 1)!(2κ)2k+1
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is pure imaginary and proportional to ±. In particular,

f+(x) = f−(x)

so that

f1 =
f+ + f−

2

and

f2 =
f+ − f−

2i

are two real linearly independent solutions with leading order large x asymptotic behavior

f1(x) ≈ cosx

and

f2(x) ≈ sinx.

Note as well that f1 is even in x while f2 is odd.

Example 5.9: Consider Bessel’s differential equation (5.11). First eliminate the d
dx

term

using the transformation f(x) = u(x)g(x) and choosing u so that the resulting equation for

g has no first derivative term:

0 =
( d2
dx2

+
1

x

d

dx
− m2

x2
+ 1
)
ug

= u
( d2
dx2

+ 2
u′

u

d

dx
+
u′′

u
+

1

x

d

dx
+

1

x

u′

u
− m2

x2
+ 1
)
g

so that choosing

2
u′

u
+

1

x
= 0 (5.15)

one has ( d2
dx2

+
u′′

u
+

1

x

u′

u
− m2

x2
+ 1
)
g = 0.

Solving (5.15) one finds

u = const
1√
x
.

An overall multiplicative constant is uninteresting so set const = 1.
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Thus, solutions f to Bessel’s equation can be written

f(x) =
1√
x
g(x)

where ( d2
dx2

− m2 − 1
4

x2
+ 1
)
g = 0.

This equation is precisely of the form (5.13) with κ = 1 and λ = −m2 + 1
4 . Using (5.14) one

finds that there are two linearly independent solutions to Bessel’s equation with asymptotic

forms e±ix
√
x
. These are called Hankel functions, are denoted by H

(±)
m and are chosen to be

H(±)
m (x) =

√
2

πx
e±i(x−mπ

2 −π
4 )
(
1∓ m2 − 1

4

2i

1

x
− (m2 − 9

4 )(m
2 − 1

4 )

8

1

x2
+ . . .

)
.

There are constants a± and b± for which

H(±)
m = a±Jm + b±Ym.

To see find what these constants are requires knowledge about Jm, Ym and H
(±)
m for the

same range of x. Short distance asymptotics for Jm and Ym and long distance asymptotics

for H
(±)
m will not suffice. Note that both Jm and Ym are real so that one is proportional to

ReH
(±)
m , the other to ImH

(±)
m .

It turns out (in a homework problem) that

H(±)
m = Jm ± iYm.

In particular, for large x

Jm(x) ≈
√

2

πx
cos(x− mπ

2
− π

4
)

and

Ym(x) ≈
√

2

πx
sin(x− mπ

2
− π

4
).

..................

Example 5.10: The same style of large x analysis can be applied to the spherical Bessel

equation (5.12). Again, setting f(x) = u(x)g(x) and choosing u so that the resulting equation

for g has no first derivative term one finds that

u
( d2
dx2

+ 2
u′

u

d

dx
+
u′′

u
+

2

x

d

dx
+

2

x

u′

u
− l(l + 1)

x2
+ 1
)
g = 0
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so that

2
u′

u
+

2

x
= 0.

Solving for u one finds that one can choose

u =
1

x

and then, with this choice, that

( d2
dx2

− l(l + 1)

x2
+ 1
)
g = 0.

It follows that two linearly independent solutions to the spherical Bessel equation can be

found with asymptotic form 1
x
e±x. These are called spherical Hankel functions and are given

in standard form by

h
(±)
l (x) =

i∓(l+1)

x
e±ix

(
1∓ l(l + 1)

2i

1

x
+ . . .

)
.

The spherical Bessel functions can actually be given in elementary form:

jl(x) = (−1)lxl
( 1
x

d

dx

)l sinx
x

(5.16)

and

yl(x) = (−1)(l+1)xl
( 1
x

d

dx

)l cosx
x

. (5.17)

It follows that

j0(x) =
sinx

x

y0(x) = −cosx

x

j1(x) =
sinx

x2
− cosx

x

y1(x) = −cosx

x2
− sinx

x

and so on.

Note that the leading order large x asymptotics for the spherical Bessel functions

can be obtained from (5.16) and (5.17) by letting the derivatives act on as few 1
x
terms as

possible. It follows that for x large

jl(x) ≈
(−1)l

x

dl sinx

dxl
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and

yl(x) ≈
(−1)l+1

x

dl cosx

dxl

from which it follows that

h
(±)
l = jl ± iyl.

..................

Example 5.11: As a final example lets look at large positive x asymptotics for solutions to

Airy’s equation (5.6). Here, for large x we can’t expect behavior like econst x. Instead try

f(x) ≈ xpeκx
α
(
1 +

a1
xδ

+
a2
x2δ

+ . . .
)
. (5.18)

Substituting into the differential equation

( d2
dx2

− x
)
xpeκx

α

= xp−2eκx
α
(
p(p− 1) + ακ(2p+ α− 1)xα + (ακ)2x2α − x3

)
.

The largest terms are the x3 and x2α terms. They must cancel each other. This implies that

α =
3

2

and (ακ)2 = 1 so that ακ = ±1 and then

κ = ±2

3
.

The next largest term is the xα term which must vanish. Thus 2p+ α− 1 = 0 so that

p = −1

4
.

The remaining term will be canceled by part of the a1 term in the asymptotic expansion, and

so on.

Thus, there are two linearly independent solutions to Airy’s equation which, as

x→ ∞, have asymptotic form x−
1
4 e±

2
3x

3
2 . The standard solutions are

Ai(x) ≈ 1

2
π− 1

2x−
1
4 e−

2
3x

3
2
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and

Bi(x) ≈ π− 1
2x−

1
4 e

2
3x

3
2 .

The large −x behavior is somewhat different: as x→ −∞ it can be shown that

Ai(x) ≈ π− 1
2x−

1
4 sin(

2

3
x

3
2 )

and

Bi(x) ≈ π− 1
2x−

1
4 cos(

2

3
x

3
2 ).

..................

Example 5.12: Imagine a sphere of radius r = R + ǫ sin(ωt) with ǫ ≪ R. Consider the

pressure amplitude induced in free space.

Recall linear lossless acoustics (Example 1.8),

1

c2
∂P ′

∂t
+ ρ0∇ · v′ = 0

and

ρ0
∂v′

∂t
+∇P ′ = 0.

Differentiating the first equation with respect to t and substituting in from the second one

has
(
∇2 − 1

c2
∂2

∂t2
)
P ′ = 0.

Assuming harmonic time dependence

P ′(x, t) = RePA(x)e
−iωt

and

v′(x, t) = RevA(x)e
−iωt

one has
(
∇2 +

ω2

c2
)
PA = 0

−iωρ0vA = ∇PA.
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Since ǫ ≪ R one can model the oscillating sphere as a velicity condition:

vA(r, θ, φ) = ǫω. This translates to a condition on PA,

−∂PA

∂r

∣∣
r=R

= −iω2ρ0ǫ. (5.19)

PA satisfies the Helmholtz equation and, since the boundary conditions are independent of θ

and φ, can be chosen independent of θ and φ. It follows that

PA(r) = c1h
(+)
0 (kr) + c2h

(−)
0 (kr).

Further, one expects an outward travelling wave at large r so that c2 = 0. Thus

PA(r) = c1h
(+)
0 (kr)

= c1
eikr

r
.

To determine c1 use (5.19) from which one finds

c1kh
(+)′
0 (kR) = iω2ρ0ǫ.

Thus

c1 = iω2ρ0ǫ
R2e−ikR

k(ikR− 1)

so that

PA(r) = iω2ρ0ǫ
R2

k(ikR− 1)eikR
eikr

r
.

..................

Example 5.13: Now consider an infinitely long cylinder whose radius is r = R + ǫ sin(ωt)

with ǫ≪ R and kR≪ 1. Then

PA(r, θ, z) = c1H
(+)
0 (kr)

with

−∂PA

∂r

∣∣
r=R

= −iω2ρ0ǫ.
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It follows that

−c1kH(+)′
0 (kR) = −iω2ρ0ǫ.

To evaluate H
(+)′
0 (kR) we use the assumption that kR ≪ 1 and the small x asymptotics for

Bessels equation. One has

H
(+)′
0 (x) =

d

dx
(J0(x) + iY0(x))

≈ d

dx
i
2

π
ln(x)

=
2i

πx
.

It follows that

c1 ≈ π

2
ω2ρ0ǫR.

..................
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Boundary Value Problems for O.D.E.s

Consider the second order homogeneous ordinary differential equation (5.5),

( d2
dx2

+ p(x)
d

dx
+ q(x)

)
f(x) = 0,

for x ∈ (a, b). A boundary value problem for this differential equation on (a, b) is two

conditions

F
(
f(a), f ′(a)

)
= 0

and

G
(
f(b), f ′(b)

)
= 0.

The boundary conditions are said to be linear and/or homogeneous if F and G are.

We will only be concerned with linear boundary conditions,

αaf(a) + βaf
′(a) = A

αbf(b) + βbf
′(b) = B.

The boundary conditions are homogeneous only if A = B = 0. To see how to solve such a

boundary value problem let f1 and f2 be linearly independent solutions of (5.5). Then

f = c1f1 + c2f2

for some constants c1 and c2. The boundary conditions become the following equation for c1

and c2 (
αaf1(a) + βaf

′
1(a) αaf2(a) + βaf

′
2(a)

αbf1(b) + βbf
′
1(b) αbf2(b) + βbf

′
2(b)

)(
c1
c2

)
=

(
A
B

)
.

If the boundary conditions are inhomogeneous, so that the vector

(
A
B

)
is non-zero then this

equation has a solution, that is, one can produce a unique pair of coefficients c1 and c2, only

if the matrix is invertible. If so, then one can explicitly produce a solution, f , satisfying the

boundary conditions. Note that this solution is unique: multiples of f by a constant, cf , will

not satisfy the boundary conditions unless the constant c = 1.
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Example 6.1: For x ∈ (0, L) consider the one dimensional Helmholtz equation

(
d2

dx2
+ k2)f(x) = 0.

Let f satisfy the boundary conditions

f ′(0) = A

and

f(L) = 0.

Writing

f(x) = c1 sin(kx) + c2 cos(kx)

one has (
k 0

sin(kL) cos(kL)

)(
c1
c2

)
=

(
A
0

)
.

It follows that if k cos(kL) 6= 0 then

(
c1
c2

)
=

1

k cos(kL)

(
cos(kL) 0
− sin(kL) k

)(
A
0

)

so that

f(x) =
A

k
sin(kx)− A tan(kL)

k
cos(kx).

If k = 0 then d2f
dx2 = 0 so that f(x) = Ax − AL. If cos(kL) then sin(kL) = ±1 so

that the boundary conditions lead to kc1 = A and ±c1 = 0. Thus, unless A = 0 there is no

solution. If A = 0 then c1 = 0 and c2 is arbitrary.

..................

Example 6.2: Consider lossless acoustics in one spatial dimension. The steady state

reponse at frequency ω reduces to the study of

(
d2

dx2
+
ω2

c2
)PA = 0

and

−iωρ0vA = −dPA

dx
.
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Note that a relation between PA and vA is equivalent to a relation between PA and P ′
A.

Often one models the action of a loudspeaker as a velocity specification at the

position of the loudspeaker. Consider a cylindrical tube of length L with a loudspeaker

mounted at x = 0. Let the end at x = L be closed and let the velocity of the face of the

loudspeaker be

u0 cos(ωt).

Then vA(L) = 0 since the end is closed and vA(0) = u0. This translates to a boundary value

problem for PA: P
′
A(0) = −iωρ0u0 and P ′

A(L) = 0. Writing

PA(x) = c1 sin(
ω

c
x) + c2 cos(

ω

c
x)

one has (
ω
c

0
cos(ω

c
L) − sin(ω

c
L)

)(
c1
c2

)
=

(
iωρ0u0

0

)
.

Thus, if sin(ω
c
L) 6= 0 then

PA(x) = −iρ0cu0
(
sin(

ω

c
x) + cot(

ω

c
L) cos(

ω

c
x)
)
.

For frequencies with sin(ω
c
L) = 0 there is no choice of c1 and c2 which satisfy the boundary

conditions unless u0 = 0 when c1 = 0 and c2 is arbitrary. At such a frequency the system

is at resonance. Note that the form given for PA above becomes infinite as ω approaches

a resonant frequency. Physically this means that in this lossless model the response to a

periodic excitation at a resonant frequency is infinite in the sense that there is no steady

state.

..................

Homogeneous boundary conditions are more subtle and can not always be satisfied.

For these one has

αaf(a) + βaf
′(a) = 0

αbf(b) + βbf
′(b) = 0.
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Again let f1 and f2 be linearly independent solutions of (5.5) so that

f = c1f1 + c2f2

for some constants c1 and c2. The boundary conditions become the following equation for c1

and c2 (
αaf1(a) + βaf

′
1(a) αaf2(a) + βaf

′
2(a)

αbf1(b) + βbf
′
1(b) αbf2(b) + βbf

′
2(b)

)(
c1
c2

)
=

(
0
0

)
.

The only way for there to be non-zero solutions (that is, at least one of the cj is non-zero) is

for

det

(
αaf1(a) + βaf

′
1(a) αaf2(a) + βaf

′
2(a)

αbf1(b) + βbf
′
1(b) αbf2(b) + βbf

′
2(b)

)
= 0. (6.1)

As we saw in the last two examples this condition is rarely satisfied. If the differential equation

(and thus the solutions) has a free parameter (such as k in the one-dimensional Helmholtz

equation) then a given homogeneous boundary value problem can typically be satisfied only

for a discrete set of values of the free parameter. Further, if f satisfies a homogeneous

boundary value problem then cf does as well for any constant c. Finally, if (6.1) is satisfied

for any pair of linearly independent solutions f1 and f2 then it is satisfied for all pairs of

linearly independent solutions (changing the pairs of solution is just a change of basis).

Consider the simple example given by the Helmholtz equation

(
d2

dx2
+ k2)f = 0

with the boundary conditions f(0) = f(L) = 0. Writing

f(x) = c1 sin(kx) + c2 cos(kx)

the boundary condition can be satisfied only if

det

(
0 1

sin(kL) cos(kL)

)
= − sin(kL) = 0.

This is only possible for k = nπ
L

where n is an integer. If so then c2 = 0 and

f(x) = c1 sin(
nπ

L
x)

for any c1.
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Homogeneous boundary value problems lead to the notion of eigen-functions for

differential operators. Let

L =
d2

dx2
+ p(x)

d

dx
+ q(x)

be a second order differential operator and let

αaf(a) + βaf
′(a) = 0

αbf(b) + βbf
′(b) = 0

be homogeneous boundary conditions. The differential equation

(L− λ)f(x) = 0 (6.2)

restricted to functions satisfying the boundary conditions is called an eigenvalue problem for

L corresponding to the stated boundary conditions. Note that there will be a solution f only

for certain values of λ for which (6.1) is satisfied. These values of λ are called eigenvalues of L

and the corresponding solutions f are called eigenfunctions. The equation (6.1) appropriate

to (6.2) is called an eigenvalue condition.

An example is provided by the functions sin(nπ
L
x) for the one dimensional Helmholtz

equation in (0, L) with f(0) = f(L) = 0. In that example λ = k2 and the eigenvalue condition

is − sin(kL) = 0.

Another type of homogeneous boundary value problem is given by insisting that

the solution in (0, L) be a periodic function on all of R with period L. This is insured if

f(0) = f(L) and f ′(0) = f ′(L). These are called periodic boundary conditions. If f1 and f2

are linearly independent solutions then f = c1f1 + c2f2 and one has

(
f1(0)− f1(L) f2(0)− f2(L)
f ′1(0)− f ′1(L) f ′2(0)− f ′2(L)

)(
c1
c2

)
=

(
0
0

)
.

This system has a non-trivial solution only if

det

(
f1(0)− f1(L) f2(0)− f2(L)
f ′1(0)− f ′1(L) f ′2(0)− f ′2(L)

)
= 0. (6.3)

Again, if the differential equation is put in the form (6.2) one has an eigenvalue problem for

d2

dx2 with eigenvalue condition (6.3).
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For the Helmholtz equation one has

f(x) = c1e
ikx + c2e

−ikx

so that periodic boundary conditions lead to the eigenvalue condition

det

(
1− eikL 1− e−ikL

ik(1− eikL) −ik(1− e−ikL)

)
= −2ik(1− eikL)(1− e−ikL)

= −4ik(1− cos kL)

= 0.

Thus the eigenvalue condition becomes cos kL = 1 so that one has

k =
2nπ

L

for n ∈ {. . . , −2, −1, 0, 1, 2, . . .}. The eigenfunctions are

e2inπ
x
L .

Recall that the eigen values are λ = k2. Thus, for this example there are two eigenfunctions,

e±2i|n|π x
L , for each eigenvalue 4n2π2

L2 . Note that the general solution, at a given eigenvalue k

is a superposition of the two eigenfunctions and thus still contains two free parameters.

Example 6.3: Consider the free vibration of a circular membrane of radius R. In the linear

approximation the dispacement of the membrane, u(x, t), satisfies the wave equation

(
∇2 − 1

c2
∂2

∂t2

)
u(x, t) = 0.

If the membrane is clamped along it’s edge then there is the additional condition u(x, t) = 0

if ‖x‖ = R. Transforming to polar coordinates and assuming harmonic time dependence,

u(x, t) = ReuA(r, θ)e
−iωt,

one has the Helmholz equation

( ∂2
∂r2

+
1

r

∂

∂r
+

1

r2
∂2

∂θ2
+
ω2

c2

)
uA(r, θ) = 0
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with the boundary condition

uA(R, θ) = 0.

We will look for separable solutions

uA(r, θ) = X(r)Y (θ)

withX(R) = 0, X(0) finite and Y (θ) periodic with period 2π. Substituting into the Helmholtz

equation one has

Y
(
X ′′ +

1

r
X ′
)
+

1

r2
XY ′′ +

ω2

c2
XY = 0.

We get a solution if

Y ′′ + λ1Y = 0,

X ′′ +
1

r
X ′ − λ1

r2
X + λ2X = 0,

and
ω2

c2
= λ2.

The equation for Y is a one dimensional Helmholtz equation with periodic boundary

conditions. Thus λ1 = ±m for m = 0, 1, 2, . . . corresponding to solutions

Y (θ) = a eimθ + b e−imθ.

Given this choice for Y the equation for X leads to Bessel’s equation and has solutions

X(r) = a Jm(
√
λ2 r) + b Ym(

√
λ2 r).

The condition that X be finite at r = 0 implies that b = 0. The condition that X(R) = 0

implies that

Jm(
√
λ2R) = 0.

It follows that
√
λ2R must be a root of Jm. There are an infinite number of these roots. Let

xm,j be these roots, Jm(xm,j) = 0, listed in increasing order. For xm,j large enough they can

be estimated using the large x asymptotic form for Jm. This leads to the approximation

cos(xm,j −
mπ

2
− π

4
) ≈ 0
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which gives xm,j ≈ (nm + 1+m
2 + 1

4 )π for large j. nm is an integer. For small values of j the

zeros must be approximated numerically. One finds

x0,1 = 2.405, x0,2 = 5.520, x0,3 = 8.654, . . .

x1,1 = 3.832, x1,2 = 7.016, x1,3 = 10.173, . . .

x2,1 = 5.136, x2,2 = 8.417, x2,3 = 11.620, . . .

and so on. In general, setting km,j =
√
λ2 one has

km,j =
xm,j

R

and solutions X(r) = Jm(km,jr).

Thus we have solutions

uA m,j(r, θ) = Jm(km,jr)
(
aeimθ + be−imθ

)

as long as
ω2

c2
= k2m,j .

The frequencies

ωm,j = ckm,j

are called the resonant frequencies of the system.

..................

Example 6.4: Now consider a related problem: the vibration of a circular membrane of

radius R whose center is being vibrated harmonically by a small piston of radius r0 attatched

to the center of the membrane. The piston moves through a distance ǫ cos(ωt). This leads to

the condition

u(x, t) = ǫ cos(ωt)

for ‖x‖ = r0 as well as u(x, t) = 0 if ‖x‖ = R. Proceeding as in the previous example one

has

u(x, t) = ReuA(r, θ)e
−iωt
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with uA(r0, θ) = ǫ and uA(R, θ) = 0. Since ǫ 6= 0 the solution must be independent of θ. It

follows that

uA(r, θ) = a J0(
ω

c
r) + b Y0(

ω

c
r).

The boundary conditions become

(
J0(

ω
c
r0) Y0(

ω
c
r0)

J0(
ω
c
R) Y0(

ω
c
R)

)(
a
b

)
=

(
ǫ
0

)
.

This system has a non-trivial solution only if

J0(
ω

c
r0)Y0(

ω

c
R)− J0(

ω

c
R)Y0(

ω

c
r0) 6= 0.

Frequencies for which this determinant is 0 are precisely the resonant frequencies of the

system. If the system is not at resonance one has

(
a
b

)
=

1

J0(
ω
c
r0)Y0(

ω
c
R)− J0(

ω
c
R)Y0(

ω
c
r0)

(
Y0(

ω
c
R) −Y0(ωc r0)

−J0(ωcR) J0(
ω
c
r0)

)(
ǫ
0

)

leading to

u(x, t) = ǫRe
Y0(

ω
c
R)J0(

ω
c
r)− J0(

ω
c
R)Y0(

ω
c
r)

J0(
ω
c
r0)Y0(

ω
c
R)− J0(

ω
c
R)Y0(

ω
c
r0)

e−iωt.

If ω is a resonant frequency then one of the assumtions are wrong: there are no

solutions whose time dependence is given by e−iωt. In fact, a lossless resonant system has no

steady state: the amplitude of vibration in such a system grows with time.

..................
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Eigenfunction Expansions I: finite domains

Recall that given an n× n matrix A the equation

(
A− λ

)
v = 0

has solutions only for those values of λ for which det(A − λ) = 0. Recall further that if A

is self-adjoint then it has n orthogonal eigenvectors which can be normalized and used as an

orthonormal basis. Note that in general

w∗Av = (A∗w)∗v.

Thus, if 〈w,v〉 = w∗v is the standard inner product on Cn then A is self-adjoint if and only

if 〈w,Av〉 = 〈Aw,v〉.
Now consider a second order differential operator

L(λ) =
d

dx
P (x)

d

dx
+Q(x)− λR(x)

on an interval (a, b) with P , Q and R real and P and R positive on (a, b). Consider functions

f, g : (a, b) −→ C

and introduce the inner product

〈f, g〉 =
∫ b

a

f(x)g(x) dx.

Consider

〈f,
( d
dx
P (x)

d

dx
+Q(x)− λR(x)

)
g〉

for functions f and g which are sufficiently well behaved. Integrating by parts twice one has

∫ b

a

f(x)
d

dx
P (x)

d

dx
g(x) dx = f̄P g′

∣∣b
a
−
∫ b

a

df̄

dx
P
dg

dx
dx

= f̄P g′
∣∣b
a
− f̄ ′Pg

∣∣b
a
+

∫ b

a

( d
dx
P
d

dx
f̄
)
g dx

so that

〈f,
( d
dx
P (x)

d

dx
+Q(x)− λR(x)

)
g〉 = P (f̄g′ − f̄ ′g)

∣∣b
a
+ 〈
( d
dx
P (x)

d

dx
+Q(x)− λR(x)

)
f, g〉.
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Thus if

P (f̄g′ − f̄ ′g)
∣∣b
a
= 0

then L is self-adjoint in the sense that

〈f, Lg〉 = 〈Lf, g〉.

This is where the boundary conditions come in. If one restricts attention to a set of

functions which satisfy some conditions at a and b which make P (f̄g′ − f̄ ′g)
∣∣b
a
= 0 then L is

self-adjoint on this restricted set. The most common examples of such a condition are

i) The Sturm-Liouville problem: any linear homogeneous two point boundary condition

αaf(a) + βaf
′(a) = 0

αbf(b) + βbf
′(b) = 0

with αa, βa, αb and βb all real.

ii) Periodic boundary conditions with P = 1:

f(a) = f(b)

and

f ′(a) = f ′(b).

The essential facts are

i) The equation

L(λ)f = 0

has non-zero solutions only for λ in some discrete, infinite set {λ1, λ2, . . .}. The λj are called

the eigenvalues of L. The set of all the eigenvalues is called the spectrum of L. The solutions

fj to

L(λj)fj = 0

which satisfy the boundary conditions are called the eigenvectors of L. They are of finite

norm. For the Sturm-Liouville problem there is only one eigenfunction for each eigenvalue

λj . For periodic boundary conditions there can be two eigenfunctions per eigenvalue.
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ii) The fj form a basis for the set of all functions on (a, b) in the sense that given any g there

is a sequence of coefficients cj with

g(x) =
∑

j

cjfj(x).

This is called an eigenfunction expansion of g.

iii) The fj are an orthogonal basis in the sense that

∫ b

a

fj(x)fk(x)R(x) dx = δj,k

∫ b

a

|fj(x)|2R(x) dx.

This gives a simple formula for the cj :

cj =
1

∫ b

a
|fj(x)|2R(x) dx

∫ b

a

fj(x)g(x)R(x) dx.

Example 7.1: Periodic boundary conditions on the one dimensional Helmholtz equation

leads to the Fourier series. Consider

( d2
dx2

− λ
)
f(x) = 0

on (a, b) with the boundary conditions

f(a) = f(b)

and

f ′(a) = f ′(b).

Then writing f(x) = c1e
√
λx + c2e

−
√
λx one has

(
e
√
λa − e

√
λb e−

√
λa − e−

√
λb√

λ
(
e
√
λa − e

√
λb
)

−
√
λ
(
e−

√
λa − e−

√
λb
)
)(

c1
c2

)
=

(
0
0

)
.

This leads to the eigenvalue condition

√
λ
(
1− cosh

√
λ(b− a)

)
= 0.

Thus the eigenvalues are

λj = −
( 2jπ

b− a

)2
.
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For j = 0 there is one eigenfunction, chosen normalized,

f0(x) =
1√
b− a

.

For each j > 0 there are two eigenfunctions

f±j(x) =
1√
b− a

e±
2πij
b−a

x.

The eigenfunction expansion of an arbitrary function g on (a, b) with respect to these eigen-

functions leads the the Fourier series for g,

g(x) =
∞∑

j=−∞

〈fj , g〉√
b− a

e
2πij
b−a

x.

..................

Example 7.2: Consider a clamped vibrating string described by the wave equation

( ∂2
∂x2

− 1

c2
∂2

∂t2

)
u(t, x) = 0

where u(t, 0) = 0 = u(t, L). Impose the initial conditions u(0, x) = g(x) and ∂u
∂t

∣∣
t=0

= h(x)

for some functions g and h with g(0) = 0 = g(L) and h(0) = 0 = h(L).

First let’s develop the eigenfunction expansion for d2

dx2 with the boundary conditions

f(0) = 0 = f(L) (there are referred to as Dirichlet boundary conditions). Again, we need to

consider ( d2
dx2

− λ
)
f(x) = 0

on (0, L). We have already seen that the eigenvalues for this problem are

λj = −
(jπ
L

)2

corresponding to the (normalized) eigenfunction

fj(x) =

√
2

L
sin

jπ

L
x.

Here j ∈ {1, 2, 3, . . .}. Then one can write

u(t, x) =

√
2

L

∞∑

j=1

cj(t) sin
jπ

L
x
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where

cj(t) =

√
2

L

∫ L

0

sin
jπ

L
x u(t, x) dx.

Substituting this form for u into the wave equation one finds

∞∑

j=1

(
(
jπ

L
)2 +

1

c2
d2

dt2

)
cj(t) sin

jπ

L
x = 0.

Taking the inner product of this equation fk(x) =
√

2
L
sin kπ

L
x yields the following equation

for ck, (
(
kπ

L
)2 +

1

c2
d2

dt2

)
ck(t) = 0.

It follows that

ck(t) = ak sin(
kcπ

L
t) + bk cos(

kcπ

L
t).

To determine ak and bk one uses the initial conditions. One has

√
2

L

∞∑

j=1

cj(0) sin
jπ

L
x = g(x)

and √
2

L

∞∑

j=1

c′j(0) sin
jπ

L
x = h(x).

Again, taking the inner product of these equations with fk one obtains initial conditions for

the ck,

ck(0) = 〈fk, g〉

and

c′k(0) = 〈fk, h〉.

It follows that

ck(t) =
L

kcπ
〈fk, h〉 sin(

kcπ

L
t) + 〈fk, g〉 cos(

kcπ

L
t)

so that

u(t, x) =

√
2

L

∞∑

j=1

( L

jcπ
〈fj , h〉 sin(

jcπ

L
t) + 〈fj , g〉 cos(

jcπ

L
t)
)
sin

jπ

L
x.
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Now consider the case in which the string is plucked at the center, x = L
2 , by being

pulled a distance ǫ from equilibrium and then released. One then has

g(x) =
2ǫ

L

{
x if 0 < x < L

2

L− x if L
2 < x < L

and

h(x) = 0.

One finds that

〈fj , g〉 =
√

2

L

2Lǫ

j2π2
sin

jπ

2

so that

u(t, x) =
4ǫ

π2

∞∑

j=1

1

(2j + 1)2
cos
( (2j + 1)cπ

L
t
)
sin
( (2j + 1)π

L
x
)
.

..................

Example 7.3: Consider the time dependent Schrödinger equation for a particle of mass m

confined to a one dimensional interval [a, b] with rigid walls

−ih̄ ∂
∂t
ψ(x, t) = − h̄2

2m

∂2

∂x2
ψ(x, t)

with ψ(a, t) = 0 = ψ(b, t). One can solve this problem by expanding ψ(x, t) with respect to

the eigenfunctions of ∂2

∂x2 with Dirichlet boundary conditions at a and b. One has

ψ(x, t) =

√
2

b− a

∞∑

j=1

cj(t) sin
jπx

b− a

where the coefficients cj(t) satisfy the first order equation

−ih̄dcj
dt

=
h̄2

2m

j2π2

(b− a)2
cj

with the initial condition

cj(0) =

√
2

b− a

∫ b

a

ψ(0, x) sin
jπx

b− a
dx.

It follows that

cj(t) = cj(0)e
i

jπh̄

2m(b−a)2
t
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so that

ψ(x, t) =

√
2

L

∞∑

j=1

cj(0)e
i

jπh̄

2m(b−a)2
t
sin

jπx

b− a
.

If one denotes the eigenfunctions by

ψj(x) =

√
2

b− a
sin

jπx

b− a

then one has

ψ(x, t) =
∞∑

j=1

e
i

jπh̄

2m(b−a)2
t
ψj(x)〈ψj , ψ(x, 0)〉

= eih̄
(
− h̄2

2m
∂2

∂x2

)
tψ(x, 0)

with the operator eih̄
(
− h̄2

2m
∂2

∂x2

)
t defined by the eigenfunction expansion

eih̄
(
− h̄2

2m
∂2

∂x2

)
tφ =

∞∑

j=1

e
i

jπh̄

2m(b−a)2
t
ψj〈ψj , φ〉.

..................

Now consider the differential equation

( d2
dx2

+ p
d

dx
+ q − λ

)
f(x) = 0 (7.1)

corresponding to a second order O.D.E. in standard form. To relate this equation to an

eigenvalue equation for a self-adjoint operator functions P , Q and R must be found for which

d2

dx2
+ p

d

dx
+ q − λ =

1

P

( d
dx
P
d

dx
+Q− λR

)
.

This equation gives

p =
P ′

P
,

q =
Q

P

and

1 =
R

P
.

It follows that

P = e
∫

p dx
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so that (7.1) becomes

( d
dx
e
∫

p dx d

dx
+ e
∫

p dxq − λe
∫

p dx
)
f = 0. (7.2)

Given either Sturm-Liouville or P -periodic boundary conditions this now becomes a self-

adjoint eigenvalue problem whose eigenfunctions satisfy the orthogonality condition

∫ b

a

fj(x)fk(x) e
∫

p dx dx = δj,k

∫ b

a

|fj(x)|2 e
∫

p dx dx. (7.3)

Sturm-Liouville problems can also be posed for differential equations which have a

regular singular point at an endpoint. Consider the differential operator

L =
d2

dx2
+ p

d

dx
+ q

on (a, b). Let L have a regular singular point at a. One’s chief concern is that L should be

related to a (possibly) self-adjoint operator of the form given in (7.3),

L̃ =
d

dx
e
∫

p dx d

dx
+ e
∫

p dxq.

One needs 〈f, L̃g〉 = 〈L̃f, g〉. There is a difficulty with this expression independent of bound-

ary conditions: if L has a regular singular point at a then 〈f, L̃g〉 might well not exist unless

f and g are chosen from some restricted set. More explicitly, p is allowed to have a simple

pole at x = a, p(x) ∼ p−1

x−a
as x ↓ a, and q is allowed to have a second order pole at a,

q(x) ∼ q−2

(x−a)2 as x ↓ a. Thus, for x close to a

e
∫

p dx ∼ (x− a)p−1

and then

e
∫

p dxq ∼ q−2(x− a)p−1−2.

Thus, depending on p−1, it is possible to have 〈f, e
∫

p dxqg〉 = ∞ unless f and g go to 0

rapidly enough as x ↓ a.
There are several ways out of this dilemma. For our purposes the most straightfor-

ward is to restrict the set of functions we deal with to those whose behavior near x = a is
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that given by the indicial equation. Let r1 and r2 be the roots of the indicial equation for L.

Conditions of the form

lim
x↓a

(
f(x)− c1(x− a)r1 − c2(x− a)r2

)
= 0

if r1 6= r2 and

lim
x↓a

(
f(x)− c1(x− a)r − c2(x− a)r ln |x− a|

)
= 0

if r1 = r2 = r can be imposed on both f and g. If one insists that αac1 + βac2 = 0 for real

values αa and βa then both L̃f and L̃g go to 0 as x ↓ a and, if there is some real, homogeneous

boundary condition at b,

αbf(b) + βbf
′(b) = 0,

then one can easily check that (f̄g′− f̄ ′g)
∣∣b
a
= 0. Thus L̃ is self-adjoint and its eigenfunctions

can be made into an ortho-normal basis. (Note that if a is a regular point then r1 = 0 and

r2 = 1 and the classical Sturm-Liouville theory is recovered.)

Example 7.4: Recall Example 6.3, the free vibrations of a clamped circular membrane.

One must solve the two dimensional wave equation in polar coordinates,

( ∂2
∂r2

+
1

r

∂

∂r
+

1

r2
∂2

∂θ2
− 1

c2
∂2

∂t2

)
u(r, θ, t) = 0

with the boundary condition u(R, θ, t) = 0 and initial conditions u(r, θ, 0) = g(r, θ) and

∂u
∂t

∣∣
t=0

= h(r, θ). Rather than proceeding as in Example 6.3, where some solutions were

found (although it was not made clear to what extent all solutions were found), let’s try to

find an eigenfunction expansion for ∂2

∂r2
+ 1

r
∂
∂r

+ 1
r2

∂2

∂θ2 .

The normalized eigenfunctions of d2

dθ2 with periodic boundary conditions are 1√
2π
eimθ

for m ∈ {0,±1,±2, . . .} corresponding to the eigenvalue m2. It follows that any function of

θ, in particular u(r, θ, t), can be expanded in an eigenfunction expansion in the functions

1√
2π
eimθ:

u(r, θ, t) =
1√
2π

∞∑

m=−∞
um(r, t)eimθ

with

um(r, t) =
1√
2π

∫ 2π

0

u(r, θ, t)eimθ dθ.
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Substituting into the wave equation, multiplying by 1√
2π
eimθ and integrating over

θ one finds that um(r, t) satisfies the equation

( ∂2
∂r2

+
1

r

∂

∂r
− m2

r2
− 1

c2
∂2

∂t2

)
um(r, t) = 0

with the conditions um(R, t) = 0 and um(0, t) finite. The operator Lm = ∂2

∂r2
+ 1

r
∂
∂r

− m2

r2
has

a regular singular point at r = 0, however the condition that um be finite at r = 0 means we

can restrict to functions that behave like rm as r ↓ 0 and are 0 at r = R. On this restricted set

of functions Lm is self-adjoint. The eigenfunctions of Lm were found in Example 6.3. Using

the notation developed there the eigenvalues are −k2m,j = −ω2
m,j

c2
corresponding to normalized

eigenfunctions

fm,j(r) = Nm,jJ|m|(k|m|,jr)

where the normalization factor, Nm,j , is given by (7.3),

Nm,j =
1√∫ R

0

(
J|m|(k|m|,jr)

)2
r dr

=
x|m|,j

R

√∫ x|m|,j

0

(
J|m|(z)

)2
z dz

and the orthogonality relation by

∫ R

0

fm,j(r)fm,k(r) r dr = δjk.

The integral in the normalization factor Nm,j can be computed either numerically, or using

the identity

∫ a

0

(
Jm(z)

)2
z dz =

a2

2

{
Jm(a)2 − Jm−1(a)Jm+1(a) if m > 0
J0(a)

2 + J1(a)
2 if m = 0

(7.4)

Note that the functions

uAm,j(r, θ) =
1√
2π
Nm,jJ|m|(k|m|,jr)e

imθ

are the sought after eigenfunctions of ∂2

∂r2
+ 1

r
∂
∂r

+ 1
r2

∂2

∂θ2 . They satisfy the orthogonality

condition ∫ R

0

∫ 2π

0

uAm,j(r, θ)uAn,k(r, θ) r dθ dr = δnmδjk.
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Setting

cm,j(t) =

∫ R

0

∫ 2π

0

uAm,j(r, θ)u(r, θ, t) r dθ dr

one has

u(r, θ, t) =

∞∑

m=−∞

∞∑

j=1

cm,j(t)uAm,j(r, θ).

The coefficients cm,j(t) satisfy the equation
( d2
dt2

+ ω2
m,j

)
cm,j(t) = 0

with the initial conditions

cm,j(0) =

∫ R

0

∫ 2π

0

uAm,j(r, θ) g(r, θ) r dθ dr

and

c′m,j(0) =

∫ R

0

∫ 2π

0

uAm,j(r, θ)h(r, θ) r dθ dr.

it follows that

cm,j(t) = cm,j(0) cos(ωm,jt) +
c′m,j(0)

ωm,j

sin(ωm,jt)

so that

u(r, θ, t) =
∞∑

m=−∞

∞∑

j=1

(
cm,j(0) cos(ωm,jt) +

c′m,j(0)

ωm,j

sin(ωm,jt)
)
uAm,j(r, θ).

..................

In the last example the eigenvalues and eigenfunctions of the Laplacian in a disk

were found. The geometry, that of a disk, is special because a coordinate system can be

found, polar coordinates, in which the Laplacian is separable so that the problem reduces to

solving O.D.E.’s. In more complicated geometries, in which the Laplacian is not separable,

the eigenvalue problem can still be posed. The discussion here will be restricted to two

dimensions although it is readily extended to arbitrary dimension.

Let A be a region in R2. There are some restrictions that need to be put on A, but

they are difficult to state mathematically. Loosely put, attention will be restricted to regions

A in which Gauss’ law can be applied. Note that
∫

A

(
ψ̄∇2φ− φ∇2ψ̄

)
dA =

∫

A

∇ ·
(
ψ̄∇φ− φ∇ψ̄

)
dA

=

∫

∂A

(
ψ̄∇φ− φ∇ψ̄

)
· dl.
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Thus, if there are boundary conditions on imposed on ψ and φ on ∂A so that

∫

∂A

(
ψ̄∇φ− φ∇ψ̄

)
· n dl = 0

then ∇2 is self-adjoint in A with respect to the inner product

〈ψ, φ〉 =
∫

A

ψ̄ φ dA

in the sense that 〈ψ,∇2φ〉 = 〈∇2ψ, φ〉. A large class of self-adjoint boundary conditions for

∇2 is given by

(αφ+ βn · ∇φ)
∣∣
∂A

= 0

for real constants α and β. The two most important special cases are Dirichlet boundary

conditions, φ
∣∣
∂A

= 0 and Neumann boundary conditions, n · ∇φ
∣∣
∂A

= 0.

Given self adjoint boundary conditions the eigenfunctions of ∇2 are complete and

can be chosen orthonormal. In the case of either Dirichlet or Neumann boundary conditions

more can be said:

〈φ,∇2φ〉 = −
∫

A

∇φ̄ · ∇φdA+

∫

∂A

φ̄∇φ · n dl

= −‖∇φ‖2

≤ 0.

It follows that if λ is an eigenvalue of ∇2 with eigenvector φ then

λ =
〈φ,∇2φ〉
〈φ, φ〉 ≤ 0.

Let λj be a listing of the eigenvalues of −∇2. In more than one dimension it is possible

for a single eigenvalue to have more than one eigenfunction so that some of the λj might

repeat. Such an eigenvalue is called degenerate and the span of its eigenfunctions is called its

eigenspace. The dimension of the eigenspace is called the multiplicity of the eigenvalue. In

general the λj form an unbounded increasing sequence, λj ≤ λj+1 and λj → ∞ as j → ∞.

Finally, note that for Neumann boundary conditions 0 is always an eigenvalue corresponding

to the constant eigenfunction 1√
|A|

, where |A| is the area of A. For Dirichlet boundary

conditions 0 is never an eigenvalue of the Laplacian.
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Example 7.5: Consider a free particle of mass m confined to a two dimensional region A.

The quantum-mechanical Hamiltonian for this situation is

− h̄2

2m
∇2

with Dirichlet boundary conditions on ∂A. The the ground state eigenvalue is greater than

zero. Thus the particle is never at rest.

..................

Example 7.6: Consider sound propagation in a long straight pipe with cross section A.

Let the axis of the pipe be the z axis and let

∇⊥ =

( ∂
∂x
∂
∂y

)
.

Then the linear pressure satisfies the wave equation

( ∂2
∂z2

+∇2
⊥ − 1

c2
∂2

∂t2

)
P (x, y, z, t) = 0

and the velocity is related to the pressure through Euler’s equation

ρ0
∂v

∂t
= −∇P.

The condition that the normal component of the velocity to the wall of the pipe

must be zero,

n · v
∣∣
∂A

= 0,

translates to a boundary condition on P ,

n · ∇P
∣∣
∂A

= 0.

This boundary condition can be satisfied, and the x, y part of the equation can be separated

from the z, t part by expanding in an eigenfunction expansion in the Neumann eigenfunctions
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of ∇2
⊥. More explicitly, let −λj be a listing of the Neumann eigenvalues and let ψj be the

corresponding eigenfunctions of ∇2
⊥. Then

P (x, y, z, t) =
∑

j

fj(z, t)ψj(x, y)

with ( ∂2
∂z2

− λj −
1

c2
∂2

∂t2

)
fj(z, t) = 0.

Consider the steady state solutions of frequency ω. For these

fj(z, t) =
(
aj e

i
√

ω2

c2
−λj z + bj e

−i
√

ω2

c2
−λj z

)
e−iωt

so that

P (x, y, z, t) =
∑

j

ψj(x, y)
(
aj e

i
√

ω2

c2
−λj z + bj e

−i
√

ω2

c2
−λj z

)
e−iωt.

Note that only those terms with ω2

c2
> λj propagate.

The coefficients aj and bj are determined by the boundary conditions. If the pipe is

infinitely long then, for large z, the sound wave must be a traveling wave propagating to the

right. For such a wave the coefficients bj are 0. The aj can be determined if, for example,

the frequency ω component of the pressure amplitude PA(x, y, z), satisfying

P (x, y, z, t) = PA(x, y, z) e
−iωt,

is known at z = 0. Then

aj =

∫

A

ψj(x, y)PA(x, y, 0) dx dy.

As a concrete example consider a cylindrical pipe with radius R. Let there be a

piston mounted at z = 0 with radius R
2 and velocity (along the y-axis) u0 cos(ωt). The

pressure field of the resulting sound wave is calculated.

A is a disk of radius R. Let xNm,j be the j solution of J ′
m(x) = 0, let kNm,j =

xN
m,j

R

and ωN
m,j = ckNm,j . Then the Neumann eigenvalues of −∇2

⊥ in A are

λm,j = (kNm,j)
2

corresponding to the eigenfunctions

ψm,j(r, θ) =
1√
2π
NN

m,jJ|m|(k
N
|m|,jr)e

imθ.
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For m = 0 = j one has kN0,0 = 0 and then NN
0,0 =

√
2

R
. Otherwise

NN
m,j =

1√∫ R

0

(
J|m|(kN|m|,jr)

)2
r dr

=
xN|m|,j

R

√∫ xN
|m|,j

0

(
J|m|(z)

)2
z dz

.

The pressure wave is given by

P (r, θ, z, t) = Re
∞∑

m=−∞

∞∑

j=0

ψm,j(r, θ) am,j e
i
c

√
ω2−(ωN

m,j
)2 z−iωt

.

The coefficients am,j are determined by the velocity boundary condition at z = 0:

∂P

∂z

∣∣
z=0

= ωρ0u0 sin(ωt) ·
{
1 if 0 ≤ r < R

2

0 if R
2 < r < R

= Re

∞∑

m=−∞

∞∑

j=0

ψm,j(r, θ)
i

c

√
ω2 − (ωN

m,j)
2 am,j e

−iωt

which gives

am,j =
ρ0cu0ω√

ω2 − (ωN
m,j)

2

∫ R
2

0

∫ 2π

0

ψm,j(r, θ) r dθ dr

= δm,0

√
2πNN

0,jρ0cu0
ω√

ω2 − (ωN
0,j)

2

∫ R
2

0

J0(k
N
0,jr) r dr.

Thus, P is independent of θ and is given by (noting that Re(ie−iωt) = sinωt)

P (r, z, t) = ρ0cu0R Re
[√π

2
ei

ω
c
z−iωt

+
∞∑

j=1

ω√
ω2 − (ωN

0,j)
2

∫ xN
0,j
2

0
J0(x)x dx

xN0,j

√∫ xN
0,j

0

(
J0(x)

)2
x dx

J0(k
N
0,jr)e

i
c

√
ω2−(ωN

0,j
)2 z−iωt

]
.

Note that for j > 0 for which ωN
0,j 6= 0 the speed of propagation is not c, but is frequency

dependent, given by

c0,j =
cω√

ω2 − (ωN
0,j)

2
.

This phenomenon, the speed of propagation being frequency dependent, is known as disper-

sion.
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Finally, the integrals over the Bessel functions can be done numerically, or by using

the identities (7.4) and ∫ a

0

J0(z) z dz = a J1(a).

To find the zeros xNmjof J
′
m one can use the identities

J ′
0(x) = −J1(x)

and, for m ≥ 0,

J ′
m(x) = Jm−1(x)−

m

x
Jm(x).

Below, J ′
m is plotted for m = 0 and m = 1. The zeros are labelled on the horizontal axis.

Note that

xN0,1 = 3.832

xN0,2 = 7.016

xN0,3 = 10.173

and

xN1,1 = 5.331

xN1,2 = 8.536

xN1,3 = 11.706.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

3.832 5.331 7.016 8.536 10.17311.706

dJ_0(x)
dJ_1(x)

Finding the zeros of J ′
0 and J ′

1.
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..................

The notion of self-adjointness is not restricted to second order operators. Consider
∫ b

a

f̄
d4g

dx4
dx =

(
f̄
d3g

dx3
− df̄

dx

d2g

dx2
+
d2f̄

dx2
dg

dx
− d3f̄

dx3
g
)∣∣∣

b

a
+

∫ b

a

d4f̄

dx4
g dx

so that

〈f, d
4

dx4
g〉 =

(
f̄
d3g

dx3
− df̄

dx

d2g

dx2
+
d2f̄

dx2
dg

dx
− d3f̄

dx3
g
)∣∣∣

b

a
+ 〈 d

4

dx4
f, g〉.

Thus, d4

dx4 is self adjoint on (a, b) if

(
f̄
d3g

dx3
− df̄

dx

d2g

dx2
+
d2f̄

dx2
dg

dx
− d3f̄

dx3
g
)∣∣∣

b

a
= 0.

For us the most important use of d4

dx4 is to model the vibration of a bar using the one

dimensional plate equation, ( d4
dx4

+K
∂2

∂t2

)
u(x, t) = 0.

The most common self adjoint boundary conditions are

i) clamped at a (or b):

u(a, t) = 0 =
∂u

∂x

∣∣
x=a

,

ii) free at a (or b):
∂2u

∂x2
∣∣
x=a

= 0 =
∂3u

∂x3
∣∣
x=a

,

iii) periodic:

u(a, t) = u(b, t)

∂u

∂x

∣∣
x=a

=
∂u

∂x

∣∣
x=b

∂2u

∂x2
∣∣
x=a

=
∂2u

∂x2
∣∣
x=b

∂3u

∂x3
∣∣
x=a

=
∂3u

∂x3
∣∣
x=b

.

In general, any self adjoint boundary conditions for a fourth order operator must

consist of four equations, and the eigenvalue condition will be a determinant of a four by

four matrix. Thus, the eigenvalue problem for a fourth order operator is considerably more

complicated than that for a second order operator. There is no way to avoid some amount

of numerical work, and in special cases tricks are very important.
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Example 7.7: Consider the vibrations of a bar of length L clamped at both ends. In solving

the one dimensional plate equation we begin by generating an eigenfunction expansion for

d4

dx4 . Consider

( d4
dx4

− λ
)
ψ(x) = 0

with the boundary conditions ψ(0) = 0 = ψ(L), ψ′(0) = 0 = ψ′(L). The general solution

may be written

ψ(x) = a cos kx+ b sin kx+ c cosh kx+ d sinh kx

with k4 = λ. At 0 one has

0 = a+ c

and

0 = kb+ kd

so that

ψ(x) = a(cos kx− cosh kx) + b(sin kx− sinh kx).

At L one has

0 = a(cos kL− cosh kL) + b(sin kL− sinh kL)

and

0 = ka(− sin kL− sinh kL) + kb(cos kL− cosh kL).

Thus the eigenvalue condition may be written

0 = (cos kL− cosh kL)2 + (sin2 kL− sinh2 kL)

= 2− 2 cos kL cosh kL,

or

cos kL cosh kL = 1.
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x = kL

The plot above shows that there are eigenvalues when kL = 4.73, 7.851, 10.995, . . . .

Given one of these values for kL the corresponding (unnormalized) eigenfunction is

f(x) =
(
− sin kL− sinh kL

cos kL− cosh kL
(cos kx− cosh kx) + sin kx− sinh kx

)
.

Below the first three (unnormalized) eigenfunctions are plotted with L = 1. Note that they

are not sinusoidal.
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Let the values of kL which satisfy the eigenvalue condition be labeled ξj . The

eigenvalues are λj =
ξ4j
L4 . Let the normalized eigenfunction corresponding to λj be

ψj(x) = Nj

(
− sin ξj − sinh ξj

cos ξj − cosh ξj
(cos

ξjx

L
− cosh

ξjx

L
) + sin

ξjx

L
− sinh

ξjx

L

)

where Nj = 〈fj , fj〉−
1
2 . Then the displacement is

u(x, t) =
∞∑

j=1

ψj(x)
(
aj cos

ξ2j t

L2
√
K

+ bj sin
ξ2j t

L2
√
K

)
.
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The coefficients aj and bj can be determined by initial conditions:

aj = 〈ψj , u(x, 0)〉

and

bj =
L2

√
K

ξ2j
〈ψj ,

∂u

∂t

∣∣
t=0

〉.

Note that for kL large enough the eigenvalue condition becomes cos kL + . . . = 0,

correct to order e−kL. Further

sin kL− sinh kL

cos kL− cosh kL
= 1− 2 sin kL e−kL + . . .

correct to order e−2kL. Substituting this approximation into the eigenfunctions one has

f(x) = sin kx− cos kx+ e−kx − sin kL e−k(L−x) + . . .

correct to order e−kL uniformly on [0, L]. Note that the exponential terms are negligable

except when x is not much further than 1
k
from either 0 or L.

Solving the approximate eigenvalue condition, cos kL = 0, gives kL = (n + 1
2 )π.

This approximation is valid as long as e−(n+ 1
2 )π ≪ 1 (this is not a very stringent condition

since for n ≥ 2 e−(n+ 1
2 )π ≤ e−

3
2π < 0.009). The eigenfunctions are given approximately by

fn(x) = sin
(
(n+

1

2
)π
x

L

)
− cos

(
(n+

1

2
)π
x

L

)
+ e−(n+ 1

2 )π
x
L − (−1)n−1 e−(n+ 1

2 )π
L−x
L + . . . .

The exponential terms are important only if x is no more than 2L
(n+ 1

2 )
from either 0 or L (since

e−4π is tiny). Thus fn is essentially sinusoidal except for the first and last cycles. Below is a

plot of f10 with L = 1.
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..................

The last topic of this chapter is something we’ve been avoiding: how to deal with the

angular part of the Laplacian in spherical coordinates. Recall that, in spherical coordinates

((3.1)),

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

( 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
.

We need to study the operator

L =
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
. (7.5)

The range of θ and φ is chosen so that, for fixed r, the surface of a sphere is covered. The

two basic conditions on functions f(θ, φ) that we will act on with L is that they be single

valued and finite. In terms of θ and φ this dictates that φ ∈ (0, 2π) with periodic boundary

conditions imposed, and that θ ∈ (0, π) with no condition other than that functions are finite.

Subject to these conditions we look for eigenfunctions of L,

Lf(θ, φ) = λf(θ, φ).

The φ dependence can be dealt with by using the periodic eigenfunctions of ∂2

∂φ2 ,

1√
2π
eimφ.

Then look for eigenfunctions of the form

f(θ, φ) = fm(θ)
1

2π
eimφ.

Then ( 1

sin θ

∂

∂θ
sin θ

∂

∂θ
− m2

sin2 θ
− λ

)
fm(θ) = 0.

This equation has regular singular points at 0 and π and is usually analysed by making the

change of variables

x = cos θ.
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Then we need to solve the equation

( d
dx

(1− x2)
d

dx
− m2

1− x2
− λ

)
g(x) = 0 (7.6)

for x ∈ (−1, 1) and set fm(θ) = g(cos θ).

The solutions of this equation are called Generalized Legendre functions. The com-

plete study of these functions is quite involved. We won’t get into it. Here we’ll just notice

that the indicial equation at both ±1 is

r(r − 1) + r − m2

4
= 0

which gives r = ±m. In particular, for m = 0 f(±1) is non-zero while for m 6= 0 f(±1) = 0.

The facts are that for each m the eigenvalues of (7.6) are given by λ = −l(l+1) for

l ∈ {|m|, |m|+1, |m|+2, . . .}. The corresponding eigenfunctions are the generalized Legendre

polynomials

Pm
l (x) =

(−1)m

2ll!
(1− x2)

m
2
dl+m

dxl+m
(x2 − 1)l.

None of the other solutions of (7.6) are finite at both x = ±1. They satisfy the orthogonality

realtion ∫ 1

−1

Pm
l′ (x)P

m
l (x) dx =

2

2l + 1

(l +m)!

(l −m)!
δl′l.

The standard choice for normalized mutually orthogonal eigenfunctions of L, (7.5),

are called spherical harmonics and are given by

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ.

Here

LYlm = −l(l + 1)Ylm

for l ∈ {0, 1, 2, 3, . . .} and m ∈ {−l,−l + 1, . . . , l − 1, l}. They satisfy

∫ 2π

0

∫ π

0

Yl′m′(θ, φ)Ylm(θ, φ) sin θ dθ dφ = δl′l δm′m.

The eigenfunction expansion in spherical harmonics is given by

f(θ, φ) =
∞∑

l=0

l∑

m=−l

clmYlm(θ, φ)
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with

clm =

∫ 2π

0

∫ π

0

Ylm(θ, φ) f(θ, φ) sin θ dθ dφ.

A few spherical harmonics are given below.

Y00 =

√
1

4π

Y11 = −
√

3

8π
sin θ eiφ

Y10 = −
√

3

4π
cos θ

Y22 =
1

4

√
15

2π
sin2 θ e2iφ

Y21 = −
√

15

8π
sin θ cos θ eiφ

Y20 =

√
5

4π
(
3

2
cos2 θ − 1

2
).

For the −m spherical harmonics use

Yl−m = (−1)mYlm.

Example 7.8: Consider the radiation from a compact source. Away from the source the

acoustic pressure satisfies the wave equation, written here in spherical coordinates

( ∂2
∂r2

+
2

r

∂

∂r
+

1

r2
L− 1

c2
∂2

∂t2

)
P (r, θ, φ, t) = 0.

Expanding in spherical harmonics one has

P (r, θ, φ, t) =

∞∑

l=0

l∑

m=−l

flm(r, t)Ylm(θ, φ)

where ( ∂2
∂r2

+
2

r

∂

∂r
− l(l + 1)

r2
− 1

c2
∂2

∂t2

)
flm(r, t) = 0.

The l = 0 equation has exact solutions. In general let

flm(r, t) =
ulm(r, t)

r
.
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Then ( ∂2
∂r2

− l(l + 1)

r2
− 1

c2
∂2

∂t2

)
ulm(r, t) = 0.

For l = 0 one has

u00(r, t) = g(r − ct) + h(r − ct)

for arbitrary differentiable functions g and h. In particular

f00(r, t) =
g(r − ct) + h(r + ct)

r
.

Note that for arbitrary l,m the radial dependence has the asymptotic form

flm(r, t) ≈ glm(r − ct) + hlm(r + ct)

r

for large r (large enough so that the l(l+1)
r2

term can be ignored).

Now consider the frequency ω response. Setting

P (r, θ, φ, t) = PA(r, θ, φ)e
−iωt

the pressure amplitude PA satisfies the Helmholtz equation, here writtten in spherical coor-

dinates with k = ω
c ( ∂2

∂r2
+

2

r

∂

∂r
+

1

r
L+ k2

)
PA(r, θ, φ) = 0. (7.8)

Expanding PA in spherical harmonics one has

PA(r, θ, φ) =
∞∑

l=0

l∑

m=−l

fA lm(r)Ylm(θ, φ)

and ( d2
dr2

+
2

r

d

dr
− l(l + 1)

r2
+ k2

)
fA lm(r) = 0. (7.9)

This is the spherical Bessel equation. Thus

fA lm(r) = almh
(+)
l (kr) + blmh

(−)
l (kr)

so that

PA(r, θ, φ) =
∞∑

l=0

l∑

m=−l

(
almh

(+)
l (kr) + blmh

(−)
l (kr)

)
Ylm(θ, φ). (7.10)
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Consider the case in which the source is radiating into free space. Recall the large

x asymptotic form for the spherical Hankel functions,

h
(±)
l (x) ≈ i∓(l+1)

x
e±ix.

Note that the h+l represent outgoing spherical waves while the h−l represent incoming spherical

waves. Thus, since there is nothing to reflect waves back at the source, in (7.10) the coefficients

blm = 0 so that

PA(r, θ, φ) =
∞∑

l=0

l∑

m=−l

almh
(+)
l (kr)Ylm(θ, φ).

It follows that for kr sufficiently large

PA(r, θ, φ) ≈
eikr

kr

∞∑

l=0

l∑

m=−l

i−(l+1)almYlm(θ, φ)

= F(θ, φ)
eikr

kr

with

F(θ, φ) =

∞∑

l=0

l∑

m=−l

i−(l+1)almYlm(θ, φ).

To estimate F it is sufficient to estimate the alm. To make things concrete let the

source be some object, S, which is vibrating. Let the object be small enough to fit into a

sphere of radius r0. In the case in which

kr0 ≪ 1

(physically this is the case in which the wavelength is much greater than r0) the alm can be

estimated. Introduce a second sphere, of radius r1, with r0 ≪ r1 ≪ 1
k
= λ

2π and center both

spheres at the origin of coordinates.
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r1

r 0

λ

If r0 < r < r1 the k2 term in (7.8) can be ignored so that ∇2PA ≈ 0 and then (7.9)

becomes ( d2
dr2

+
2

r

d

dr
− l(l + 1)

r2

)
fA lm(r) = 0.

This is an Euler equation. The solutions which decrease as r increases are

fA lm(r) =
αlm

rl+1

(this also follows from the small x asymptitics for h
(+)
l (x)) so that, for r0 ≤ r ≤ r1,

PA(r, θ, φ) ≈
∞∑

l=0

1

rl+1

l∑

m=−l

αlmYlm(θ, φ).

For r0 small enough the acoustic velocity amplitude at r = r0 should be close to the velocity

amplitude of the surface of the resonator. Further, through Euler’s equation, the acoustic

velocity amplitude at r = r0 is proportional to ∇PA

∣∣
r=r0

. Thus

αlm = − rl+2
0

l + 1

∫ π

0

∫ 2π

0

Ylm(θ, φ)
∂PA

∂r

∣∣
r=r0

sin θ dφ dθ

= −iωρ0
rl+2
0

l + 1

∫ π

0

∫ 2π

0

Ylm(θ, φ) r̂ · v(r0, θ, φ) sin θ dφ dθ

is close to ωρ0 r
l+2
0 times the velocity amplitude of the surface of the resonator. Since r1 ≪ r0

it follows that

PA(r1, θ, φ) ≈
α00√
4π r1

+
1

r21

(
α1,1Y1,1 + α1,0Y1,0 + α1,−1Y1,−1

)
+ . . .
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where the omitted terms are smaller by a factor of r0
r1
. Now using

alm =
1

h
(+)
l (kr1)

∫ 2π

0

∫ π

0

Ylm(θ, φ)PA(r1, θ, φ) sin θ dθ dφ

one has

a0,0 = kα00.

Finally, to determine α00 use

∇2PA ≈ 0

and Gauss’s law giving

∫

∂S

n · ∇PAdσ = r20

∫ 2π

0

∫ π

0

∂PA

∂r

∣∣
r=r0

sin θ dθ dφ

from which it follows, using Euler’s equation, that

a0,0 =
−iρ0ω2

√
4π c

∫

∂S

n · vAdσ.

As long as α00 6= 0 the leading term in PA is the first term so that, for r ≫ λ,

PA(r, θ, φ) ≈
−iρ0ω2

4πc

(∫

∂S

n · vAdσ
)eikr
kr

.

In this case note that since

(∇2 + k2)
eikr

kr
= −4πδ(x)

one sees that PA is approximately the solution of

(∇2 + k2)PA =
−iρ0ω2

c

(∫

∂S

n · vAdσ
)
δ(x)

which goes to zero as r → ∞.

..................

Example 7.9: Consider the non-relativistic quantum mechanics of a free particle of mass

m confined in a rigid spherical cavity of radius R. Given an initial state φ(r, θ, φ) the time

evolved state ψ(r, θ, φ, t) is the solution of the time dependent Schrödinger equation

−ih̄∂ψ
∂t

= Hψ
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where ψ(r, θ, φ, 0) = φ(r, θ, φ) and

H = − h̄2

2m

[
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

( 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)]

in a sphere 0 ≤ r ≤ R subject to Dirichlet boundary conditions ψ(R, θ, φ, t) = 0 on the

boundary.

Given the eigenvalues and eigenfunctions λ, ψλ of H one has

ψ(r, θ, φ, t) =
∑

λ

〈ψλ, φ〉 e
i
h̄
λtψλ(r, θ, φ).

Thus, the problem reduces to the eigenvalue problem for H,

(H − λ)ψ = 0.

To solve by separation of variables write

ψ(r, θ, φ) = flm(r)Ylm(θ, φ).

One finds that ( ∂2
∂r2

+
2

r

∂

∂r
− l(l + 1)

r2
+

2mλ

h̄2

)
flm(r) = 0.

One has

flm(r) = Nlmjl(

√
2mλ

h̄
r)

with the eigenvalues λ determined by

jl(

√
2mλ

h̄
R) = 0.

If xl,j is the jth zero of jl(x) then the eigenvalues are

λl,j =
(h̄Rxl,j)

2

2m

..................

Example 7.10: We find the solution of

(∇2 + k2)f(x) = 0
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which satisfies

f
∣∣
‖x‖=r0

= 1 + sin θ cosφ.

and has the large ‖x‖ = r asymptotic form

f(x) ≈ eikr

r
.

This example is rigged to be easy:

1 + sin θ cosφ =
√
4π Y0,0 −

√
2π

3

(
Y1,1(θ, φ)− Y1,−1(θ, φ)

)
.

Thus

f(x) = f0,0(r)Y0,0 + f1,1(r)Y1,1(θ, φ) + f1,−1(r)Y1,−1(θ, φ)

with ( d2
dr2

+
2

r

d

dr
+ k2

)
f0,0(r) = 0,

f0,0(r0) =
√
4π and f(r) → 0 as r → ∞ and

( d2
dr2

+
2

r

d

dr
− 2

r2
+ k2

)
f1,±1(r) = 0,

f1,±1(r0) = ∓
√

2π
3 and f1,±1(r) → 0 as r → ∞. It follows that

f0,0(r) =

√
4π

h
(+)
0 (kr0)

h
(+)
0 (kr)

and

f1,±1(r) = ∓

√
2π
3

h
(+)
1 (kr0)

h
(+)
1 (kr).

so that

f(x) =
h
(+)
0 (kr)

h
(+)
0 (kr0)

+
h
(+)
1 (kr)

h
(+)
1 (kr0)

sin θ cosφ

=
r0
r
eik(r−r0) +

i
k2r2

+ 1
kr

i
k2r20

+ 1
kr0

eik(r−r0) sin θ cosφ.

..................
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Eigenfunction Expansions II: infinite domains

Consider a second order ordinary differential operator

L =
d

dx
P
d

dx
+Q

on an infinite domain, say (a,∞). Let

‖f‖ =

√∫ ∞

a

|f(x)2 dx

be a norm. Note that if f, g have finite norm then f, g → 0 as x → ∞. If f, g have finite

norm and P is bounded for large enough x then

〈f, Lg〉 =
∫ ∞

a

f(x)Lg(x) dx

= 〈Lf, g〉 − P (a)
(
f(a)g′(a)− f ′(a)g(a)

)

so that L is self-adjoint on (a,∞) if

P (a)
(
f(a)g′(a)− f ′(a)g(a)

)
= 0.

Note that a Sturm-Liouville boundary condition at a,

αf(a) + βf ′(a) = 0

with α and β both real, is sufficient to make L self-adjoint.

Self-adjoint operators on infinite domains have generalized eigenfunction expansions.

Consider the differential equation

Lψ = ǫRψ

where R(x) > 0 and ǫ ∈ R. If, given ǫ, there is a solution ψ with finite norm, ‖ψ‖ < ∞,

then ǫ is said to be an eigenvalue and ψ an eigenfunction. Typically, the set of eigenvalues is

discrete. If, given ǫ, there are no solutions with finite norm, but there is at least one solution

which is polynomially bounded,

|ψ(x)| ≤ const (1 + |x|n)
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for some n, then ǫ is said to be a generalized (or continuum) eigenvalue and ψ a generalized

(or continuum) eigenfunction. Typically, the set of generalized eigenvalues is a continuum.

Let the eigenvalues and corresponding eigenfunctions be given by ǫj and ψj respec-

tively. Let the continuum eigenfunctions be ψn(ǫ, ·) and let In be the domain over which ǫ

varies. The facts are that one has the orthogonality relations

〈ψj , ψk〉R = δjk, 〈ψn(ǫ, ·), ψk〉R = 0, 〈ψn(ǫ, ·), ψm(η, ·)〉R = δnmδ(ǫ− η),

with

〈ψ, φ〉R =

∫ ∞

a

ψ(x)φ(x)R(x) dx,

and the completeness relation

∑

j

ψj(x)ψj(y)R(y) +
∑

n

∫

In

ψn(ǫ, x)ψn(ǫ, y)R(y) dǫ = δ(a,∞)(x− y).

An immediate consequence is the generalized eigenfunction expansion of a function

f relative to L and R:

f(x) =
∑

j

cjψj(x) +
∑

n

∫

In

f̃n(k)ψn(ǫ, x) dǫ

with

cj = 〈ψj , f〉R

and

f̃n(ǫ) = 〈ψn(ǫ, ·), f〉R.

The operator L is diagonolized by the eigenfunction expansion in the sense that

Lf(x) =
∑

j

ǫjcjR(x)ψj(x) +
∑

n

∫

In

ǫf̃n(ǫ)R(x)ψn(ǫ, x) dǫ.

Note that solving the differential equation (L−Rǫ)ψ = 0 can only determine ψ up

to a multiplicative constant (constant in x, but possibly dependent on ǫ). In order that the

orthogonality and completeness relations return one times the delta function the multiplica-

tive constant must be chosen appropriately. This is completely analogous to normalizing an

eigenvector, and the constant will be called a normalization factor.

115



Eigenfunction Expansions II

Note that the normalizations are determined only up to an arbitrary complex phase

since 〈eiθψ, eiθψ〉R = 〈ψ,ψ〉R. Further, it is common in the integral over the continuous

spectrum to integrate over some variable other than the eigenvalue parameter ǫ (a frequent

choice is wavenumber k given by ǫ = k2). If λ is some parameter related differentiably to ǫ

then the completeness relation can be written

∑

j

ψj(x)ψj(y)R(y) +
∑

n

∫

ǫ−1(In)

ψn(ǫ(λ), x)ψn(ǫ(λ), y)R(y)
dǫ

dλ
dλ = δ(a,∞)(x− y)

so that the continuum eigenfunctions normalized with respect to λ, φn(λ, x), are given by

φn(λ, x) =

√
dǫ

dλ
ψn(ǫ(λ), x).

Example 8.1: For L = d2

dx2 on (−∞,∞) all of the solutions to ψ′′ = ǫψ are of the form

ψ(x) = a e
√
ǫ x + b e−

√
ǫ x.

The only way for these functions to be polynomially bounded for all x is if ǫ ∈ (−∞, 0). In

particular, there are no eigenvalues but there are continuum eigenvalues (−∞, 0) and, given

ǫ ∈ (−∞, 0), continuum eigenfunctions

N±(ǫ)e
±√

ǫ x.

The normalization factor can be determined either by the orthogonality relation,

N±(ǫ)N±(η)

∫ ∞

−∞
e±i(−√

ǫ+
√
η) x dx = 2πN±(ǫ)N±(η)δ(

√
ǫ−√

η)

= 4π
√
ǫ N±(ǫ)N±(η)δ(ǫ− η)

= δ(ǫ− η)

so that one may choose

N±(ǫ) =

√
1

4π
√
ǫ
,

or by the completeness relation,

∑

±

∫ ∞

0

|N±(ǫ)|2e±i
√
ǫ (x−y) dǫ =

∑

±

∫ ∞

0

|N±(k
2)|2e±ik (x−y) 2kdk

=

∫ ∞

−∞
|N±(k

2)|2eik (x−y) 2|k|dk

= δ(x− y)
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so that, again, one may choose

N±(ǫ) =

√
1

4π
√
ǫ
.

Setting ǫ = −k2 the generalized eigenfunction expansion is just the Fourier trans-

form. The completeness relation becomes

δ(x− y) =
∑

±

∫ ∞

0

1

4π
√
ǫ
e±i

√
ǫ (x−y) dǫ

=
1

2π

∫ ∞

−∞
eik(x−y) dk.

..................

Example 8.2: For L = d2

dx2 on (0,∞) with Dirichlet boundary conditions ψ(0) = 0 all of

the solutions of the differential equation ψ′′ = ǫψ which satisfy the boundary conditions are

of the form

ψ(x) = a sin(
√
−ǫ x).

They are are polynomially bounded for all x > 0 only if ǫ ∈ (−∞, 0). Setting ǫ = −k2 and

noting that changing k to −k gives nothing new, one obtains the generalized eigenfunction

expansion, often called the Fourier sine transform,

f(x) =

∫ ∞

0

f̂(k) a sin(kx) dk

with

f̂(k) =

∫ ∞

0

f(x) a sin(kx) dx.

The normalization constant, a, can be determined by the completeness condition

δ(0,∞)(x− y) =

∫ ∞

0

|a|2 sin(kx) sin(ky) dk

= −1

4

∫ ∞

0

|a|2 (eik(x+y) − eik(x−y) − e−ik(x−y) − e−ik(x+y)) dk

=
π

2
|a|2 δ(x− y).

Since x and y are both positive, δ(x+ y) = 0 so that it is sufficient to choose

a =

√
2

π
.
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Similarly there is the Fourier cosine transform

f(x) =

√
2

π

∫ ∞

0

f̂(k) cos(kx) dk

with

f̂(k) =

√
2

π

∫ ∞

0

f(x) cos(kx) dx

corresponding to Neumann boundary conditions at x = 0.

..................

Example 8.3: As an application consider sound propagation near a wall. Let the wall be

at x = 0, let the pressure be constant in the y direction and suppose the sound field at z = 0

is known for all time and that the sound is propagating in the z direction. Then

P (x, z, t) =
1

π

∫ ∞

−∞

∫ ∞

0

a(q, z, ω) cos(qx)e−iωt dq dω.

Applying the wave equation to P one finds that

( ∂2
∂z2

+
ω2

c2
− q2

)
a(q, z, ω) = 0

so that

a(q, z, ω) = α(q, ω)ei
√

ω2

c2
−q2 z + β(q, ω)e−i

√
ω2

c2
−q2 z

and thus

P (x, z, t) =
1

π

∫ ∞

−∞

∫ ∞

0

(
α(q, ω)ei

√
ω2

c2
−q2 z + β(q, ω)e−i

√
ω2

c2
−q2 z

)
cos(qx)e−iωt dq dω.

For the sound to propagate and remain finite in the direction of increasing z one

must have α(q, ω) = 0 for ω < 0 and β(q, ω) = 0 for ω > 0 and the square roots must be

defined so that, for q > |ω
c
|, the exponentials decrease with increasing z. Then, taking into

account the reality of p, one may write

P (x, z, t) =
2

π
Re

∫ ∞

0

∫ ∞

0

α(q, ω)ei
√

ω2

c2
−q2 z−iωt cos(qx) dq dω
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choosing the square root here to have non-negative imaginary part. Since P (x, 0, t) = f(x, t)

is known one has

α(q, ω) =
1

π

∫ ∞

−∞

∫ ∞

0

f(x, t) cos(qx)eiωt dx dt.

Substituting back into the integral for P (x, z, t) one can compute P (x, z, t) for all t and z > 0.

In particular, one can study diffraction near a wall: choose

f(x, t) =

{
cos(ω0t) if 0 < x < x0
0 if x > x0.

Then

α(q, ω) =
sin(qx0)

q

(
δ(ω − ω0) + δ(ω + ω0)

)

and

P (x, z, t) =
2

π
Re

∫ ∞

0

sin(qx0)

q
ei
√

ω2

c2
−q2 z−iω0t cos(qx) dq.

..................

Example 8.4: Consider

L = − d2

dx2

on (0,∞) with the boundary condition ψ′(0) = −aψ(0) for some positive constant a. The

eigenvalue problem

(− d2

dx2
− ǫ)ψ = 0

has the general solution

ψ(x) = N
(√
ǫ cos(

√
ǫ x)− a sin(

√
ǫ x)
)
.

These solutions are bounded for ǫ ≥ 0 so that the continuous spectrum is (0,∞). Normalizing

with respect to k =
√
ǫ one has

ψ(x) = N
(
k cos(kx)− a sin(kx)

)

= N
√
k2 + a2 cos(kx− arctan(

a

k
))

so that (by comparison with the cosine transform)

N =

√
2

π(k2 + a2)
.
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In addition to the continuous spectrum there is one eigenvalue corresponding to the

square integrable solution obtained when ǫ = −a2 or
√
ǫ = ia. The corresponding normalized

eigenfunction is

φ(x) =
√
2a e−ax.

The resulting eigenfunction expansion is

f(x) = c0
√
2a e−ax +

√
2

π

∫ ∞

0

c(k) cos(kx− arctan(
a

k
))

with

c0 =

∫ ∞

0

√
2a e−axf(x) dx

and

c(k) =

√
2

π

∫ ∞

0

cos(kx− arctan(
a

k
))f(x) dx.

Note that when a = 0 one obtains the cosine transform and in the limit a → ∞ one obtains

the sine transform.

..................

Example 8.5: Now consider

L = − d2

dx2
+ u(x)

where

u(x) =

{
0 if |x| > 1
−D if |x| ≤ 1

.

Then the solutions of
(
L− ǫ

)
ψ = 0

can be constructed as follows. Let k =
√
ǫ. One has

ψ(x) =




A−eikx +B−e−ikx if x < −1

aei
√
k2+D x + be−i

√
k2+D x if −1 ≤ x ≤ 1

A+e
ikx +B+e

−ikx if 1 < x

with the conditions that ψ and its derivative be continuous at x = ±1. It follows that

(
e−ik eik

ike−ik −ikeik
)(

A−
B−

)
=

(
e−i

√
k2+D ei

√
k2+D

i
√
k2 +D e−i

√
k2+D −i

√
k2 +D ei

√
k2+D

)(
a
b

)
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and

(
eik e−ik

ikeik −ike−ik

)(
A+

B+

)
=

(
ei

√
k2+D e−i

√
k2+D

i
√
k2 +D ei

√
k2+D −i

√
k2 +D e−i

√
k2+D

)(
a
b

)

so that (
A−
B−

)
= T

(
A+

B+

)

where

T =

(
e−ik eik

ike−ik −ikeik
)−1(

e−i
√
k2+D ei

√
k2+D

i
√
k2 +D e−i

√
k2+D −i

√
k2 +D ei

√
k2+D

)

·
(

ei
√
k2+D e−i

√
k2+D

i
√
k2 +D ei

√
k2+D −i

√
k2 +D e−i

√
k2+D

)−1(
eik e−ik

ikeik −ike−ik

)

=

(
T11(k) T12(k)
T21(k) T22(k)

)

with

T11(k) =
1

4k
√
k2 +D

(
(k +

√
k2 +D)2e2i(k−

√
k2+D) − (k −

√
k2 +D)2e2i(k+

√
k2+D)

)

T12(k) = − D

2k
√
k2 +D

cos(
√
k2 +D)

T21(k) = − D

2k
√
k2 +D

cos(
√
k2 +D)

and

T22(k) =
1

4k
√
k2 +D

(
(k +

√
k2 +D)2e2i(−k+

√
k2+D) − (k −

√
k2 +D)2e−2i(k+

√
k2+D)

)
.

If ǫ > 0 then k is real and ψ is polynomially bounded, but does not have finite norm.

Thus (0,∞) are all continuum eigenvalues and, given ǫ ∈ (0,∞), there are two corresponding

continuum eigenfunctions. (They can be taken to be what one obtains with A− 6= 0, B− = 0

and A− = 0, B− 6= 0, or whatever linear combinations are convenient).

If ǫ < 0 then k is pure imaginary and can be chosen to have positive imaginary part.

Then ψ grows exponentially unless both A− = 0 and B+ = 0. But this is possible only if

T11(k) = 0. Given such a k, ψ decreases exponentially and is of finite norm so that ǫ = k2 is

an eigenvalue. Setting k = i
√
Dκ the condition T11(k) = 0 becomes

e−i
√
D

√
1−κ2

= −κ− i
√
1− κ2
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with κ 6= 1.

For κ > 1 one would have

e
√
D

√
κ2−1 = −κ+

√
κ2 − 1,

but the left side is positive while the right is negative, so there are no solutions with κ > 1.

For 0 < κ < 1 one can break into real and imaginary parts. One finds

cos
(√
D
√
1− κ2

)
= −κ

and

sin
(√
D
√

1− κ2
)
=
√
1− κ2.

In principle, since this is two equations one can not expect a real solution, but these two equa-

tions are actually equivalent, since cos θ = −κ implies that sin θ =
√
1− cos2 θ =

√
1− κ2.

The most convenient one to solve is the second. Solving amounts to finding the values of

x ∈ (0, 1) for which sin(
√
Dx) = x. For

√
D ≤ 1 there are no solutions. For

√
D > 1 there

is a least one solution, with the number of solutions increasing as
√
D increases. For each

solution x there is an eigenvalue ǫ = −(1− x2)D.

Now let D > 1 and let ψ1, . . . , ψN be the normalized eigenfunctions corresponding

to eigenvalues ǫ1, . . . , ǫN . For the continuum eigenfunctions let ψ−(k, ·) be the normalized

solution with A− = 0 and B− = B and let ψ+(k, ·) be the normalized solution with B− = 0

and A− = A. To determine the normalization constant for the eigenfunctions it is sufficient

to compute ‖ψj‖ and check that it is 1. For the continuum eigenfunctions we will use the

completeness relation

δ(x− y) =
N∑

j=1

ψj(x)ψj(y) +
∑

±

∫ ∞

0

ψ±(k, x)ψ±(k, y) dk

=
N∑

j=1

ψj(x)ψj(y) +

∫ ∞

−∞
ψ+(k, x)ψ−(k, y) dk.

Since the ψj go to zero exponentially as x→ −∞ if we let both x and y go to −∞ we get

δ(x− y) =

∫ ∞

−∞
BAe−ik(x−y) dk
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so that it is sufficient to choose A = B = 1√
2π

.

Applications: This operator arises both in the quantum mechanics of a particle of mass m in

a square well in which the Hamiltonian is H = h̄2

2mL and in the one dimensional Helmholtz

equation with slower wave speed in a finite region in which

c(x) =

{
c0 if |x| > 1
c0 − δ if |x| < 1

and

u(x) =
ω2

c20
− ω2

c(x)2
.

In the former case a representation of the time evolution operator may be obtained by eigen-

function expansion:

〈x|e i
h̄

h̄2

2mLt|y〉 =
N∑

j=1

e
i
h̄

h̄2

2m ǫjtψj(x)ψj(y) +

∫ ∞

−∞
e

i
h̄

h̄2

2mk2tψ+(k, x)ψ−(k, y) dk.

In the later case the possible free vibration fields y(x, ω) at (angular) frequency ω of the

string may be obtained by eigenfunction expansion:

y(x, ω) =
N∑

j=1

cj ψj(x) +

∫ ∞

−∞
c(k)ψ+(k, x) dk.

..................

Now let’s apply this machinery to Bessel’s equation,

( d2
dx2

+
1

x

d

dx
− m2

x2
− ǫ
)
ψ(x) = 0.

Thus, we are considering the operator

L =
d2

dx2
+

1

x

d

dx
− m2

x2
.

Note that L can be related to the standard form

L+ k2 =
1

P

( d
dx
P
d

dx
+Q+ k2R

)
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by choosing P ′

P
= 1

x
so that

P = x, Q = −m
2

x
, R = x.

The most common example is to take x ∈ (0,∞) and, as a boundary condition,

insist that ψ be finite. Then

ψ(
√
−ǫ , x) = a Jm(

√
−ǫ x).

This function is polynomially bounded only if
√−ǫ is real. Thus, L has only continuum

eigenvalues; (0,∞), for m > 0, and [0,∞) for m = 0. The completeness relation gives,

setting k =
√−ǫ, ∫ ∞

0

|a|2Jm(kx)Jm(ky) y 2kdk = δ(x− y).

To determine a let x, y → ∞. Then, recalling the large x asymptotic form for Jm from

Example 5.9,

δ(x− y) =
4

π

√
y

x

∫ ∞

0

|a|2 cos(kx− mπ

2
− π

4
) cos(ky − mπ

2
− π

4
) dk

from which it follows, writing the cosines as sums of exponentials and using the Fourier

transform completeness relation, that

|a|2 =
1

2
.

Thus one can write the completeness relation as

∫ ∞

0

Jm(kx)Jm(ky) y k dk = δ(x− y).

The transform obtained in this way is known as the Hankel transform. Given a

function f the Hankel transform is usually written

f̃(k) =

∫ ∞

0

xJm(kx) f(x) dx

so that the inverse transform is given by

f(x) =

∫ ∞

0

k Jm(kx) f̃(k) dk.
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Other transforms can be obtained by choosing different boundary conditions. For

example, consider x ∈ (a,∞) for a > 0 with the boundary condition

ψ(a) = 0.

Then

ψ(
√
−ǫ , x) = AJm(

√
−ǫ x) +BYm(

√
−ǫ x)

with

AJm(
√
−ǫ a) +BYm(

√
−ǫ a) = 0

so that

ψ(
√
−ǫ , x) = A

(
Jm(

√
−ǫ x)− Jm(

√−ǫ a)
Ym(

√−ǫ a)Ym(
√
−ǫ x)

)
.

This function is polynomially bounded only if
√−ǫ is real. Thus, L has only continuum

eigenvalues; (0,∞), for m > 0, and [0,∞) for m = 0. The completeness relation gives,

setting k =
√−ǫ,

2

∫ ∞

0

|A|2
(
Jm(kx)− Jm(ka)

Ym(ka)
Ym(kx)

)(
Jm(ky)− Jm(ka)

Ym(ka)
Ym(ky)

)
ykdk = δ(x− y).

Again, to determine |A|2 let x, y → ∞. Recalling the large x asymptotic form for Jm and

Ym,

δ(x− y) =
4

π

√
y

x

∫ ∞

0

|A|2
(
cos(kx− mπ

2
− π

4
)− Jm(ka)

Ym(ka)
sin(kx− mπ

2
− π

4
)
)

·
(
cos(ky − mπ

2
− π

4
)− Jm(ka)

Ym(ka)
sin(ky − mπ

2
− π

4
)
)
dk.

Using the identity

α cos θ + β sin θ =
√
α2 + β2 cos(θ − tan−1 β

α
)

one finds

δ(x− y) =
4

π

√
y

x

∫ ∞

0

|A|2
(
1 +

(Jm(ka)

Ym(ka)

)2)
cos(kx− φ(k)) cos(ky − φ(k)) dk

with

φ(k) = tan−1 Jm(ka)

Ym(ka)
− mπ

2
+
π

4
.
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Choosing

|A|2 =
1

2
(
1 +

(
Jm(ka)
Ym(ka)

)2)

and noting that

lim
x+y→∞

∫ ∞

0

(
eik(x+y)−2iφ(k) + e−ik(x+y)+2iφ(k)

)
dk

= − lim
x+y→∞

1

i(x+ y)

∫ ∞

0

(
eik(x+y) d

dk
e−2iφ(k) − e−ik(x+y) d

dk
e2iφ(k)

)
dk

= 0

the completeness relation becomes

∫ ∞

0

(
Jm(kx)− Jm(ka)

Ym(ka)Ym(kx)
)(

Jm(ky)− Jm(ka)
Ym(ka)Ym(ky)

)

1 +
(
Jm(ka)
Ym(ka)

)2 ykdk = δ(x− y).

If the transform associated with this completeness relation is chosen to be

f̃(k) =

∫ ∞

a

f(x)
(
Jm(kx)− Jm(ka)

Ym(ka)
Ym(kx)

)
xdx

then the inverse transform is

f(x) =

∫ ∞

0

f̃(k)
(
Jm(kx)− Jm(ka)

Ym(ka)
Ym(kx)

) k

1 +
(
Jm(ka)
Ym(ka)

)2 dk.

Example 8.6: Consider sound propagating from the ground. Let the normal component

of the acoustic velocity field be known at z=0,

vz(r, θ, 0, t) = f(r, θ, t).

Let (
∇2 − 1

c2
∂2

∂t2

)
P = 0.

Writing

P (r, θ, z, t) =
1

2π

∞∑

m=−∞

∫ ∞

−∞

∫ ∞

0

P̃m(k, z, ω) eimθ−iωt J|m|(kr) kdk dω

one has ( d2
dz2

− k2 +
ω2

c2

)
P̃m(k, z, ω) = 0
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so that

P̃m(k, z, ω) = Am(k, ω) ei
√

ω2

c2
−k2 z.

To determine Am(k, ω) use the boundary condition at z = 0,

−ρ0
∂f(r, θ, t)

∂t
=

1

2π

∞∑

m=−∞

∫ ∞

−∞

∫ ∞

0

Am(k, ω) i

√
ω2

c2
− k2 eimθ−iωt J|m|(kr) kdk dω

so that

Am(k, ω) =
ρ0ω√
ω2

c2
− k2

∫ ∞

−∞

∫ ∞

0

∫ 2π

0

f(r, θ, t) e−imθ+iωt J|m|(kr) rdθ dr dt.

As a concrete example let

f(r, θ, t) =
1

r
δ(r)δ(t).

Then

Am(k, ω) = 2πρ0cδm,0
ω√

ω2 − k2c2

so that

P (r, θ, z, t) = 2πρ0c

∫ ∞

−∞

∫ ∞

0

ω√
ω2 − k2c2

ei
√

ω2

c2
−k2 z−iωt J0(kr) kdk dω.

..................
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Integral Transforms

An integral transform of a function f(x) relative to a family of functions h(k, x) is

the linear transformation

(T f)(k) =
∫
h(k, x)f(x) dx.

In most cases there is also an inverse transform from which f can be recovered.

f(x) =

∫
h̃(k, x)(T f)(k) dk.

The class of functions for which the transform exists depends on h.

The most common integral transform is the Fourier transform:

f̂(k) =
1√
2π

∫ ∞

−∞
eikx f(x) dx. (9.1)

Given the Fourier transform, f̂ , the original function, f , can be reconstructed using the

Fourier inversion formula,

f(x) =
1√
2π

∫ ∞

−∞
e−ikx f̂(k) dk. (9.2)

Note that substituting (9.1) into (9.2) gives the completeness relation

1

2π

∫ ∞

−∞
eik(x−x′) dk = δ(x− x′)

and substituting (9.2) into (9.1) gives the orthogonality relation

1

2π

∫ ∞

−∞
ei(k−k′)x dx = δ(k − k′).

Note that the norm

‖f‖ =

√∫ ∞

−∞
|f(x)|2 dx (9.3)

is preserved by the Fourier transform in the sense that

‖f‖2 =
1

2π

∫ ∞

−∞

(∫ ∞

−∞
eikxf̂(k) dk

)(∫ ∞

−∞
e−iqxf̂(q) dq

)
dx

=

∫ ∞

−∞

∫ ∞

−∞
f̂(k)f̂(q)δ(k − q) dq dk

=

∫ ∞

−∞
|f̂(k)|2 dk
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so that we end up with the relation

‖f‖ = ‖f̂‖.

Another identity arising for Fourier integrals is the relation between convolution and

multiplication. The convolution of f with g is given by

(f ∗ g)(x) =
∫ ∞

−∞
g(x− y)f(y) dy.

Substituting the Fourier decomposition of g and f into the convolution gives

(f ∗ g)(x) = 1

2π

∫ ∞

−∞

(∫ ∞

−∞
e−ik(x−y)ĝ(k) dk

)(∫ ∞

−∞
e−iqxf̂(q) dq

)
dy

=

∫ ∞

−∞

∫ ∞

−∞
e−ikxĝ(k)f̂(q) δ(k − q) dq dk

=

∫ ∞

−∞
e−ikxĝ(k)f̂(k) dk

so that

̂(f ∗ g)(k) =
√
2π ĝ(k)f̂(k).

Example 9.1: Some examples of Fourier transforms: First, a Gaussian,

f(x) = e−λx2

gives

f̂(k) =
1√
2π

∫ ∞

−∞
eikx−λx2

dx

=
1√
2π

∫ ∞

−∞
e−λ(x− ik

2λ )2− k2

4λ dx

=
1√
2λ

e−
k2

4λ .

Note that the Fourier transform of a Gaussian is a Gaussian. Further, the broader f is the

more sharply peaked f̂ is, and conversely.

Now consider a Lorentzian,

f(x) =
1

x2 + λ2
.

129



Integral Transforms

To compute the Fourier transform it’s best to use the calculus of residues. One finds

f̂(k) =
1√
2π

∫ ∞

−∞
eikx

1

x2 + λ2
dx

=

√
π

2

1

λ
e−λ|k|.

Again, the more sharply peaked the Lorentzian, the broader it’s Fourier transform. Note that

the Fourier inversion formula shows that the Fourier transform of e−λ|x| is

̂(e−λ|x|)(k) =
√

2

π

λ

k2 + λ2
.

Finally, consider a square pulse,

f(x) =
{
1 if a < x < b
0 otherwise.

Then

f̂(k) =
1√
2π

∫ b

a

eikx dx

=
1

ik
√
2π

(
eikb − eika

)
.

..................

Not all functions can be Fourier transformed. For example, f(x) = ex has no

Fourier transform. In general any integrable function has a bounded Fourier transform, and

any function for which the norm (9.3) is finite has a Fourier transform with equal norm.

The general question of what functions can be Fourier transformed and what the Fourier

transform means (recall that the Fourier transform of 1 is δ(k) so that it doesn’t exist even

though we know how to make sense of it) is involved. Further, given a function which can be

Fourier transformed there is an extensive theory which indicates how regular a function the

Fourier transform is. Let’s see what can be said of the examples above.

Note that for the square pulse f̂ goes to 0 as k → ∞ much more slowly than in the

previous two examples. This is typical of Fourier transforms of discontinuous functions. In

fact there is a relation between differentiability of f and the rate at which f̂(k) → 0 for large

k. Explicitly, if f is n times differentiable on R but not n+ 1 times differentiable, with f (j)

bounded and

lim
x→∞

f (j)(x) = 0
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for j ∈ {0, 1, 2, . . . , n} then one can integrate by parts n times giving

f̂(k) =
1√

2π (ik)n

∫ ∞

−∞
eikx f (n)(x) dx.

Assume further that the non-differentiability of f (n) arises from a jump discontinuity at x = a.

Then

f̂(k) =
1√

2π (ik)n

(∫ a

−∞
eikx f (n)(x) dx+

∫ ∞

a

eikx f (n)(x) dx
)

=
1√

2π (ik)n+1

(
eika

(
f (n)(a− 0+)− f (n)(a+ 0+)

)

+

∫ a

−∞
eikx f (n+1)(x) dx+

∫ ∞

a

eikx f (n+1)(x) dx
)
.

Note that additional integrations by parts won’t increase the power of 1
k
so that the rate

at which f̂(k) → 0 as k → ∞ is 1
kn . If there are additional isolated singular points the

integration region can be broken up further, and the singularities dealt with individually.

The small k behavior of f̂(k) is determined by the large x behavior of f(x) in the

sense that

f̂(0) =
1√
2π

∫ ∞

−∞
f(x) dx.

Further,

f̂ ′(0) =
1√
2π

∫ ∞

−∞
x f(x) dx

so that the differentiability of f̂(k) at k = 0 is determined by the rate at which f(x) → 0

as x → ∞. It is a fact that f̂(k) is analytic if f(x) → 0 exponentially fast as x → ∞. The

converse is true if f is analytic and integrable in a strip: the rate of exponential decrease of

f̂(k) is the distance from the real line to the closest singularity of f . This is precisely what

happened for the Lorentzian.

Example 9.2: Consider a problem in one dimensional acoustics: a sound source at x = 0

given by a velocity condition

v(0, t) = f(t).

Then the acoustic pressure satisfies the wave equation

( ∂2
∂x2

− 1

c2
∂2

∂t2

)
P (x, t) = 0
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with the boundary condition
∂P

∂x

∣∣
x=0

= −ρ0f ′(t).

Since this is one dimensional we can solve the problem:

P (x, t) = ρ0cf(t−
x

c
).

However, this approach cannot be generalized to higher dimensions, so we will see how to use

Fourier transforms to solve this problem.

Write

f(t) =
1√
2π

∫ ∞

−∞
e−iωtf̂(ω) dω

where

f̂(ω) =
1√
2π

∫ ∞

−∞
eiωtf(t) dt

is the Fourier transform of f . Similarly write

P (x, t) =
1√
2π

∫ ∞

−∞
e−iωtPA(x, ω) dω.

Here PA(x, ω) is the Fourier transform of P (x, t) with respect to t. Then

0 =
( ∂2
∂x2

− 1

c2
∂2

∂t2

) 1√
2π

∫ ∞

−∞
e−iωtPA(x, ω) dω

=
1√
2π

∫ ∞

−∞
e−iωt

( ∂2
∂x2

+
ω2

c2

)
PA(x, ω) dω

with the boundary condition

∂

∂x

1√
2π

∫ ∞

−∞
e−iωtPA(x, ω) dω

∣∣
x=0

= −ρ0
∂

∂t

1√
2π

∫ ∞

−∞
e−iωtf̂(ω) dω.

It follows that ( ∂2
∂x2

+
ω2

c2

)
PA(x, ω) = 0

with the boundary condition

∂PA(x, ω)

∂x

∣∣
x=0

= iρ0ωf̂(ω). (9.4)

Solving one finds

PA(x, ω) = ρ0cf̂(ω) e
iω
c
x
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so that

P (x, t) =
ρ0c√
2π

∫ ∞

−∞
f̂(ω) e−iω(t− x

c
) dω

= ρ0cf(t−
x

c
).

Now, rather than radiating into free space, imagine the source is mounted at one

end of a closed resonator of length L. Then in addition to (9.4) one has

∂PA(x, ω)

∂x

∣∣
x=L

= 0

so that

PA(x, ω) =
iρ0cf̂(ω)

sin(ω
c
L)

cos
(ω
c
(L− x)

)
.

..................

Example 9.3: Now consider a radiator in 3 dimensions. Let S be the surface of the radiator.

For a point s ∈ S let the normal component of the velocity of the radiator be u(s, t). Then

the acoustic pressure satisfies

(
∇2 − 1

c2
∂2

∂t2

)
P (x, t) = 0

with the boundary condition

−n · ∇P
∣∣
x∈S

= ρ0
∂u

∂t
.

Fourier transforming with respect to time,

u(s, t) =
1√
2π

∫ ∞

−∞
û(s, ω)e−iωt dω

and

P (x, t) =
1√
2π

∫ ∞

−∞
PA(x, ω)e

−iωt dω,

one has (
∇2 +

ω2

c2

)
PA(x, ω) = 0

with the boundary condition

n · ∇PA

∣∣
x∈S

= iρ0ωû.
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If the radiator is in free space then there is an additional boundary condition at

spatial ∞: the pressure wave must be outgoing so that it satisfies the Somerfeld radiation

condition

PA(x, ω) ∼ const
ei

ω
c
‖x‖

‖x‖
for large ‖x‖. This problem was studied in Example 7.8. Change to spherical coordinates

and recall that for ω
c
r ≫ 1 one has (if the integral is not 0)

PA(x, ω) ≈
−iρ0ω
4π

(∫

S

û(s, ω) dσ(s)
) ei

ω
c
r

r
.

It follows that

P (x, t) ≈ −iρ0
2

5
2π

3
2

∫ ∞

−∞
ω

∫

S

û(s, ω) dσ(s)
ei

ω
c
(r−ct)

r
dω

so that

P (x, t) ≈ ρ0

2
5
2π

3
2

1

r

∂

∂t

∫

S

∫ ∞

−∞
û(s, ω)ei

ω
c
(r−ct) dω dσ(s)

=
ρ0
4π

∂
∂t

∫
S
u(s, t− r

c
) dσ(s)

r
.

As a concrete example consider the case in which the source begins vibrating sud-

denly at t = 0. Assume the vibration is at frequency ω0, but with exponentially decreasing

amplitude so that ∫

S

u(s, t) dσ(s) =

{
0 if t < 0
A e−γt cos(ω0t) if t ≥ 0

(9.5)

for some ω0 ∈ R and A, γ ∈ (0,∞). It follows that

P (x, t) ≈ A
ρ0
4π

[
δ(t)− Re(iω0 + γ)

{
0 if t < r

c
1
r
e−(iω0+γ)(t− r

c
) if t ≥ r

c

]

if r is large enough. The δ(t) is the spike in P which arises from turning the velocity on

suddenly at t = 0.

..................

Example 9.4: The previous example solved a boundary value problem by Fourier trans-

forming in time. Now consider an initial value problem. Imagine that the acoustic pressure

and it’s rate of change are known at t = 0,

P (x, 0) = f(x)
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and
∂P

∂t

∣∣
t=0

= g(x).

Then (
∇2 − 1

c2
∂2

∂t2

)
P (x, t) = 0

with the initial conditions given above. Fourier transforming with respect to x one has

P (x, t) =
1

(2π)
3
2

∫

R3

p(k, t)eik·x d3k

with (
k · k+

1

c2
∂2

∂t2

)
p(k, t) = 0.

Setting

k =
√
k · k

there are coefficients a(k) and b(k) with

P (x, t) =
1

(2π)
3
2

∫

R3

(
a(k) cos(ckt) + b(k) sin(ckt)

)
eik·x d3k.

Applying the initial conditions gives

a(k) = f̂(k)

and

b(k) =
1

ck
ĝ(k).

..................

Example 9.5: A linear integral operator acting on a function f is a transformation of the

form

(Ff)(t) =
∫ ∞

−∞
G(t, s)f(s) ds.

Sometimes G is referred to as the integral kernel of this linear operator. Now consider a

linear, time translation invariant operator. Translation invariance means that

∫ ∞

−∞
G(t, s)f(s) ds =

∫ ∞

−∞
G(t+ τ, s+ τ)f(s) ds
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for any τ . Choosing τ = −s one sees that the only way for this transformation to be time

translation invariant is if

G(t, s) = g(t− s)

for g(τ) = G(τ, 0). But then

(Ff)(t) =
∫ ∞

−∞
g(t− s)f(s) ds

is just a convolution so that Fourier transforming yields

̂(Ff)(ω) =
√
2π ĝ(ω)f̂(ω).

Linear time translation invariant filters abound in practice. The impedance in a

one-dimensional acoustics problem is an example. If a linear relation exists between P (x, t)

and v(x, t) at some point x0 then, assuming that the mean state of the fluid in question is

constant in time, the relation between P and v must be time translation invariant so that on

Fourier transforming one finds that there is a function Z(ω) with

P̂ (x0, ω) = Z(ω)v̂(x0, ω).

Similarly, if some electro-acoustic transducer is sufficiently linear then there is a

time translation invariant (assuming the characteristics of the transducer don’t change with

time, which is in practice never true, but reasonable over short enough spans of time) linear

relation between the pressure on the face of the transducer, Pf (t) and the voltage, V (t) (or

current, I(t),) produced by the transducer. Fourier transforming yields the relation

P̂f (ω) =M(ω)V̂ (ω).

Perhaps the most well known examples are provided by A.C. circuit theory. Given

a voltage source V (t), the current I(t) at some point in the circuit is related to V through a

frequency dependent impedance Z(ω) through Ohm’s law

V̂ (ω) = Z(ω)Î(ω).

Circuit diagrams provide an algorithm for producing Z from the impedances of individual

circuit elements.
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As a concrete example consider a resonator of length L with

( d2
dx2

+ (
ω

c
+ iα)2

)
PA(x) = 0,

P ′
A(L) = 0

and

P ′
A(0) = iωρ0û0(ω).

Here û0(ω) is the Fourier transform of the piston motion and α is small. Then

PA(x) =
iωρ0û0(ω) cos

(
(ω
c
+ iα)(L− x)

)

(ω
c
+ iα) sin

(
(ω
c
+ iα)L

) .

It follows that the impudence at x = 0 is

PA(0)

û0(ω)
=

iωρ0
(ω
c
+ iα)

cot
(
(
ω

c
+ iα)L

)
.

In particular the acoustic pressure at x = 0 is

P (0, t) =
1√
2π

∫ ∞

−∞

iωρ0
(ω
c
+ iα)

cot
(
(
ω

c
+ iα)L

)
û0(ω) e

−iωt dω.

Some words about doing the integral above. If û0(ω) is analytic in the lower half-

plain then the integrand has a second order pole at ω = −icα and simple poles at ω = j cπ
L
−icα

for j ∈ {±1,±2, . . .}. Further, if û0(ω) is polynomially bounded then (since t > 0) one can

close the ω integration contour in the lower half-plane. One obtains

P (0, t) =
√
2π
ρ0c

2

L

∑

j 6=0

j − iαL
π

j
û0(j

cπ

L
− icα)e−(ij cπ

L
+cα)t

+
√
2π
ρ0c

2

L

(
(1− αct)û0(−icα)− iαcû′0(−icα)

)
e−cαt.

Note that

û(0) =
1√
2π

∫ ∞

−∞
u(t) dt.

In practice û(ω) is 0 near ω = 0 because so that the piston, on the average, stays

at x = 0. Thus the j = 0 term is usually negligible. Further, û(ω) is often not analytic

everywhere, but just in a neighborhood of some of the poles j cπ
L

− icα. There are two

extreme cases to consider.
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In the first, the piston vibrates at essentially one frequency, say ω0, so that û(ω) is

essentially a delta function,

û(ω) = Aδ(ω − ω0)

and the integral above is straightforward.

In the other case û(ω) is non-zero and slowly varying relative to the cotangent. In

this case, the integral is dominated by the regions close to the poles where û(ω) is non-zero.

Then the cotangent can be approximated by it’s leading term. Assuming that û(ω) is non-zero

only in a neighborhood of ωj = j cπ
L

− icα one can use the asymptotic formula

P (0, t) ≈ 1√
2π

iωjρ0
(
ωj

c
+ iα)

L

c
û0(ωj) e

−iωjt

∫ ∞

−∞

1

ω − ωj + iαc
dω

=
ρ0c

2

L

√
2π
j − iαL

π

j
û0(j

cπ

L
− icα)e−(ij cπ

L
+cα)t

..................

The last transform we’ll look at is the Laplace transform. The Laplace transform

is not directly related to a self adjoint operator. Instead it is a variation of the Fourier

transform. The Laplace transform of a function f defined on (0,∞) is

f̃(s) =

∫ ∞

0

f(x) e−sx dx.

The transform can actually be inverted. The inversion formula is

f(x) =
1

2πi

∫ γ+i∞

γ−i∞
f̃(s)esx ds.

Any γ which is to the right of all the poles of f̃(s) will work. To see that this inversion

formula works note that

1

2πi

∫ γ+i∞

γ−i∞
f̃(s)esx ds =

1

2πi

∫ γ+i∞

γ−i∞

∫ ∞

0

f(y) es(x−y) dy ds

=
1

2π
eγx

∫ ∞

−∞

∫ ∞

0

e−γyf(y) eiω(x−y) dy dω

=

{
0 if x < 0
f(x) if x > 0.

Note that another form of the restriction on γ is that the function

e−γxf(x) ·
{
0 if x < 0
1 if x > 0

have a Fourier transform.
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Green’s Functions

Let L be a partial differential operator in variables x1, x2, . . . , xn. In general, a

Green’s function for L is a solution of the equation

LG(x1, y1, . . . , xn, yn) = δ(x1 − y1)δ(x2 − y2) · · · δ(xn − yn).

Note that a Green’s function is not unique. Given a Green’s function G(x1, y1, . . . , xn, yn)

the function G(x1, y1, . . . , xn, yn) + f(x1, x2, . . . , xn) is also a Green’s function whenever

Lf = 0.

Example 10.1: Let

L =
d2

dx2
.

If
d2

dx2
G(x, y) = δ(x, y)

then

G(x, y) =
1

2
|x− y|+ ax+ b

for any constants a and b.

If

L = ∇2

then in R2

G(x,y) =
−1

2π
ln(‖x− y‖)

is a Green’s functions and in R3

G(x,y) =
−1

4π‖x− y‖

is a Green’s function.

Now let

L = ∇2 + k2

in R3. Then

(∇2 + k2)G(x,y) = δ(x− y)
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implies that

G(x,y) =
−1

4π‖x− y‖e
ik‖x−y‖

is a Green’s function for L.

These last three examples are all called free space Green’s functions. They can all

be obtained using Fourier transforms. The functions

G(x,y) =
−1

(2π)n

∫

Rn

eiq·(x−y)

‖q‖2 ± i0+
dnq

are free space Green’s functions for ∇2 on Rn and

G(x,y) =
1

(2π)n

∫

Rn

eiq·(x−y)

k2 − ‖q‖2 ± i0+
dnq

are free space Green’s functions for ∇2 + k2 on Rn.

..................

Now let G1 and G2 be different Green’s functions for the same operator L. Then

L(G1 −G2) = δ(x− y)

so that G1 and G2 differ by a solution to Lf = 0. This allows one to choose a Green’s function

satisfying some boundary conditions. Given any Green’s function G one must choose an f

with Lf = 0 so that G+ f satisfies the desired boundary conditions.

Example 10.2: Let’s construct a Green’s function for

L = ∇2 + k2

in {(x, y, z) ∈ R3
∣∣x > 0} which satisfies Dirichlet boundary conditions at x = 0. Let

G(x,x′) =
−1

4π‖x− x′‖e
ik‖x−x′‖

be the free space Green’s function for L. Given

x′ =



x′

y′

z′
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define

x̃′ =




−x′
y′

z′


 .

Note that if x′ is in the domain then x̃′ is not. Thus

LG(x, x̃′) = 0

so that

GD(x,x′) = G(x,x′)−G(x, x̃′)

is a Green’s function. A moments reflection shows that when x = 0 one has GD = 0 so

that GD is the desired Green’s function. The procedure used is known as the method of

images. The Green’s function for the Helmholtz equation which satisfies Neumann boundary

conditions at x = 0 can be constructed similarly:

GN (x,x′) = G(x,x′) +G(x, x̃′).

This Dirichlet and Nemann Green’s functions can also be constructed using eigen-

function expansions, a sine transform in the Dirichlet case:

GD(x,x′) =
2

π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

sin(qxx) sin(qxx
′) eiqy(y−y′)+iqz(z−z′)

k2 − ‖q‖2 + i0+
dqx dqy dqz,

and a cosine transform in the Neumann case:

GN (x,x′) =
2

π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

cos(qxx) cos(qxx
′) eiqy(y−y′)+iqz(z−z′)

k2 − ‖q‖2 + i0+
dqx dqy dqz.

..................

There is a general technique for constructing Green’s functions for ordinary differ-

ential operators of the form

L =
d

dx
P
d

dx
+Q, (10.1)

for x ∈ (a, b), satisfying any specified boundary conditions at a and b. To construct such a

Green’s function let ψ1 and ψ2 be any solutions of

( d
dx
P
d

dx
+Q

)
ψ = 0

141



Green’s Functions

with ψ1 satisfying the given boundary condition at a and ψ2 satisfying the given boundary

condition at b. Then

G(x, y) = c ψ1(x<)ψ2(x>)

with x< = min(x, y) and x> = max(x, y). The constant c is determined so that

1 = lim
ǫ↓0

∫ y+ǫ

y−ǫ

δ(x− y)

= lim
ǫ↓0

∫ y+ǫ

y−ǫ

( d
dx
P
d

dx
+Q

)
G(x, y)

= P (y) lim
ǫ↓0

d

dx
G(x, y)

∣∣y+ǫ

y−ǫ

= c P (y)
(
ψ1(y)ψ

′
2(y)− ψ′

1(y)ψ2(y)
)
.

Recalling the Wronskian,

c =
−1

P (y)W(ψ1, ψ2; y)

so that

G(x, y) = − ψ1(x<)ψ2(x>)

P (y)W(ψ1, ψ2; y)
. (10.2)

Abel’s formula shows that c is indeed a constant.

Often one is given an ordinary differential operator in standard form rather than

the form (10.1),

L̃ =
d2

dx2
+
P ′(x)

P (x)

d

dx
+
Q(x)

P (x)

=
1

P (x)
L.

Note that one has

L̃G(x, y) =
1

P (x)
δ(x− y)

where G(x, y) is given in (10.2) so that

L̃G̃(x, y) = δ(x− y)

where

G̃(x, y) = P (y)G(x, y).
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Example 10.3: The simplest example is

L =
d2

dx2

on the interval [a, b] with boundary conditions

αaf(a) + βaf
′(a) = 0

αbf(b) + βbf
′(b) = 0.

For this example the general solution of lψ = 0 is

ψ(x) = A+Bx.

It follows that one may choose

ψ1(x) = −αaa+ βa
αa

+ x

ψ2(x) = −αbb+ βb
αb

+ x.

Thus

G(x, y) =
1

αaa+βa

αa
− αbb+βb

αb

(−αaa+ βa
αa

+ x<)(−
αbb+ βb

αb

+ x>).

..................

Example 10.4: Now consider the 1-d Helmholtz equation on the line

L =
d2

dx2
+ k2.

The homogeneous solutions are all of the form

ψ(x) = Aeikx +Be−ikx.

Note that if

ψ1(x) = A1e
ikx +B1e

−ikx

ψ2(x) = A2e
ikx +B2e

−ikx
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then

W(ψ1, ψ2) = 2ik(A1B2 −B1A2).

In this general case one has

G(x, y) = − 1

2ik(A1B2 −B1A2)

(
A1e

ikx< +B1e
−ikx<

)(
A2e

ikx> +B2e
−ikx>

)

The various Greens functions are determined by the homogeneous solutions they

are asymptotic to as x → ±∞. The “outgoing” Greens function is given by choosing A1 =

0 = B2. One finds in this case that

G(x, y) =
1

2ik
eik|x−y|.

If k is pure imaginary, k = iκ, then the bounded Greens function is given by

G(x, y) = − 1

2κ
e−κ|x−y|.

..................

Example 10.5: Consider the operators given by the differential equations of Euler type

L =
d2

dx2
+ α

1

x

d

dx
+ β

1

x2

=
1

xα
d

dx
xα

d

dx
+ β

1

x2
.

Solutions of the related ordinary differential equation may be obtained using the Ansatz

ψ(x) = xr. The exponent r satisfies the indicial equation

r(r − 1) + αr + β = 0

so that one obtains two solutions from the two roots

r± =
1− α

2
±
√(α− 1

2

)2 − β.

Assuming that r+ 6= r− one has

W(xr+ , xr−) =

√
(α− 1)2 − 4β

xα
.
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It follows that the possible Greens functions of L are of the form

G(x, y) =
xα(Ax

r+
< + x

r−
< )(x

r+
> +Bx

r−
> )

(1−AB)
√
(α− 1)2 − 4β

..................

Another method for constructing Greens functions is by eigenfunction expansion, if

there is one available. Assume one has an eigenfunction expansion for L given by discrete

spectrum ǫj , ψj(x) and continuous spectrum Γn, ψn(ǫ, x). Let η ∈ C not be in the spectrum

of L. Then the Greens function for L − η which satisfies the boundary conditions used in

defining L may be given by

Gη(x, y) =
∑

j

ψj(x)ψj(y)

ǫj − η
+
∑

n

∫

Γn

ψn(ǫ, x)ψn(ǫ, y)

ǫ− η
dǫ. (10.3)

Examples are provided by the Fourier, sine and cosine transform representations of

the Greens functions for the Helmholtz equation given in Example 10.1 and Example 10.2. In

these cases the desired value for η, say −k2 is in the continuous spectrum, which is a branch

cut for Gη(x, y). Greens functions are obtained by allowing η = −k2 ± i0+ to approach −k2

from above or below in the complex plane. Note that different Greens functions are obtained

depending on whether −k2 is approached from above or below.

Note that, as functions of η, these Greens functions are analytic in η as long as η

is not in the spectrum of L. The discrete eigenvalues of L are simple poles of Gη(x, y); the

residues at the eigenvalues are the projection operators given as integral operators by

ψj(x)ψj(y).

The components of the continuous spectrum can be shown to be branch cuts of Gη(x, y).

Using the formula

Im
1

x+ i0+
= πδ(x)

one finds that

Gη+i0+(x, y)−Gη−i0+(x, y) = −2πi
∑

mwith η∈Γm

ψm(η, x)ψm(η, y). (10.4)
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Note that for second order ordinary differential operators (10.4), in conjunction with

(10.2), provides a general method for finding the normalization of the continuous spectrum

eigenfunctions. If L is given by (10.1) on (−∞,∞) and the Greens function Gz(x, y) for L−z
by (10.2) then one has

Gη+i0+(x, y)−Gη−i0+(x, y)

=

∫ b

a

[
Gη+i0+(x,w)

( d
dw

P (w)
d

dw
+Q(w)− η

)
Gη−i0+(w, y)

−Gη−i0+(w, y)
( d
dw

P (w)
d

dw
+Q(w)− η

)
Gη+i0+(x,w)

]
dw

=

[
Gη+i0+(x,w)

d

dw
P (w)Gη−i0+(w, y)

−Gη−i0+(w, y)
d

dw
P (w)Gη+i0+(x,w)

]∣∣∞
w=−∞.

(10.5)

Example 10.6: Consider

L =
d2

dx2

on (−∞,∞). Note that the spectrum of L is continuous, is given by (−∞, 0) and is two-fold

degenerate. Let η ∈ C with η /∈ (−∞, 0) and consider the bounded Greens function for L− η
given by

Gη(x, y) = − 1

2
√
η
e−

√
η |x−y|

= − 1

2
√
η
e
√
η x<e−

√
η x>

with the square root above chosen to have positive real part, in other words with branch cut

(−∞, 0). Then (10.4) and (10.5) give for ǫ ∈ (−∞, 0)

2πi
∑

n=±
ψn(ǫ, x)ψn(ǫ, y) = − 1

2i
√−ǫ

(
ei

√
−ǫ (x−y) + e−i

√
−ǫ (x−y)

)

from which one obtains the normalization

N±(−ǫ) =
√

1

4π
√−ǫ

of the continuum eigenfunctions obtained previously from comparison to Fourier transforma-

tion.
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..................

Example 10.7: Consider

L = ∇2

in free space in cylindrical coordinates. In cylindrical coordinates the Greens function for

L− η satisfies

( ∂2
∂r2

+
1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
− η
)
Gη(r, θ, z, r

′, θ′, z′) =
δ(r − r′)

r
δ(θ − θ′)δ(z − z′).

It may be obtained by eigenfunction expansion using Fourier transform in z, Fourier serires

in θ and Hankel transform in r. One obtains

Gη(r, θ, z, r
′, θ′, z′) =

1

4π2

∞∑

m=−∞

∫ ∞

−∞

∫ ∞

0

eim(θ−θ′)+ik(z−z′)Jm(qr)Jm(qr′)

−k2 − q2 − η
q dk dq.

Alternatively, one may use a mixed approach. Use eigenfunction expansion, Fourier

transform in z and Fourier serires in θ, for z and θ and (10.2) for r. The two eigenfunction

expansions give

Gη(r, θ, z, r
′, θ′, z′) =

1

4π2

∞∑

m=−∞

∫ ∞

−∞
eim(θ−θ′)+ik(z−z′)gm(k, r, r′) dk

with ( ∂2
∂r2

+
1

r

∂

∂r
− m2

r2
− k2 − η

)
gm(k, r, r′) =

δ(r − r′)

r
.

Using (10.2) one finds

gm(k, r, r′) = − Jm(
√
−k2 − η r<)H

(1)
m (
√
−k2 − η r>)

W
(
Jm(

√
−k2 − η r), H

(1)
m (
√
−k2 − η r)

)

=
π

2
Jm(

√
−k2 − η r<)H

(1)
m (
√
−k2 − η r>)

so that

Gη(r, θ, z, r
′, θ′, z′) =

1

8π

∞∑

m=−∞

∫ ∞

−∞
eim(θ−θ′)+ik(z−z′)Jm(

√
k2 − η r<)H

(1)
m (
√
k2 − η r>) dk.

..................
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Example 10.8: Consider

L = ∇2

in free space in spherical coordinates. Assume an outgoing radiation condition at r = ∞:

ψ(x) ∼ eikr

r

as r → ∞. The Greens function for L− η satisfies
( ∂2
∂r2

+
2

r

∂

∂r
+

1

r2
( 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
)
− η
)
Gη(r, θ, φ, r

′, θ′, φ′)

=
δ(r − r′)

r2
δ(θ − θ′)

sin θ
δ(φ− φ′).

Expanding in spherical harmonics one has

Gη(r, θ, φ, r
′, θ′, φ′) =

∞∑

l=0

l∑

m=−l

Ylm(θ, φ)Ylm(θ′, φ′)gη;l,m(r, r′)

with ( ∂2
∂r2

+
2

r

∂

∂r
− l(l + 1)

r2
− η
)
gη;l,m(r, r′) =

δ(r − r′)

r2
.

One has

gη;l,m(r, r′) = − jl(
√−η r<)h(+)

l (
√−η r>)

r2W
(
jl(

√−η r), h(+)
l (

√−η r)
) .

Using

W
(
jl(

√−η r), h(+)
l (

√−η r)
)
= iW

(
jl(

√−η r), yl(
√−η r)

)

= − i(2l + 1)√−η r2
one finds

gη;l,m(r, r′) = −i
√−η
2l + 1

jl(
√−η r<)h(+)

l (
√−η r>).

..................

We end by mentioning some applications. The basic application of a Green’s function

is to solving inhomogeneous problems of the form

Lf = g.

If a Greens function G for L is known then

f(x) = f0(x) +

∫
G(x,y)g(y)dny

where Lf0 = 0.
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Example 10.9: A classic example is Poisson’s equation

∇2φ(x) = −4πρ(x).

By Example 10.1 the solution is given by in free space by Coulomb’s law

φ(x) =

∫
ρ(y)

‖x− y‖ d
3y.

..................

Green’s functions can also be used in a subtle way to solve Helmholtz equations

with inhomogeneous boundary conditions in general domains using the Kirchof-Helmholtz

integral theorem which is derived as follows. Let

(
∇2 + k2

)
ψ = 0

in some domain V with some inhomogeneous boundary conditions on ∂V . Let G(x,y) be

any Green’s function of ∇2 + k2 which is symmetric with respect to interchange of x and y

(for example, the free speace Green’s function). Then

ψ(x) = (∇2
x + k2)

∫

V

G(x,y)ψ(y) dny

=

∫

V

[(
(∇2

y + k2)G(x,y)
)
ψ(y)

]
dny

=

∫

V

[(
(∇2

y + k2)G(x,y)
)
ψ(y)−G(x,y)

(
(∇2

y + k2)ψ(y)
)]
dny

=

∫

V

∇y ·
[(

∇yG(x,y)
)
ψ(y)−G(x,y)

(
∇yψ(y)

)]
dny

=

∫

∂V

[(
∇yG(x,y)

)
ψ(y)−G(x,y)

(
∇yψ(y)

)]
· n̂ dσ(y).

The resulting formula,

ψ(x) =

∫

∂V

[(
n̂ · ∇yG(x,y)

)
ψ(y)−G(x,y)

(
n̂ · ∇yψ(y)

)]
dσ(y), (10.6)

is known as the Helmholtz-Kirchoff integral theorem (or vica-versa).
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One use of the Helmholtz-Kirchoff integral theorem is to problems in which an

inhomogeneous boundary condition of the form

α(x)ψ + β(x) n̂ · ∇ψ(x) = γ(x) (10.7)

is specified on ∂V . Assume (without loss of generality) that

α2 + β2 = 1.

Eq. (10.6) can be written

ψ(x) =

∫

∂V

[(
β G(x,y)− α n̂ · ∇yG(x,y)

)(
αψ(y) + β n̂ · ∇ψ(y)

)

−
(
αG(x,y) + β n̂ · ∇yG(x,y))

)(
β ψ(y)− α n̂ · ∇yψ(y)

)]
dσ(y)

=

∫

∂V

[(
β G(x,y)− α n̂ · ∇yG(x,y)

)
γ(y)

−
(
αG(x,y) + β n̂ · ∇yG(x,y))

)(
β ψ(y)− α n̂ · ∇yψ(y)

)]
dσ(y).

Thus if G(x,y) is chosen to satisfy the homogeneous version of (10.7),

αG(x,y) + β n̂ · ∇yG(x,y)) = 0

then one has the explicit result

ψ(x) =

∫

∂V

(
β(y)G(x,y)− α(y) n̂ · ∇yG(x,y)

)
γ(y) dσ(y).

Note the special cases: the Neumann problem is given by α = 0 and β = 1, the Dirichlet

problem by β = 0 and α = 1.

Example 10.10: Let (
∇2 + k2

)
ψ(x) = 0

for r = |x| > R (that is, outside of the sphere of radius R). Let the normal derivative of φ

be specified on the surface of the sphere (the so-called Neumann problem):

∂φ

∂r

∣∣
r=R

= γ(θ, φ)
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Green’s Functions

with γ known. Assume an outgoing radiation condition at r = ∞:

ψ(x) ∼ eikr

r

as r → ∞.

Let G(r, θ, φ, r′, θ′, φ′) be the Greens function in spherical coordinates satisfying

Neumann boundary conditions at r = R

∂G

∂r

∣∣
r=R

= 0

and the radiation condition

G(r, θ, φ, r′, θ′, φ′) ∼ eikr

r

as r → ∞. Then

ψ(r, θ, φ) = R2

∫ 2π

0

∫ π

0

G(r, θ, φ,R, θ′, φ′)γ(θ′, φ′) sin θ′ dθ′ dφ′.

One may use

Gη(r, θ, φ, r
′, θ′, φ′) =

∞∑

l=0

l∑

m=−l

Ylm(θ, φ)Ylm(θ′, φ′)gη;l,m(r, r′)

with

gη;l,m(r, r′) = −
(
jl(

√−η r<)− j′l(
√−η R)

y′
l
(
√−η R)

yl(
√−η r<)

)
h
(+)
l (

√−η r>)

r2W
((
jl(

√−η r)− j′
l
(
√−η R)

y′
l
(
√−η R)

yl(
√−η r)

)
, h

(+)
l (

√−η r)
) .

Note that gη;l,m(r, r′) is independent of m (we will drop the index for m). Using

W
((
jl(

√−η r)− j
′
l(
√−η R)

y′l(
√−η R)yl(

√−η r)
)
, h

(+)
l (

√−η r)
)

= W
((
jl(

√−η r)− j′l(
√−η R)

y′l(
√−η R)yl(

√−η r)
)
, jl(

√−η r) + iyl(
√−η r)

)

=
(
i+

j′l(
√−η R)

y′l(
√−η R)

)
W
(
jl(

√−η r), yl(
√−η r)

)

= −
(
i+

j′l(
√−η R)

y′l(
√−η R)

) 2l + 1√−η r2

one has

gη;l(r, r
′) =

√−η
(2l + 1)

(
i+

j′
l
(
√−η R)

y′
l
(
√−η R)

)
(
jl(

√−η r<)−
j′l(

√−η R)
y′l(

√−η R)yl(
√−η r<)

)
h
(+)
l (

√−η r>).
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Green’s Functions

If

γlm = R2

∫ 2π

0

∫ π

0

Ylm(θ′, φ′)γ(θ′, φ′) sin θ′ dθ′ dφ′

Then

ψ(r, θ, φ) =
∞∑

l=0

gη;l(r, r
′)

l∑

m=−l

γlmYlm(θ, φ).

..................
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Problems

Problems

1) Consider the 1-dimensional wave equation

( ∂2
∂x2

− 1

c2
∂2

∂t2
)
p = 0.

Here c is a constant. Show that

∂2

∂x2
− 1

c2
∂2

∂t2
=
( ∂
∂x

− 1

c

∂

∂t

)( ∂
∂x

+
1

c

∂

∂t

)

=
( ∂
∂x

+
1

c

∂

∂t

)( ∂
∂x

− 1

c

∂

∂t

)
.

Use this to show that for any differentiable function f

p(x, t) = f(x± ct)

are two solutions. Show that the plane wave solutions are of this form and determine the

appropriate function f .

2) Find the plane wave solutions to Maxwell’s equations.

3) Consider the vector space V equal to the set of all complex linear combinations

a cos(kx) + b sin(kx).

Here a, b ∈ C. What is the dimension of V over C? Show that V is precisely the set of

solutions of the 1-dimensional Helmholtz equation

( d2
dx2

+ k2
)
p = 0.

Express d
dx

and d2

dx2 as a matrix with respect to the basis sin(kx), cos(kx). Repeat

for the basis eikx, e−ikx.

4) Find the exponential solutions to the plate equation. Assume a time dependence of the

form eiωt.

153
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5) Show that in the linear approximation to fluid dynamics ρ′ and p′ both satisfy the wave

equation. (Showing that this is true for the traveling wave solutions is not enough.)

6) Let H be an n by n self-adjoint matrix. Assume the eigenvalues of H are ǫj and the

eigenvectors, chosen to be orthonormal, are vj .

a) Find the solution of the associated Shrödinger equation

i
dψ

dt
= Hψ

with initial condition ψ(0) = φ0.

b) Find the solution of

d2y

dt2
= Hy

with initial conditions y(0) = p and y′(0) = v.

c) Carry out (a) and (b) for the matrix

H =

(
1 −1
−1 2

)
.

7) Consider a linear array of 5 microphones. Let Pj(θ) be the response of the j microphone

to a plane wave incident on the array at an angle of θ to the normal to array. Let

PI(θ) = e−10(θ−θ0)
2

be an “ideal” beam pattern. Given coefficients cj , let

P (θ) =
2∑

j=−2

cjPj(θ).

Determine the coefficients cj making is as close as possible to PI(θ) in the least squares sense:

by minimizing

‖P − PI‖ =

∫ π
2

−π
2

|P (θ)− PI(θ)|2 dθ.

Use any convenient computer software to do the computations and plot the resulting beam

pattern P .
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8) Let f, g : R2 → R2 be given by

f(x, y) =

(
exy

sinx+ cos y

)

and

g(x, y) =

(
x2y
y − x

)
.

Find Df(x, y), Dg(x, y), (Df ◦ g)(x, y),

∂

∂x
f(g(x, y))

and
∂

∂y
f(g(x, y)).

Find the linear approximation to f ◦ g near (x, y) = (0, π4 ).

9) Using ∂2f
∂x∂y

= ∂2f
∂y∂x

show that a dx+ b dy is exact only if

∂a

∂y
=
∂b

∂x
.

Use this to show that −y dx + x dy is not exact. Find d arctan y
x
and show that 1

x2+y2 is an

integrating factor for −y dx+ x dy.

10) Transform the Cartesian gradient in R2 into polar coordinates and find the Laplace

operator in these coordinates. Repeat the exercise for cylindrical coordinates in R3.

11) Consider the parabolic coordinates w, τ

x = τ

y = wτ2.

Transform the Cartesian gradient and find the Laplace operator in these coordinates.
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Problems

12) Let f(x, y) = exy. Find all critical points for f (points where ∇f = 0) and determine

if they are maxima, minima or saddles. If any are saddles determine the directions through

which the saddles are mins and through which they are maxs.

13) Consider an ideal gas in which P = ρRT . Let P = P0 + P ′, ρ = ρ0 + ρ′ and T = T0 + T ′

where the primed variables are small disturbances about some quiescent state given by P0,

ρ0 and T0. It can be shown that if the specific heat cP is constant then the difference in the

entropy of the disturbed state S and the quiescent state S0 is

S − S0 = cP ln
T

T0
−R ln

P

P0
.

Assuming that the processes are isentropic (S = S0) express ρ as a function of P and find

the speed of sound

c =

([ ∂ρ
∂P

)
S

]∣∣∣
S=S0, P=P0

)− 1
2

.

14) What is the surface element on the surface of a cylinder of radius R whose axis is the z

axis?

15) Use the fact that a sphere of radius r is the set of solutions to

x2 + y2 + z2 = r2

to find its unit normal n in spherical coordinates. Use this result to show that

n · ∇ =
∂

∂r
.

16) Let D = {x
∣∣‖x‖ ≤ R and x > 0, y > 0, z > 0} be the restriction of the ball of radius R

to the first quadrant. Compute ∫

D

xz dx dy dz.
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17) Show that, in 3 dimensions,

(
∆+ k2

) 1

‖x− y‖e
ik‖x−y‖ = −4πδ(x− y).

18) Show that given a function F (x) any solution φ to the equation

(
∆+ k2

)
φ = F

can be written

φ(x) = φ0(x)−
1

4π

∫
1

‖x− y‖e
ik‖x−y‖F (y) d3y

where φ0 is a solution of the homogeneous Helmholtz equation

(
∆+ k2

)
φ0 = 0.

19) Let cos z = 1
2 (e

iz + e−iz) and sin z = 1
2i (e

iz − e−iz). Find the poles of tan z and find the

first three terms in the Laurent expansions about each of these poles.

20) The function zp for arbitrary p is usually defined by

zp = ep ln z.

Show that zp is single valued only when p is an integer. What phase does zp pick up when z

circles 0 counterclockwise once? Make a choice for zp and compute
∫

Cǫ(0)

zp dz.

For which p is this integral 0?

21) Compute ∫ ∞

−∞

1

x2 + 1
dx

and ∫ ∞

−∞

eix

(x2 + 1)2
dx.
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22) Find the general solution of

( d2
dx2

+ 4
d

dx
+ 4
)
f = 0.

23) Consider the model introduced in Example 5.3. Express the solutions as linear combi-

nations of exponentials e±ikx rather than sines and cosines. Find the general solution which

obeys the condition that for x > 0

f(x) = const eik+x.

24) Find the solution of
( d4
dx4

− k2
)
f = 0

which satisfies

f(0) = −f ′′(0) = α0

and

f ′(0) = f (3)(0) = 0.

Instead, impose the condition that as x→ ∞

f(x) ∼ const e−i
√
k x.

What constraint does this impose on the allowed values of f(0), f ′(0), f ′′(0) and f (3)(0)?

25) Find all the solutions of

(
x2

d2

dx2
+ 2x

d

dx
− 1
)
f(x) = 0

which are finite at x = 0.
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26) Recall that

Jm(x) =
1

m!

(x
2

)m(
1 + c1x+ c2x

2 + . . .
)
.

Find c1 and c2. Recall further that

Ym(x) =
2

π
Jm(x) lnx− (m− 1)!

π

(x
2

)−m
(
1 + d1x+ d2x

2 + . . .
)
.

What choice for Ym has to be made so that all the odd coefficients d2j+1 = 0? Make this

choice and then determine d2 for m 6= 1. What can be said about d2 for m = 1?

27) Using Abel’s formula and the small x asymptotics calculate W(Jm, Ym). Similarly, using

the large x asymptotics compute W(H
(+)
m , H

(−)
m ). Finally, assuming that

H(±)
m = c(Jm ± iYm)

use these two Wronskians to determine c.

28) Consider (5.5). Find functions u and Q so that setting f(x) = u(x)g(x) the new unknown

g satisfies ( d2
dx2

+Q
)
g = 0.

Thus, to study second order linear equations it is sufficient to study equations with no first

derivative term.

29) Using the technique developed in the previous problem find the general solution to the

spherical Bessel equation with l = 0.

30) Find the first correction to the large x asymptotic forms for Jm and Ym.

31) In (5.18) find δ and the two possible values for a1.
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32) Find the large x asymptotic form for solutions to

( d2
dx2

+
λ

x
+ 1
)
f(x) = 0.

Choose a form

f(x) = xpeκx
α
(
1 + . . .

)

and determine p, κ and α.

33) Show that the eigenvalues of a self adjoint operator are real.

34) Let L = d2

dx2 + q have self adjoint boundary conditions on (a, b). Let ψj(x) be the

normalized eigenfunctions for L corresponding to the eigenvalues λj . Let δ(a,b) be the delta

function restricted to (a, b): for any y ∈ (a, b)

f(y) =

∫ b

a

δ(a,b)(y − x) f(x) dx.

Show that for any y ∈ (a, b)

∑

j

ψj(y)ψj(x) = δ(a,b)(y − x).

Now consider the equation

(L− ǫ)f = g

for some ǫ not in the spectrum of L. Show that the general solution may be written in the

form

f(x) = f0(x) +
∑

j

∫ b

a

ψj(x)ψj(y)

λj − ǫ
g(y) dy

for some f0 satisfying (L−ǫ)f0 = 0. Show that if f satisfies the imposed boundary conditions

then f0 = 0. If ǫ is in the spectrum of LWhat condition on g must be satisfied if (L−ǫ)f = g

is to have a solution?
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35) Consider one dimensional lossless acoustics,

( ∂2
∂x2

− 1

c2
∂2

∂t2

)
P (x, t) = 0

ρ0
∂v(x, t)

∂t
= −∂P (x, t)

∂x
,

in the interval (0, L). Assume that in the steady state,

(
P (x, t)
v(x, t)

)
=

(
PA(x)
vA(x)

)
e−iωt,

impedances Z0(ω) and ZL(ω) are specified at x = 0 and x = L respectively,

PA(0)

vA(0)
= Z0

and
PA(L)

vA(L)
= ZL.

Find an equation whose solutions are the resonant frequencies of the system. Let ωj

and ωk be two distinct resonant frequencies. Let PAj and PAk be the corresponding resonant

pressure amplitudes. Find

〈PAj , PAk〉.

Under what conditions on Z0 and ZL is the problem of finding the resonant frequencies and

amplitudes self adjoint?

36) Consider a vibrating string of length L, clamped at both ends. Let u(x, t) be the dis-

placement of the string at x and t. Imagine striking the string at x = L
3 and model this

striking by the initial condition

∂u

∂t

∣∣
t=0

= Aδ(x− L

3
).

Assume as well that the initial displacement of the string is 0. Find the subsequent motion

of the string. Which modes don’t get excited?
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37) Solve the time dependent Schrödinger equation for a particle of mass m confined to a

rigid cylindrical container of radius R and height H.

38) Consider a rigid rectangular box of dimensions L,W andH. Find the resonant frequencies

and modes for the Laplacian in this box with Neumann boundary conditions. Under what

conditions are there no degenerate resonant frequencies?

39) Consider a cube A with sides of length 1. Find the lowest eigenvalue of −∇2 in this cube

with boundary conditions

n̂ · ∇ψ
∣∣
∂A

= −αψ
∣∣
∂A

for 0 ≤ α ≤ ∞.

40) Consider a semi-infinite duct whose cross section A is constant and has area |A|. Let the
lowest non-zero Neumann eigenvalue of −∇2 in A be λ1. Imagine that a piston is mounted in

a baffle at z = 0 somewhere in A. Let the area of the piston be |Ã|. If the piston has velocity

u0 cos(ωt) with ω < c
√
λ1 find the large z asymptotic form for the pressure P (x, y, z, t). What

length scale must z be much larger than in order for this asymptotic form to be valid?

41) Consider a duct in air (c = 343 m/sec) with square cross section 5 cm by 5 cm. For

what range of frequencies are there precisely 4 propagating modes? Write out the velocity

dispersion for these modes.

42) Estimate the eigenvalues of a vibrating bar of length L free at both ends. Plot the first

5 eigen modes.

43) Consider an annular membrane of inner radius r1 and outer radius r2. Find the Dirichlet

eigenfunctions and eigenvalue condition. For r2 = 1 and r1 = 0.1 find the first three resonant

frequencies.
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44) Show that, given a1m for m ∈ {−1, 0, 1}, there is a constant vector A with

1

r2

1∑

m=−1

a1mY1m(θ, φ) = A · ∇1

r
.

Give an explicit expression for A in terms of the a1m.

45) Consider the acoustic resonant frequencies and modes of a spherical resonator of radius R

filled with a gas in which the speed of sound is c. Find equations whose solutions are the reso-

nant frequencies. Given the resonant frequencies find the resonant modes. For the first three

spherically symmetric modes estimate the resonant frequencies and find the normalization

constants for the modes.

46) Consider a sphere of radius R whose surface is vibrating with velocity

u(θ, φ) = Re

∞∑

l=0

l∑

m=−l

almYlm(θ, φ).

Find the acoustic pressure of the sound radiating from the sphere into empty space.

47) Find the generalized eigenfunction expansion for

L =
d2

dx2

on (1,∞) with boundary conditions ψ(1) = 0.

48) Find the generalized eigenfunction expansion for

L = − d2

dx2
+ v(x)

for

v(x) =
{−10 if x < 1
0 otherwise

on (0,∞) with boundary conditions ψ′(0) = 0.
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49) Find the Fourier transforms of the following functions:

f(t) =

{
0 if t < t0
e−(a+bi)t if t ≥ t0

f(x) =
1

x− x0 + iα

f(x) =
cos(κx)

(x− x0)2 + α2

50) Show that a necessary and sufficient condition for a function f(x) to be real is that it’s

Fourier transform f̂(k) satisfy

f̂(k) = f̂(−k).

51) Consider a simple closed circuit with a voltage source V (t) and one element connected in

series.

a) Show that if the element is a capacitor, Z(ω) = iωC, the current I(t) is 1
C

times the

integral of V .

b) Show that if the element is an inductor, Z(ω) = 1
iωL

, the current I(t) is L times the

derivative of V .

c) If the element is a linear combination of a capacitor and a resistor, Z(ω) = R+ iωC, and

if the voltage source provides an impulse at t = t0, V (t) = v0δ(t− t0) find the current I(t).

52) Consider the three dimensional heat equation

( ∂
∂t

−∇2
)
T (x, t) = 0.

If one has the initial condition

T (x, 0) = δ(x)

find T (x, t) for t > 0.
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53) Let

f±(x) =
1

2π
lim
ǫ↓0

∫ ∞

−∞

∫ ∞

−∞

eiq(x−y)

k2 − q2 ± iǫ
g(y) dy dq.

Show that both f± satisfy ( d2
dx2

+ k2
)
f±(x) = g(x).

Assuming that

ĝ(k) =
1√
2π

∫ ∞

−∞
e−ikx g(x) dx

is analytic with |ĝ(k)| ≤ const (1 + k2)m for some m, calculate f±.

54) Consider a cube with sides of length L. Two opposing sides of the cube are vibrating,

one with velocity u(t), the other with velocity −u(t). Find the acoustic pressure P (r, θ, φ, t)

for large r if

a) the Fourier transform of u is

û(ω) = Ae−λ(ω−ω0)
2

,

b) the Fourier transform of u is

û(ω) = A
( 1

ω − ω0 + αi
− 2

ω − 2ω0 + αi

)
.

Assume that L≪ c
ω0

, r ≫ c
ω0

, λ≫ 1
ω2

0
and α≪ ω0.

55) Find the generalized eigenfunction expansion for d2

dx2 on (0,∞) with the boundary con-

dition f(0) + f ′(0) = 0.

56) Consider a semi-infinite pipe with square cross section of length L. A piston that is

mounted at the open end of the pipe has area A and velocity u(t).

a) Find, but don’t attempt to evaluate, an expression for the pressure on the face of the

piston.

b) If A = L2 evaluate the pressure on the face of the piston.
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57) Let

L =
d2

dx2
+

1

x

d

dx
− m2

r2

on (1,∞) with the boundary condition ψ′(1) = 0. Find the outgoing Green’s function for

L− η and the generalized eigenfunction expansion for L.

58) Consider the wedge given in cylindrical coordinates by

{r, θ, z
∣∣0 < r <∞, 0 < θ < θ0, 0 < z <∞}.

Let (
∇2 − 1

c2
∂2

∂t2

)
P (r, θ, z, t) = 0.

Let P (r, θ, z, t) satisfy a radiation condition at spatial infinity and Neumann conditions on

the surfaces of the wedge
∂P

∂θ

∣∣
θ=0

= 0 =
∂P

∂θ

∣∣
θ=θ0

.

Assume that the value of P (r, θ, 0, t) = f(r, θ, t) is known on the bottom of the wedge. Use the

Helmholtz-Kirchoff integral theorem (10.6) to find P (r, θ, z, t) in terms of sums and integrals

over known quantities.

59) Let

L = ∇2 + k2

in three dimensions where

k =

{
k− if 0 ≤ |x| < R
k+ if |x| ≥ R.

Assuming that k− > k+ find the eigenfunction expansion for L.
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