Physics 402 Electromagnetic Theory

Spring 2009 Instructor: Dr. Don Summers 915-7032

Lewis Hall 228 TTh 9:30-10:45 summers@phy.olemiss.edu

Office: Lewis Hall Room 221 Text: Introduction to Electrodynamics

Office Hours: TTh 2-3 Griffiths, 3rd edition

		·	Read These
Da ⁻		Subject	Chapters
		Lorentz Force Law	5
		Diagnostic Test	
29		Boundary Conditions	5
3	Feb	Dia- Para-, Ferromagnets. Torque. Atomic Orbits	6
5	Feb	Bound Currents, H field	6
10	Feb	Ampere's Law with matter, Permeability	6
12	Feb	Electromotive Force, Ohm's Law	7
17	Feb	Faradays's Law, Inductance, B Field Energy	7
19	Feb	Maxwell's Equations, Boundary Conditions	7
24	Feb	FIRST MIDTERM EXAM	
26	Feb	Continuity Equation and Poynting Vector	8
3	Mar	Maxwell's Stress Tensor, Conservation of p and L	8
5	Mar	Electromagnetic Waves in One Dimension	9
10	Mar	Boundary Conditions, Polarization	9
12	Mar	Vacuum/Matter Waves, Absorption/Dispersion, Wave Guides	9
24	Mar	SECOND MIDTERM EXAM	
26	Mar	Potential Formulation, Gauge Transformations	10
31	Mar	Retarded Potentials, Lefimenko's Equations	10
2	Apr	Lienard Wiechert Potentials, Moving Charge Fields	10
7	Apr	Dipole Radiation, Power Radiated by a Point Charge	11
9	Apr	Circular Motion and Radiation, Radiation Reaction	11
14	Apr	Lorentz Transformations between frames of reference	12
16	Apr	Time Dilation/Length Contraction, Relativistic Mechanics	12
21	Apr	Relativistic Momentum and Energy	12
23	Apr	Magnetism as a Relativistic Phenomena, Tensors	12
	-	Research Papers	
	-	Research Papers	
7	-	COMPREHENSIVE FINAL EXAM, 8:00 AM, Thursday	

Grading: Homework 25% Research Paper 15% Midterms 30% Final 30%

Learning Objectives: Learn how to generate magnetic fields from currents. Become proficient with Maxwell's equations. Propagate electromagnetic waves. Generate electromagnetic radiation. Calculate relativistic motion. Reasonable accommodations for students with disabilities will be provided.

Research papers will be start from the following.

"Muon acceleration to 750-GeV in the Tevatron tunnel for a 1.5- TeV muon collider," http://arXiv.org/pdf/0707.0302

"6D muon ionization cooling with an inverse cyclotron," http://arXiv.org/pdf/physics/0510034