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The Propagation of Sound Outdoors

(over flat ground)

The atmosphere is a gas under the influence of
gravity
thermal stresses
the Earth's rotation

The ground is a porous elastic solid
has large (compared with air) thermal conductivity
reflects and attenuates sound
properties can differ dramatically from place to place



The Diurnal Cycle

(fair weather meteorology)

The ground is thermally coupled to space
heats up during the day

cools off at night 400 s
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The air is thermally coupled to the ground 300 nevral — |
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stable with buoyancy waves
stable layer acts as a lubricant for the wind



Refraction of Sound by the Atmosphere
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Equations of Atmospheric Mechanics

The atmosphere is described by fluid mechanics
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mass conservation
Newton's law

heat equation

ideal gas law

second law

The ground is described by poro-elasto-dynamics

The two are coupled by interface conditions



Meteorology versus Acoustics

Variables split into slow (meteorological) and fast (acoustic) terms:
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The meteorological terms split into mean and fluctuating parts:
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Local Meteorology

For distances ~ km's, times ~ tens of minutes vim(z)
mean quantities depend only on altitude pm(2)
mean vertical wind speed is zero Pu(z)
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The North American Nocturnal Jets

(global generation of local winds)

850 mb ‘ d Spe‘eﬂd/\/ectors
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Air flows from warmer
regions to cooler regions.

During the day flow is
impeded by ground
friction mediated
through the turbulent
layer.

At night flow is
decoupled from the
ground. A stiff wind
develops above the
stable layer. Can be
“super-geostrophic”.



Meteorological Measurements

meteorological equipment: 10 m tower, tethersonde, sodar



Meteorological Data collected in the Delta
Locke Station MS 11/09/06 at 18:15
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Data is averaged over 15 minute intervals
and 15 meter vertical slices



The Acoustic Terms

Reduces to determining P,.(xy, z, t) from
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i is the unit horizontal from source to receiver and
Ceft(, 2) = 20/ T(2) + i1 - vpy(2).
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Interaction of Sound with the Ground
local impedance approximation

Normalized Impedance
hard backed

aPaC| . Iwpm 3 ‘ 100 Teal
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Well understood above 200 Hz

ground is porous and essentially rigid
reaction is essentially local 10 100 1000
modeled by an impedance condition Frequency [Hz]

N

Local impedances are often used below 200 Hz
Deviations from locality have been reported ~ a few Hz




Methods of Solution
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Contrasting Day and Night
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Modal Expansion for the Acoustic Pressure

Eigenvalue problem: d? 2
& o (inF‘ai 2_k2>¢:0
of Schrodinger type dz? = ceq(h, 2)
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Validity: ducted propagation ranges > 500 m
altitudes < 50 m



Finding the Modes

(the atomic analogy)
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non-self-adjoint tunneling problem
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Modal Dispersion for a Simple Duct

(temperature inversion, no wind)
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Modal Dispersion for a Complex Duct

(temperature inversion and down wind)

Dispersion for the surface and every 27" refracted mode.
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Propagation from a Point Source
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Surface Mode vs Refracted Modes

At long ranges the surface mode

- is very sensitive to the ground surface

- is attenuated primarily by the ground

- has no low frequency cutoff

- carries energy up to about 100 Hz

- propagates at roughly the ground sound speed
- propagates horizontally

At long ranges the refracted modes

- are not very sensitive to the ground surface

- are attenuated primarily by the atmosphere

- have cutoff frequencies

- carry energy up to about 1000 Hz

- propagate with speeds greater than the ground sound speed
- propagate at shallow angles to the horizontal
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The Narrow Band Near-ground Structure

Near-Ground Mode Mags
at 100 Hz, downwind
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The Quiet Height
The surface mode has no “nodes”.

The lowest “node” of the refracted
modes are at ~ the same altitude.

s

4
——ol(w, zs)Yo(w, z
\/W‘O( , 25 )tho(w, 2)
N(w)
+ N
JZ; \/8mkir
As the surface mode attenuates a
“quiet height” develops.

ikor—i
~ e
P~

T
e/kjr iy

T,Z)j(w’ ZS)wJ(wa Z)



altitude (m)

altitude (m)

w

N

The Quiet Height Experiment
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The Broad Band Pulse Tail

Point source with spectrum Q(w) at 3 km range
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The Geometric Acoustics of the Distinct Early Arrivals
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Recent Pulse Propagation Experiments
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pulse number

Signal Variability

(short term stability

run 10, lowest mic

long term variability)
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Yet to be Done

(we've got ourselves a probe)

Study data inversions
for source location
for elevated wind jets
for ground properties
Investigate the convergence zone
theoretically
experimentally
Study the variation in pulse duration

study arrival time variability
identify the source
experiment planned for the spring

Study upwind propagation
Study poor weather propagation
propagation in fog
under cloud cover
during rain



