Wide Bandgap Semiconductor Research at Mississippi State University

Dr. Yaroslav Koshka

Associate Professor

Department of Electrical and Computer Engineering Mississippi State University

Presentation Outline

1. Why SiC?

- 2. History of SiC program at MSU
- 3. Advancements in SiC epitaxial growth
- 4. Recombination Induced Defect Reactions involving hydrogen in SiC.

SiC Material Properties (comparing to other semiconductors)

Property\Material	4H-SiC	6H-SiC	GaN	Si	GaAs
Thermal conductivity [W/cm*K]	4.9	4.9	1.3	1.3	0.55
Bandgap [eV]	3.26	3.0	3.39	1.1	1.4
Saturation drift velocity [10 ⁵ m/s]	2	2	2.5 (pick)	1	2 (pick)
Low field electron mobility (300°K, 1e16cm ⁻³) [cm ² /V*s]	980 (∏) 865 (⊥)	81 (∏) 405 (⊥)	~ 900	1224	6555
Dielectric constant	9.7	10	9.0	11.8	12.8
Critical electric field[MV/cm]	~ 3	> 2.4	~ 3	0.3	0.4
Direct/Indirect Bandgap	Ι	Ι	D	Ι	D
Commercially available substrates	4"	3"	n/a	12"	8"

Drift region resistance

Drift region Heavily doped n-type substrate

Cathode contact

T_{drift}

Drift region blocking capability

(1-D approach) Voltage drop on drift region is given by: $U_{Blocking} = \int_{0}^{T_{Drift}} E(x) dx$

To find E(x), solve the Poisson equation $div(\varepsilon \nabla \varphi) = -\rho$,

assuming free carrier concentration to be negligible (no leakage current) for non-"punch-through" layer:

Drift region blocking capability (1-D approach)

Voltage drop on drift region is given by: $U_{Blocking} = \int_{0}^{T_{Drift}} E(x) dx$

To find E(x), solve the Poisson equation $div(\varepsilon \nabla \varphi) = -\rho$,

assuming free carrier concentration to be negligible (no leakage current) for non-"punch-through" layer:

Advantages of wide bandgap Specific on-resistance of SiC

Blocking Voltage (V)

Advantages of wide bandgap Intrinsic carrier concentration

Advantages in Switching Characteristics 600 V diode recovery comparison

Si pin diode – 1.32 μ s

SiC Schottky diode – 72 ns

Presentation Outline

1. Why SiC?

2. History of SiC program at MSU

- 3. Advancements in SiC epitaxial growth
- 4. Recombination Induced Defect Reactions involving hydrogen in SiC.

History of Wide Band Gap Semiconductors at Mississippi State University *Materials - Devices- Circuits - Systems*

Leveraging Basic Research into Production -

Rapid, economical transfer of government sponsored technology development into systems

Presentation Outline

- 1. Why SiC?
- 2. History of SiC program at MSU

3. Advancements in SiC epitaxial growth

4. Recombination Induced Defect Reactions involving hydrogen in SiC.

Lower-temperature epitaxial growth of 4H-SiC using CH₃Cl carbon gas precursor.

Huang-De Lin, Galyna Melnychuk, Yaroslav Koshka

¹ Mississippi State University, Box 9571, Mississippi State, MS 39762, USA

The hot-wall CVD reactors.

<u>Traditional Precursors</u>: SiH_4 and C_3H_8

- Growth temperatures $>1500^{\circ}C$
- Lower temperatures => morphology degradation => polycrystalline

Simulated kinetics of chemical reactions of SiC epitaxial growth in the cross-section of the CVD reactor

Silane decomposition

Chloromethane decomposition

Our new model – vapor-phase formation of Si droplets (clusters)

Growth at Lower Temperatures

View of the susceptor from the rear-port window

silicon-droplet cloud

• Si vapor condensation (cloud) is detrimental for epi quality and growth rate.

Surface morphology of the 1300^oC growth

J. of Crystal Growth

Growth rate dependence on silane flow @1300^oC

J. of Crystal Growth

Arhenius temperature dependences:

- (a) <u>exponential rate coefficient</u> of the SiH_4 flow dependence compared to
- (b) the growth rate temperature dependence.

The value of E_A is the same for R and $\tau_{SiH4} =>$ the growth rate is determined by silicon vapor condensation.

HCl experiment:

Rear view of the glowing susceptor during 1300°C epitaxial growth

Dense cloud of Si clusters

(b) With HCl added

Strongly reduced cloud

Selective epitaxial growth of 4H-SiC with SiO₂ mask.

Bharat Krishnan, Hrishikesh Das, Huang-De Lin, Galyna Melnychuk, Yaroslav Koshka.

> ¹ Mississippi State University, Box 9571, Mississippi State, MS 39762, USA

Pattern formation by Etching

Pattern formation by Selective Epitaxial Growth

SiO₂ mask for low-temperature selective epitaxial growth of 4H-SiC (LTSEG)

- SiO₂ Severely degrade at regular growth temperatures (1500°C)
- Survives at 1300°C of our novel low-temperature growth method

Low-temperature SEG at 1300°C:

SEM image of the mesa-lines selectively grown in SiO₂ window at 1300°C.

Lines oriented in different directions reveal the orientation-dependent defect generation.

Cross-sectional SEM of 30-µm-wide mesa line selectively grown in SiO₂ window at 1300° C.

Presentation Outline

- 1. Why SiC?
- 2. History of SiC program at MSU
- 3. Advancements in SiC epitaxial growth
- 4. Recombination Induced Defect Reactions involving hydrogen in SiC.

Plasma hydrogenation.

• Experimental Reactive Ion Etching (RIE) system \rightarrow Hydrogen Plasma.

• Processing in new **Inductively Coupled Plasma** (ICP) system enabled further improvement of hydrogen incorporation in comparison to RIE hydrogenation.

SiC subjected to Plasma Hydrogenation.

- Incorporated hydrogen forms stable complexes with defects and impurities.
- ✤ Hydrogen concentration profiles repeat profiles of acceptor concentration.

[1] S. Janson, A. Hallén, M. K. Linnarsson, and B. G. Svensson, Phys. Rev. B 64, 195202 (2001)

Effect of plasma hydrogenation on the concentration of active acceptors (AI).

• Passivation of AI acceptors down to 10^{15} cm⁻³ and to the depth in access of 2 μ m was achieved after 2 hrs of hydrogenation.

Simple Diffusion

v - dissociation frequency

HT – concentration of traps filled with hydrogen.

PL spectra before and after plasma hydrogenation of epilayer moderately doped with Al.

- Efficient trapping of hydrogen by Al acceptors is confirmed by reduction of Al-BE PL;
- Al acceptors are not the only trapping centers for hydrogen. H-related PL lines indicate simultaneous formation of H complex with Si vacancy (V_{Si} -H).

Y. Koshka, M. S. Mazzola, Appl. Phys. Lett, 79(6), 752 (2001)

PL spectra of <u>B-doped</u> 4H-SiC epilayer: affect of plasma hydrogenation:

• A $4B_0$ peak previously associated with a bound exciton at the neutral boron is in fat related to a <u>hydrogen-defect</u> complex (possibly, B-H).

Y. Koshka, Appl. Phys. Lett., 82, 3260 (2003).

Phenomenon of Recombination-Induced Passivation (RIP)

Optically-stimulated passivation of defects with hydrogen.

Schematic illustration of Recombination-Induced Passivation.

- Certain amount of the incorporated hydrogen does not form stable complexes with defects (so called "free hydrogen").
- Recombination-induced defect migration causes formation of various kinds of stable defect complexes.

Photoluminescence spectra after Regular Hydrogenation and after <u>Recombination Induced Passivation</u>.

 AI-BE PL additionally quenches and disappears under optical excitation at low T in hydrogenated samples.

Wavelength, Å

Changes in 4B₀ PL **caused by optical excitation at 15K**

Recombination-Induced formation of defects responsible for $4B_0$ PL (possibly Boron-Hydrogen complex).

Optically induced changes of V_{Si}-H (H₁ line).

* The optically induced growth of H_1 can not be masked by the concurren metastable quenching.

Before Optical Excitation

Recombination-induced formation of a strong radiative recombination channel $(V_{Si}$ -H emission)

Deuterium concentration in plasma-deuterated **B-doped SiC epitaxial layer.**

The spot subjected to an optical excitation at **15K** shows much deeper deuterium penetration => recombination-induced athermal migration.

Inversion of the conductivity type under optical excitation in hydrogenated p-type epilayers:

strong recombination-induced passivation of acceptors.

Hypothetical paths for H migration via Bourgoin-Corbett athermal migration mechanism.

Recombination-induced formation of Hydrogen-Defect Complexes:

Recombination energy => release of hydrogen from the trapping cites near the surface, athermal migration and trapping by more stable sites (e.g., Al and B acceptors, silicon vacancies, etc.)

Remaining questions ...

- > The exact path for H migration?
- > The energy position of the hydrogen state responsible for the recombination-induced migration?
- Device applications?