Course Outline for PHYS 552 (Mathematical Methods of Physics II)

INSTRUCTOR:	Emanuele Berti
Office:	205 Lewis Hall
CLASS SCHEDULE:	Tue & Thu 1:00pm-2:15pm, Lewis Room 211
Office Hours:	By appointment
EMAIL:	berti@phy.olemiss.edu
Course Website:	http://www.phy.olemiss.edu/~berti/phys552.html
PHONE:	662-915-1941
Prerequisite:	Phys 308 or Graduate Status
Course Credit Hours:	3

TEXTBOOK:

- (1) Mathematics of Classical and Quantum Physics, by Frederick W. Byron and Robert W. Fuller
- (2) Mathematical Methods for Physicists by George B. Arfken and Hans J. Weber

OTHER USEFUL BOOKS:

- (3) Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory, by Carl M. Bender and Steven A. Orszag
- (4) Methods of Theoretical Physics, by Philip McCord Morse and Herman Feshbach
- (5) Methods of Mathematical Physics, by Richard Courant and David Hilbert
- (6) Mathematics for Physicists, by Philippe Dennery and Andre Krzywicki
- (7) Numerical Recipes: The Art of Scientific Computing, by William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery

The main text for the course is *Mathematics of Classical and Quantum Physics* by Frederick W. Byron and Robert W. Fuller. We will also use *Mathematical Methods for Physicists* by George B. Arfken and Hans J. Weber (mainly as a reference) and *Advanced Mathematical Methods for Scientists and Engineers* by Carl M. Bender and Steven A. Orszag. In class I will point to selected chapters from the other books for a more advanced treatment of certain topics and complementary material.

Course goals and learning outcome:

The course will cover some mathematical techniques commonly used in theoretical physics. This is not a course in pure mathematics, but rather on the application of mathematics to problems of interest in the physical sciences.

PRELIMINARY OUTLINE OF THE COURSE:

We will cover the following topics:

- Hilbert spaces: complete orthonormal sets of functions
- Special functions (Legendre polynomials, Fourier series and integrals, spherical harmonics...)
- Sturm-Liouville systems: orthogonal polynomials
- Green's functions

This is a course in mathematical *physics*, so the emphasis will always be on physical applications.

EVALUATION:

GRADE TYPE:	Letter Grade (A–F)
Grade Ranges:	 A: 88% and up B: 75-87% C: 60-74% D: 40-59% F: less than 40%
Grade Percentage:	60% Homework 10% Mid-term 30% Final exam

HOMEWORK, IN-CLASS TESTS AND FINAL EXAM:

Homework assignments will be announced in class, and **they must be turned in at the beginning of class on the due date. Late homework will not be accepted.** In exceptional cases students may be excused from turning in an assignment. Homework must be easy to read: please write down clearly your name and the problem set number, do not use a red pen, write consistently on either one side or both sides of the paper and staple the pages together. The final exam is open-book and will consist of problems to be worked out. Students will be allowed to use a calculator, and may be provided with an equation sheet by the instructor if necessary.

ATTENDANCE:

There is no strict attendance requirement, but you are strongly advised to attend class. If you miss an exam or cannot turn in homework, please inform me beforehand and get a doctor's note if applicable.

ACADEMIC INTEGRITY:

Violations of the University's policy of academic integrity will result in a failing grade and other disciplinary actions.

NOTE:

If a change in the syllabus becomes necessary during the semester, it will be discussed in class and then posted on the course website. The course website will also contain up-to-date information on the class schedule, homework assignments and complementary material.