PHYSICS-315:

FALL - 2006

PHYS-315: RADIATION PHYSICS

• Instructor: Dr. Igor Ostrovskii

SYLLABUS

Course objectives:

- 1. Introduce the physics major students to 20-th century Radiation Physic;
- 2. To teach main ideas and results in Radiation Physics that is an important part of Modern Physics;
- 3. Expand an understanding of the intuitive ideas of the relativity and quantum physics;
- 4. Develop an understanding of the current basis of broad knowledge in radiation physics;
- 5. Enhance the critical thinking, analytical reasoning and problem solving skills;
- 6. Discuss the problems confronting radiation physics in the 21-st century.

> <u>PHYS-315 Learning objectives:</u>

In this course, we introduce the physics major students to 20th century Radiation physics. In the learning objectives, we answer a question: "What will the students know and be able to do as a result of taking this class and passing the final examination."

The learning outcomes for students are as follow:

- 1. Understand <u>the basic principles</u> of the <u>Radiation Physics</u> including *but not limited to* Theory of Relativity, Light irradiation as a quantum process, Matter waves, Basics of one-dimensional Quantum mechanics, Tunneling phenomena, Main ideas of nuclear physics and nuclear physics applications.
- 2. Understand the <u>intuitive ideas</u> and <u>mathematical descriptions</u> of the Quantum processes of electro magnetic wave irradiation.
- 3. Students will build on the <u>critical thinking and reasoning</u>, and will be able to apply their new skills for <u>problem solving</u>.
- 4. Learners will develop a comprehension of <u>the current basis</u> of broad knowledge in Modern and Radiation physics.
- 5. They will be aware about the problems confronting modern Radiation Physics.
- 6. Students will know how to use interactive methods and Internet for their independent learning in the field of "Radiation Physics."
 - **♦** Lecture: TTh 8:00 9:15, Room 109 Lewis Hall
 - Office: Room 207 Lewis Hall; Email: iostrov@phy.olemiss.edu
 - ♦ Office Hours: MWTh 3:30 4:30 p.m. (207 Lewis Hall)
- Text: Modern Physics, by R.A. Serway, C.J. Moses and C.A. Moyer, 3rd edition.

We will cover Chapters 1 – 7, 13, 14.

PLEASE, READ THE BOOK

- A's ----- 90 100 Grading Scale: B's ----- 80 - 89 C's ----- 70 – 79, Etc.
- **EVALUATION**: Grades will be based on the homeworks, tests, and final examination: Homework ----- 15 % Three tests ------ 45 % (#1=15%, #2=15%, #3=15%) Final exam ----- 40 % 100 %
- Tests and Final examination schedule:

Test 1 (Class # 10), Chapters 1, 2, 3, 4 ------ Thursday, September 21. Test 2 (Class # 19), Chapters 5, 6, 7 ----- Tuesday, October 24. Test 3 (Class # 27), Chapters 13, 14 ----- Thursday, November 28.

- > FINAL EXAMINATION _____ Tuesday, December 5, 8:00 a.m.
- Requirements of the course and Homework rules:
- 1. Homework is assigned after some sections are covered and is due in a week.
- 2. Homework paper should be 8.5 x 11 inches with no torn or tattered edges. Homework papers should be stapled.
- 3. Show all your work; the answer alone is not worth anything.
- 4. Homework problems must include diagrams, initial equations, calculations, enough English to be understandable.
- 5. Homework answers should have units and a reasonable number of significant digits.
- 6. Circle the finale answers that you want to be graded.

Course content:

 CHs. 1 & 2. RELATIVITY I AND II. Special relativity, the principles of relativity, experiments. Postulates of special relativity, The Lorentz transformation Relativistic momentum and energy, conservation laws. 	[4 classes]
 CH. 3. THE QUANTUM THEORY OF LIGHT. Hertz's experiment. Black body radiation and Planck's law. Photoelectric effect and associated phenomena. Particle-Wave Complementary. 	[2.5 classes]
 CH. 4. THE PARTICLE NATURE OF MATTER. The atomic nature of matter, the composition of atoms. The Bohr atom. Direct confirmation of atomic energy. 	[2.5 classes]
Test 1 (Class # 10), Chapters 1, 2, 3, 4 T	hursday, September 21.
CH. 5. MATTER WAVES. [3 cl	asses]

- The waves de Broglie, The Davisson-Germer experiment.
- Wave groups and dispersion.

- The Heisenberg uncertainty principle.
- The wave-particle duality.

CH. 6. QUANTUM MECHANICS IN ONE DIMENSION. [3 classes]

- The Born interpretation, wavefunctions.
- The Particle in a box, Finite square well, Quantum oscillator.
- Observables and operators.

CH. 7. TUNNELING PHENOMENA.

- The square barrier.
- Barrier penetration and some applications.

Test 2 (Class # 19), Chapters 5, 6, 7 ----- Tuesday, October 24.

Ch. 13. NUCLEAR STRUCTURE

- Properties of nuclei.
- Binding energy and nuclear forces.
- Radioactivity, Decay process, Natural radioactivity.

Ch. 14. NUCLEAR PHYSICS APPLICATIONS [4 classes]

- Nuclear reactions, Reaction cross section, Interactions & Neutrons.
- Nuclear fission, Nuclear reactors.
- Nuclear fusion.
- Interaction of particles and matter, Radiation damage.
- Radiation detectors, Uses of radiation.

Test 3 (Class # 27), Chapters 13, 14 ----- Thursday, November 28.

REVIEW (Particles):

[1 class]

FINAL EXAMINATION ----- Tuesday, December 5, 8:00 a.m.

* - The dates are tentative, and may be changed, **<u>BUT NOT FINAL EXAMINATION</u>**.

[3 classes]

[2 classes]