Physics 310 (Mechanics) Spring 2010 Lewis Hall 228 T Th 9:30-10:45 Text: Analytical Mechanics, Fowles & Cassidy, 7th edition 915-7032 Instructor: Dr. Don Summers Lewis Hall Rm 221 Office Hours: TThF 4-5

Dat	te	Subject Read Be	efore	Class
21	Jan	Introduction		
26	Jan	Vectors: Derivatives. Cylindrical & Spherical Coordinates	Chap	1
28	Jan	Newtonian Mechanics and Rectilinear Motion	Chap	2
2	Feb	Kinetic and Potential Energy, Terminal Velocity	Chap	2
4	Feb	Oscillations	Chap	3
9	Feb	Damped and Driven Harmonic Oscillations	Chap	3
11	Feb	FIRST EXAM		
16	Feb	Air Resistance, Range, 3D Harmonic Oscillator	Chap	4
18	Feb	Charged Particle Motion in Electric and Magnetic Fields	Chap	4
23	Feb	Constrained Motion of a Particle	${\tt Chap}$	4
25	Feb	Noninertial Reference Frames	${\tt Chap}$	5
2	Mar	Rotating Reference Frames	${\tt Chap}$	5
4	Mar	Earth's Rotation, Foucault Pendulum	${\tt Chap}$	5
9	Mar	Gravity, Central Forces, and Spheres, Potential Energy	Chap	6
11	Mar	Kepler's 3 Laws of Planetary Motion, Deriving 3rd Law	Chap	6
23	Mar	Radial Oscillations, Mercury Precession, Alpha Particles	Chap	6
25	Mar	SECOND EXAM		
30	Mar	Dynamics of Systems of Particles, Angular Momentum, KE	Chap	7
1	Apr	Reduced Mass. 2> 1, Lagrange Points/Trojan Asteroids	${\tt Chap}$	7
		Collisions. Lab and Center of Mass Frames, Rockets	${\tt Chap}$	7
6	Apr	Moment of Inertia, Perpendicular/Parallel Axis Theorems	${\tt Chap}$	8
8	Apr	Pendulums/Elliptic Integrals, Rolling Balls/Baseball Bats	${\tt Chap}$	8
13	Apr	Motion of Rigid Bodies in 3D, Euler Equations/Angles	${\tt Chap}$	9
15	Apr	Precession and Nutation of the Earth, Bicycles	${\tt Chap}$	9
20	Apr	Lagrangian Mechanics. Hamilton's Variational Principle	${\tt Chap}$	10
22	Apr	Generalized Coordinates. Kinetic and Potential Energies	${\tt Chap}$	10
27	Apr	Harmonic Oscillator, Central Force, Atwood Machine	${\tt Chap}$	10
29	Apr	Euler's Eqns, Generalized Momenta, Ignorable Coordinates	${\tt Chap}$	10
		Lagrange Multipliers, Generalized Forces, Hamiltonians	${\tt Chap}$	10

6 May COMPREHENSIVE FINAL EXAM, 8:00am, Thursday, not earlier!

Grading: Homework 25% Midterms 35% Final 40%

Reasonable accomodations will be provided.

Learning Objectives: To learn how about the linear motion of single particles and rigid bodies and rotating bodies. Systems will include harmonic oscillators and central forces. Methods will include those of Newton, Lagrange, and Hamilton.