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The Propagation of Sound Outdoors
(over flat ground)

The atmosphere is a gas under the influence of
gravity
thermal stresses
the Earth’s rotation

The ground is a porous elastic solid
has large (compared with air) thermal conductivity
reflects and attenuates sound
properties can differ dramatically from place to place



The Diurnal Cycle
(fair weather meteorology)

The ground is thermally coupled to space

heats up during the day
cools off at night

The air is thermally coupled to the ground

Daytime

temperature decreases with altitude
turbulent ∼ 1 km
winds slowed by friction

Nighttime

temperature increases with altitude
stable with buoyancy waves
stable layer acts as a lubricant for the wind
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Refraction of Sound by the Atmosphere

The speed of sound in air is c ≈ 20
√

T

Temperature gradients
⇒ sound speed gradients
⇒ refraction

wavefronts propagate towards colder air
clear days are upward refracting
clear nights are downward refracting

Similarly for wind shear

wavefronts propagate towards slower air
upwind is upward refracting
downwind is downward refracting
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Equations of Atmospheric Mechanics

The atmosphere is described by fluid mechanics

∂ρ

∂t
+∇ · (ρv) = 0 mass conservation

ρ
(∂v
∂t

+ (v · ∇)v
)

+∇P = −ρg ẑ Newton’s law

∂S

∂t
+ v · ∇S = 0 heat equation

P = ρRT ideal gas law

dS

R
=

cp

R

dT

T
− dP

P
second law

The ground is described by poro-elasto-dynamics

The two are coupled by interface conditions



Meteorology versus Acoustics

Variables split into slow (meteorological) and fast (acoustic) terms:
v
ρ
P
T
S

 =


vmet

ρmet

Pmet

Tmet

Smet

 +


vac

ρac

Pac

Tac

Sac


The meteorological terms split into mean and fluctuating parts:

vmet

ρmet

Pmet

Tmet

Smet

 =


vM

ρM

PM

TM

SM

 +


vturb

ρturb

Pturb

Tturb

Sturb





Local Meteorology

For distances ∼ km’s, times ∼ tens of minutes

mean quantities depend only on altitude
mean vertical wind speed is zero

z is altitude and H indicates horizontal


vHM(z)
ρM(z)
PM(z)
TM(z)
SM(z)


Then

dPM

dz
= −gρM PM = ρMRTM

SM − S0 = cp ln
TM

TM(0)
− R ln

PM

PM(0)

and vH is arbitrary.

example: SM = S0 ⇒

TM(z) = T0(0)− g

cp
z
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The North American Nocturnal Jets
(global generation of local winds)

Air flows from warmer
regions to cooler regions.

During the day flow is
impeded by ground
friction mediated
through the turbulent
layer.

At night flow is
decoupled from the
ground. A stiff wind
develops above the
stable layer. Can be
“super-geostrophic”.



Meteorological Measurements

meteorological equipment: 10 m tower, tethersonde, sodar



Meteorological Data collected in the Delta
Locke Station MS 11/09/06 at 18:15
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The Acoustic Terms

Reduces to determining Pac(xH , z , t) from(
∇2

H +
∂2

∂z2
+

ω2

ceff(n̂, z)2

)
P̂ac(xH , z , ω) = 0

n̂ is the unit horizontal from source to receiver and

ceff(n̂, z) = 20
√

T (z) + n̂ · vM(z).
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Interaction of Sound with the Ground
local impedance approximation

∂P̂ac

∂z

∣∣
z=0

= − iωρM

Z
P̂ac

∣∣
z=0

Well understood above 200 Hz

ground is porous and essentially rigid
reaction is essentially local
modeled by an impedance condition

Local impedances are often used below 200 Hz

Deviations from locality have been reported ∼ a few Hz
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Methods of Solution

(
∇2

H +
∂2

∂z2
+

ω2

ceff(n̂, z)2

)
P̂ac(xH , z , ω) = 0

∂P̂ac

∂z

∣∣
z=0

= − iωρM

Z
P̂ac

∣∣
z=0

geometric: P̂ac ≈ Ae iS ; ∇S are wavefront normals

PE: solve 1-way equ.
( ∂

∂x
± i

√
∂2

∂z2
+

ω2

ceff(n̂, z)2

)
P̂ac = 0

FFP: Fourier transform w.r.t. xH

modes: Expand w.r.t. eigenfunctions of
d2

dz2
+

ω2

ceff(n̂, z)2



Contrasting Day and Night

 0

 100

 200

 300

 400

 500

 344 346 348 350 352 354

A
lti

tu
de

 [m
]

Sound Speed [m/s]

day

-80
-70
-60
-50
-40
-30
-20
-10

T
ra

ns
m

is
si

on
 L

os
s 

[d
B

]

Range [km]

A
lti

tu
de

 [m
]

Daytime, 100 Hz source at 10 m

 0  1  2  3  4  5  6  7  8  9  10
 0

 100

 200

 300

 400

 500

 0

 100

 200

 300

 340  344  348

A
lti

tu
de

 [m
]

Sound Speed [m/s]

-80
-70
-60
-50
-40
-30
-20
-10

T
ra

ns
m

is
si

on
 L

os
s 

[d
B

]

Range [km]

A
lti

tu
de

 [m
]

Nighttime, 100 Hz source at 10 m

 0  1  2  3  4  5  6  7  8  9  10
 0

 100

 200

 300

 400

 500



Modal Expansion for the Acoustic Pressure

Eigenvalue problem:

of Schrödinger type
non-self-adjoint

Ducted modes:

eigenvectors ψj(ω, z)
eigenvalues k2

j

( d2

dz2
+

ω2

ceff(n̂, z)2
− k2

)
ψ = 0

dψ

dz

∣∣
z=0

= − iωρM

Z
ψ(0)

kj =
ω

cj
+ iαj

P̂(xH , z , ω) ≈
N(ω)∑
j=0

p(kj , ω, xH)ψj(ω, z)

(
∇2

H + k2
)
p(k, ω, xH) = 0 plus source terms.

Validity: ducted propagation ranges > 500 m
altitudes < 50 m



Finding the Modes
(the atomic analogy)
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Modal Dispersion for a Simple Duct
(temperature inversion, no wind)

Dispersion for the surface and every 2n th refracted mode.
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Modal Dispersion for a Complex Duct
(temperature inversion and down wind)

Dispersion for the surface and every 2n th refracted mode.
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Propagation from a Point Source

P̂ ≈ e−i π
4

N(ω)∑
j=0

e ikj r√
8πkj r

ψj(ω, zS)ψj(ω, z)

Ground to Ground Transmission Losses at 3 km

Total Modal

-100
-90
-80
-70
-60
-50
-40

 1  10  100  1000

T
lo

ss
 [d

B
 r

e 
1 

m
]

Frequency [Hz]

-100
-90
-80
-70
-60
-50
-40

 1  10  100  1000

T
lo

ss
 [d

B
 r

e 
1 

m
]

Frequency [Hz]

surface mode
refracted modes

-100
-90
-80
-70
-60
-50
-40

 1  10  100  1000

T
lo

ss
 [d

B
 r

e 
1 

m
]

Frequency [Hz]

-100
-90
-80
-70
-60
-50
-40

 1  10  100  1000

T
lo

ss
 [d

B
 r

e 
1 

m
]

Frequency [Hz]

surface mode
refracted modes



Surface Mode vs Refracted Modes

At long ranges the surface mode

- is very sensitive to the ground surface
- is attenuated primarily by the ground
- has no low frequency cutoff
- carries energy up to about 100 Hz
- propagates at roughly the ground sound speed
- propagates horizontally

At long ranges the refracted modes

- are not very sensitive to the ground surface
- are attenuated primarily by the atmosphere
- have cutoff frequencies
- carry energy up to about 1000 Hz
- propagate with speeds greater than the ground sound speed
- propagate at shallow angles to the horizontal



The Narrow Band Near-ground Structure
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The Quiet Height

The surface mode has no “nodes”.

The lowest “node” of the refracted
modes are at ≈ the same altitude.

P̂ ≈ e ik0r−i π
4

√
8πk0r

ψ0(ω, zS)ψ0(ω, z)

+

N(ω)∑
j=1

e ikj r−i π
4√

8πkj r
ψj(ω, zS)ψj(ω, z)

As the surface mode attenuates a
“quiet height” develops.



The Quiet Height Experiment
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The Broad Band Pulse Tail

Point source with spectrum Q(ω) at 3 km range

P(r , z , t) =

∫
Q(ω)

N(ω)∑
j=0

e ikj (ω)r−iωt−i π
4√

8πkj(ω)r
ψj(ω, zS)ψj(ω, z) dω

6 ms
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The Geometric Acoustics of the Distinct Early Arrivals

No Wind
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Recent Pulse Propagation Experiments
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Signal Variability
(short term stability long term variability)
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Yet to be Done
(we’ve got ourselves a probe)

Study data inversions

for source location
for elevated wind jets
for ground properties

Investigate the convergence zone

theoretically
experimentally

Study the variation in pulse duration

study arrival time variability
identify the source
experiment planned for the spring

Study upwind propagation

Study poor weather propagation

propagation in fog
under cloud cover
during rain


