Physics 212: Physics for Scientists and Engineers II (Fall 2014)

Instructor: Dr. Ahmed M. Hamed

Office: 5 Kennon Observatory Phone: 662-915-7849

Email: <u>hamed@phy.olemiss.edu</u>

Online: http://www.phy.olemiss.edu/~hamed

Lectures: 11:00am - 12:15pm, T TH, HELD Lewis Hall, Room 101 (Auditorium)

Office Hours: 1:20pm - 2:35pm, T TH and by appointment

Textbooks: "Physics for Scientists and Engineers" 9th Ed. By Serway and Jewett;

Teaching Assistant: TBA

Notes:

1. The grades in this course will be determined by your performance in two term exams (20% each), final exam (40%), homework (10%), attendance (4%), pre-lecture quizzes (2%), in-class quizzes (2%), and bonus problems (2%). The grade ranges are: 90-100 = A; 80-90 = B; 65-80 = C; 50-65 = D.

- 2. The Final Exam will replace the worst of the two term exams if it is higher than any of them. The final exam grade cannot be used to replace a term exam that was missed.
- 3. September 8th is the last day of refund period, and October 6th is the last day for course withdrawals.
- 4. Final exam (comprehensive): Tuesday December 9th, 12:00pm-3:00pm. Please note there is no make-up for the final exam.
- 5. Access and do the homework problem online at https://www.webassign.net (see instructions*)

Week/Date		Chapter/Topic	Chapter/Homework
1	Aug 26; 28	Chapters 23 & 24: Electric Field, Gauss' law	HW1: Chapters 23 & 24: due Sep 9
2	Sep 2; 4	Chapters 24 & 25: Gauss' law, Elec. Potential	HW2: Chapters 25 & 26: due Sep 16
3	Sep 9; 11	Chapters 26 & 27: Capacitors, Ohm's law	HW3: Chapters 26 & 27: due Sep 23
4	Sep 16; 18	Chapters 27 & 28: Ohm's law, Kirchhoff's law	HW4: Chapters 28 & 29: due Oct 2
5	Sep 23; 25	Chapters 28 & 29: Kirchhoff's law, Mag. Forces	HW5: Chapters 30 & 31: due Oct 14
6	Sep 30; Oct 2	Chapter 29: Magnetic Forces Oct 2 TH EXAM I	HW6: Chapters 32 & 33: due Oct 21
7	Oct 7; 9	Chapters 30 & 31: Magnetic Fields, Faraday's law	HW7: Chapters 34 & 35: due Oct 28
8	Oct 14; 16	Chapters 31 & 32: Faraday's law, Inductance	HW8: Chapters 36 & 37: due Nov 4
9	Oct 21; 23	Chapters 33 & 34: AC, EM waves	HW9: Chapters 38 & 39: due Dec 2
10	Oct 28; 30	Chapters 35 & 36: Light, Image formation	
11	Nov 4; 6	Chapter 37: Wave optics Nov 6 TH EXAM II	
12	Nov 11; 13	Chapter 38: Polarization	
13	Nov 18; 20	Chapter 39: Relativity	
14	Nov 25; 27	Thanksgiving holiday	
15	Dec 2; 4	Reviews	
16	Dec 9th	FINAL EXAM: 12:00 pm- 3:	00 pm

*Online Homework (WebAssign Instruction)

You must self-enroll, the class key for Phys 212 is: **olemiss** 0358 1880, please supply your entire student Id accurately in order for the system to transfer credit from Web Assign to Blackboard. Student quick start guide is available at: http://www.webassign.net/manual/WA_Student_Quick_Start.pdf

Do Yourself (and Me) a Favor

Read about the topics before I discuss them in lectures. It is not necessary that you study them carefully, but at least get the "smell of it". This should make it much easier for you to follow the lectures and that should make them more interesting.

Recitation Sessions "OPTIONAL"

We will set up time (after 5:00 pm) for recitation sessions according to the students' schedule and the room availability. The recitation session is **not mandatory**, however it is very important in order to practice solving the homework problems, and enforce the physics concepts.

Disclaimer

This is a tentative syllabus and a slight adjustment might be made in due course.

ADA statement

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Office of Student Disability Services (SDS) at 234 Martindale Center (sds@olemiss.edu) phone: 662-915-7128

Academic Integrity statement

As an Olemiss student I have abided by the UM academic integrity policy. My words and actions will reflect Academic Integrity. I will not cheat or lie or steal in academic matters.

I will promote integrity in the University of Mississippi community. For more information, refer to: http://www.olemiss.edu/depts/general_library/instruction/resources/plagiarism_resources/reinforcing .html

Objective

This course is primarily about electricity and magnetism phenomena. The subject describes the motion of charged particles, and accordingly the sub-atomic particle dynamics, was developed in the 18th century and is called "classical electrodynamics". This course provides a foundation for almost all of the current technology, which stems from the Maxwell's Equations and atomic physics. This course is essential for most natural sciences and engineering majors. Among many several rather broad goals, the student will learn a few new important concepts in physics, learn to apply these concepts to practical problems, and gain the ability to reason qualitatively and quantitatively about physics.