Astronomy 103 Summer 2013: Introduction to Astronomy and The Solar System

Instructor: James Hill 662-392-1862, jhill6333@gmail.com

Class: Lewis 101 M-Th 1:00 pm to 2:50 pm

Office Hours: M-Th 3:00-5:00 (mornings by appointment0 Labs: Two evenings/week day M-W or T-Th, 8:30-10-50

Text: Cosmic Perspective, Bennett et al., 7th Edition, 2013

Learning Objectives:

- 1. To learn how planets, the sun, and other wonders of the solar system work and
- 2. find out how astronomers made these discoveries
- 3. And to do some actual experiments

Read the assigned chapter **before** class. The schedule below is subject to adjustment.

Date	Subject	<u>Chapter</u>
29 May	Introduction, scale and history of the universe, spaceship Earth	1
29 May	Constellations , Seasons	2
30 May	Lunar phases, eclipses, retrograde motion, parallax	2
30 May		3
3 June	Astronomical time, Calendar, RA-Dec., Star Tracks, Long., Lat.	S1
3 June	Energy, Temperature, Matter Phases, atoms, energy levels	4
4 June	Newton's Laws, Gravity, Escape Velocity, Weight and Mass, Tides	4
4 June	Light waves, spectra, thermal radiation, Doppler shift	5
5 June	First hour test	1-5
5 June	Afternoon Lab	
6 June	Telescopes: Optical, Radio, and X Ray, Diffraction Limit	6
6 June	Afternoon Lab	
10 Jun	Solar System Tour and Formation, Radioactive Dating	7-8
10 Jun	Terrestrial Planets, tectonics, volcanoes, magnetism	9
11 Jun	Planet Earth: S-waves, P-waves, Continental Drift	9
11 Jun	Terrestrial Atmospheres, O2, CO2, Ozone	10
12 Jun	Greenhouse effect, Ozone, Escape Velocity	10
12 Jun	Second hour test	6-10
13 Jun	Solar System Epic Adventure, Voyager Spaceflight	11
13 Jun	Afternoon Lab	
17 Jun	Planetary Interiors/Atmospheres: Jupiter, Saturn	11
17 Jun	Planetary Interiors/Atmospheres: Uranus, Neptune	11
18 Jun	Rings & Moons: Jupiter, Saturn, Uranus, and Neptune	11
18 Jun	Rock and Ice: Asteroids and Comets	12
19 Jun	Pluto and Charon, Kuiper Belt, Meteors, Meteor Showers	12
19 Jun	Planets around stars beyond the sun	13
20 Jun	Third hour test	11-13
20 Jun	Afternoon Lab	
24 Jun	Sunspots, Solar Magnetism, Flares, Energy Transport	14
24 Jun	Why does the sun shine? Nuclear fusion, neutrinos	14
25 Jun	COMPREHENSIVE FINAL EXAM 1:00-2:30 pm	1-14

Semester Grade Algorithm:

25% Labs: You must do at least 75% of the labs to pass. (max 3 missed)

16% Quizzes/Homework: expect short guizzes for most classes.

13% 1st Test

13% 2nd Test

13% 3rd Test

20% FINAL EXAM: Plan for the final exam on correct date, not earlier.

Mid-term grade if needed will be 1/3 labs, 1/3 guizzes, 1/3 test 1

Attendance at all classes is expected. Hard copies of chapter outlines and homework/quizzes will be handed out at the end of classes. Scantron answer sheets to homework/quiz answers will be due the next class day. You may only turn in your own work - not that of others.

Answers to HW/quizzes and tests will be posted on "Blackboard". Keep back quizzes and tests to correct and use as study guides for the final exam.

Missed tests or homework/quizzes must be made up during my office hours at Kennon within 2 class days of being given unless special permission is granted.

Lab Sections: for questions contact John Rock. Missing more than 30% of labs (3) will cause failure for the course.

Come at the correct time! Monday & Wednesday or Tuesday & Thursday at Lewis 1 or Kennon Observatory.

For information: http://www.phy.olemiss.edu/~ttorma/Astro/Lab/Lab.html

ASTR 103 Lab Manual is <u>required</u>. Available at the Printing Office across from the Police Station. You will need a scientific pocket calculator. The Texas Instruments TI-30Xa is a good choice. Bring the calculator to labs.

Reasonable accommodations for absences and for students with disabilities may be provided with advance notice.