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SiC Material Properties
(comparing to other semiconductors)
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Drift region resistance
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Drift region blocking capability
(1-D approach)
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Specific on-resistance of SiC

400x

Advantages of wide bandgap
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• Resistance-Area product
of 4H-SiC is 400x lower
than silicon at any given
blocking voltage



Advantages of wide bandgap
Intrinsic carrier concentration

Example:
n-type, 
ND = 1015 cm-3



Advantages in Switching Characteristics

Si pin diode – 1.32 µs SiC Schottky diode – 72 ns

600 V diode recovery comparison
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History of Wide Band Gap Semiconductors 
at Mississippi State University

Materials - Devices- Circuits - Systems
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Leveraging Basic Research into Production -
Rapid, economical transfer of government sponsored technology development into 
systems

LAM 9400 EtcherAIXTRON SiC Reactor

• Multi Wafer SiC Epi
• Sub-micron lithography
• Multi Wafer Plasma Etching
• Multi Wafer PECVD
• Multi Wafer Metal Deposition

MCASP
Mississippi Center for Advanced

Semiconductor Prototyping 

EMRL
• SiC CVD Epi Research

• Defect Engineering

• Materials Characterization

• Device Design

Component Production
• Mississippi Small Business

• SBIR’s

www.ece.msstate.edu/mcasp



Epitaxial Process Simulation

SiH4

Si(g)

Material Science Program at MSU 

Novel epitaxial 
growth techniques

Defects and Impurities. 
Defect Engineering in 
WBG Semiconductors

SiC for 
Nanotechnologies

PL DLTS

SEM FTIR

…

Traditional Material 
Characterization

ONR, AFRL, SBIR/STTR…

Novel Non-Contact
Material Characterization 

Techniques
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Lower-temperature epitaxial growth 
of 4H-SiC 

using CH3Cl carbon gas precursor.

Huang-De Lin, Galyna Melnychuk, Yaroslav Koshka

1 Mississippi State University, Box 9571, 
Mississippi State, MS 39762, USA



The hot-wall CVD reactors.

Traditional Precursors:
SiH4 and  C3H8

• Growth temperatures >15000C
• Lower temperatures => morphology degradation => polycrystalline



Silane decomposition

SiH4

SiH2

Si<g>

CH3Cl

CH4

C2H4

Cl

Chloromethane decomposition

Simulated kinetics of chemical reactions 
of SiC epitaxial growth 

in the cross-section of the CVD reactor

Our new model – vapor-phase formation of Si droplets (clusters)



Dense  
silicon-droplet 

cloud

Growth at Lower Temperatures

13000C

View of the susceptor from the 
rear-port window

• Si vapor condensation (cloud) is detrimental for epi
quality and growth rate.



High Si/C ratioLow Si/C ratio

50 µm

Optimized

Surface morphology of the 13000C growth

2 µm

>2 µm/hr

J. of Crystal Growth Patent Pending
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The saturation of the 
growth rate at higher 
SiH4 flows is due to 

silicon vapor 
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growth

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ><
−−∝><

4

4
4 exp1)(

SiH

SiHSiHR
ττ SiH4

J. of Crystal Growth



Arhenius temperature dependences: 
(a) exponential rate coefficient of the SiH4 flow dependence 

compared to 
(b) the growth rate temperature dependence.
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The value of EA is the same for R and τ SiH4 => the growth rate is determined by 
silicon vapor condensation.
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Dense cloud of Si clusters Strongly reduced cloud

(a) No HCl (b) With HCl added

HCl experiment:
Rear view of the glowing susceptor 

during  13000C epitaxial growth



Selective epitaxial growth 
of 4H-SiC with SiO2 mask.

Bharat Krishnan, Hrishikesh Das, Huang-De Lin, 
Galyna Melnychuk, Yaroslav Koshka.

1 Mississippi State University, Box 9571, 
Mississippi State, MS 39762, USA

Patent Pending



Plasma Plasma

Semiconductor 

Mask

Semiconductor 

Pattern formation by Etching



CVD CVD

Semiconductor 

Mask

Semiconductor 

Pattern formation by Selective Epitaxial Growth



SiO2 mask for low-temperature 
selective epitaxial growth of 4H-SiC (LTSEG)

SiO2
mask

• SiO2 Severely degrade at regular growth temperatures (15000C)
• Survives at 13000C of our novel low-temperature growth method

SiC
substrate



SiO2 mask4H-SiC mesas

2 µm

(a) with SiO2 mask

Low-temperature SEG at 13000C:

4H-SiC mesas4H-SiC substrate

2 µm

(b) SiO2 mask removed

>3 µm / hr

Patent Pending



5 µm 

[ 0211 ] 
(off-axis direction) 

Edge defects 

SEM image of the mesa-lines selectively grown in SiO2
window at 13000C. 

Lines oriented in different directions reveal the orientation-dependent 
defect generation.

Patent Pending



Cross-sectional SEM of 30-µm-wide mesa line 
selectively grown in SiO2 window at 13000C. 

3 µm

SiO2defective region

[ ]0211

1 µm
Edge facet

SiO2

Patent Pending
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Plasma hydrogenation. 

• Processing in new Inductively Coupled Plasma (ICP) 
system enabled further improvement of hydrogen 

incorporation in comparison to RIE hydrogenation.

• Experimental Reactive Ion Etching (RIE) system → Hydrogen Plasma.



Hydrogen plasma

SiC subjected to Plasma Hydrogenation.
Incorporated hydrogen forms stable complexes with defects and impurities. 
Hydrogen concentration profiles repeat profiles of acceptor concentration.

[1] S. Janson, A. Hallén, M. K. Linnarsson, and B. G. Svensson, Phys. Rev. B 
64, 195202 (2001)

→ Stable hydrogen-defect complex in SiC
→ Mobile hydrogen atom
→ Defect or impurity



Effect of plasma hydrogenation on the 
concentration of active acceptors (Al). 

• Passivation of Al acceptors down to 1015cm-3 and to the depth in 
access of 2 µm was achieved after 2 hrs of hydrogenation. 
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Simple Diffusion
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PL spectra before and after plasma hydrogenation 
of epilayer moderately doped with Al.

Y. Koshka, M. S. Mazzola, Appl. Phys. Lett, 79(6), 752 (2001)

• Efficient trapping of hydrogen by Al acceptors is confirmed by reduction of  Al-BE PL;
• Al acceptors are not the only trapping centers for hydrogen. H-related PL  lines indicate

simultaneous formation of H complex with Si vacancy (VSi-H ).



• A 4B0 peak previously associated with a bound exciton at the neutral boron is 
in fat related to a hydrogen-defect complex (possibly, B-H).

PL spectra of B-doped 4H-SiC epilayer:
affect of plasma hydrogenation: 

p = 8-9  x 1015 cm-3

tepi = 5 µm

Y. Koshka, Appl. Phys. Lett., 82, 3260 (2003).



Optically-stimulated passivation of defects with hydrogen.

Phenomenon 
of Recombination-Induced Passivation

(RIP)



→ Stable hydrogen-defect complex in SiC

→ Mobile hydrogen atom
→ Defect or impurity

Above band-gap light

Al-H
B-H
4B0

Schematic illustration of 
Recombination-Induced Passivation.

Certain amount of the incorporated hydrogen does not form stable complexes with 
defects (so called “free hydrogen”). 
Recombination-induced defect migration causes formation of various kinds of 
stable defect complexes. 

T = 15 K
T < ~ 250 K

VSi-H



Photoluminescence spectra after Regular Hydrogenation 
and after Recombination Induced Passivation. 

• Al-BE PL additionally quenches and disappears under 
optical excitation at low T in hydrogenated samples. 
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Changes in 4B0 PL 
caused by optical excitation at 15K

Recombination-Induced formation of defects responsible for 4B0 PL 
(possibly Boron-Hydrogen complex).
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Before Optical Excitation

After Optical Excitation

Recombination-induced formation 
of a strong radiative recombination channel 

(VSi-H emission)
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Deuterium concentration in plasma-deuterated 
B-doped SiC epitaxial layer.

The spot subjected to an optical excitation at 15K shows much deeper 
deuterium penetration => recombination-induced athermal migration.
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p+

Inversion of the conductivity type under optical 
excitation in hydrogenated p-type epilayers: 
strong recombination-induced passivation of acceptors. 
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H+

H0

TC TSiHex

Hypothetical paths for H migration via Bourgoin-
Corbett athermal migration mechanism.

Capture e- Capture h+

H0

H+



Recombination-induced formation of  Hydrogen-Defect Complexes:

Recombination energy => release of hydrogen from the trapping cites near the surface, 
athermal migration and trapping by more stable sites (e.g., Al and B acceptors, silicon 

vacancies, etc.)

Hydrogen trapped 
at the surface

after 
plasma

hydrogenation

Al-H B-H
4B0

VSi-H

RIP effect (Above-bandgap light at 4 - 250K)

Remaining questions …
The exact path for H migration? 
The energy position of the hydrogen state responsible for the recombination-induced 
migration?
Device applications?


