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1. INTRODUCTION

Economists like a good question. Consider the topic of asset price bubbles.1

Economists like to ask �why would a smart person hold an asset they know is over-

priced?� When the person-on-the-street says �they�re hoping to sell it to another per-

son just before the bubble bursts,� the economist responds with the follow-up question

�why would that other smart person buy an asset that�s about to collapse?�

On some level, that follow-up question is what really makes us economists. If the

people we�re studying are smart, then taking their problem seriously forces us to be

smarter ourselves.

For some economists, that follow-up question is intended as a conversation-stopper.

Obviously that second smart person wouldn�t buy the asset in that situation, the Þrst

smart person would recognize this, and no one would ever hold an overpriced asset.

Thus bubbles are impossible, and markets are efficient.

For others, who like dynamic models, an alternative response has traditionally

been that the second smart person buys the overpriced asset because they expect the

overpricing to grow forever, so they�ll be able to sell it to a third smart person, and so

on forever. Unfortunately, these models do not capture market participants� intuition

1 Of course, asset price ßuctuations are among the most controversial subjects in
economics. Some (Kindleberger, 2000, Shiller, 2000) argue that these ßuctuations are
caused by asset price bubbles, while others (e.g., Garber, 2000) argue that bubbles
are either impossible or empirically irrelevant. In addition, there is no consensus on
appropriate policies towards bubbles, even among those who believe that bubbles exist
(Bernanke and Gertler, 1999, Cecchetti et al., 2002).
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that, e.g., timing is important for investors hoping to get out of bubbles before they

burst. They also do not create any policy dilemmas, since these inÞnite-horizon bubbles

generally improve welfare.

Recently, several models of �greater fool� bubbles have been developed, which take

this follow-up question more seriously. These models capture the intuition of market

participants that, if they want to ride a bubble, they must carefully time the point at

which they sell to a �greater fool,� and so, get out of the bubble. However, they also

take more seriously the question of why a smart person would volunteer for the role of

greater fool.

The goal of this paper is to provide an accessible introduction to these greater

fool bubble models and present them in a form which makes it easier to compare their

strengths and weaknesses. Section 2 begins with the standard inÞnite horizon model,

both in its simple difference equation form, and in a simpliÞed version of its more

complete general equilibrium overlapping generations form. Section 3 turns to greater

fool bubbles, beginning with the earliest such model, due to Harrison and Kreps (1978),

in which the volume of trade is driven by overconÞdence. Section 4 then considers the

most neoclassical of the greater fool bubble models, i.e., a simpliÞed version of the Allen

et al. (1993) Þnite horizon model, based on asymmetric information. The virtues of the

asymmetric information model are that (a) it permits analysis of greater-fool bubbles

in a very standard neoclassical model which allows ordinary welfare analysis, etc., and

(b) it shows that the richer models in later sections, which build on various kinds of

irrationality, do not actually depend on this irrationality to generate their bubbles.
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Since it is possible to generate greater fool bubbles with or without irrationality, the

irrationality issue simply becomes a question of empirical plausibility. For example, the

volume of trade turns out to play an important role in these bubble models. One could

therefore ask which more realistically explains the volume of trade, ßuctuating marginal

rates of substitution between different states of the world, or investor overconÞdence?

If the later drives most trade, then bubble models assuming perfect rationality might

be misleading in a way which should be investigated by economic theory.

Section 5 returns to an overconÞdence model, i.e., the one due to Scheinkman

and Xiong (2003). Section 6, Þnally, considers a model where rational traders ride a

bubble to exploit behavioral traders. This model, due to Abreu and Brunnermeier,

combines features of the asymmetric information model of Section 4 and the models

with irrationality, of Sections 3 and 5.

Hopefully models like those in Sections 3 through 6 represent only the infancy of

the Þeld. However, I believe that the development, analysis and testing of these types

of models will move the profession beyond the repetitive debates of the past.

2. OLDER INFINITE-HORIZON BUBBLE MODELS

A. A Simple Difference Equation Model

The standard model of an asset price bubble arises from simply solving the usual

difference equation for a rational asset price:

pt = dt + βEtpt+1, (1)

where pt is the price of the asset in period t, dt is the period t payoff (e.g., dividend)
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from the asset, Et denotes expectations with respect to period-t information, and β is

a discount factor, e.g., 1/(1 + r) if the agent is risk neutral and the risk-free interest

rate is r. This equation has a �fundamental� solution

Ft = dt + βEtdt+1 + β
2Etdt+2 + · · · (2)

In addition, the model also has a large number of other solutions. SpeciÞcally, assume

that Bt is any random or nonrandom process such that Bt = βEtBt+1. Then the price

process

pt = Ft +Bt (3)

is also a solution to the pricing equation. The term Bt, if it is nonzero, is often referred

to as a bubble. For example, the simplest type of bubble process would be

Bt = B0β
−t, (4)

with B0 some constant.

However, richer models, with e.g., stochastically bursting bubbles, are also possible

(see Blanchard and Watson, 1982). For example, one possibility is for Bt to grow by

a constant factor 1/(πβ) until the bubble bursts, with the probability of the bubble

bursting in any period constant at π. In this case the bubble almost certainly bursts

in Þnite time. Nevertheless, the bubble must grow forever in expected value terms, in

order for investors to be willing to hold the asset.

Note that the random aspect of this second bubble process introduces a �sunspot�

element into the bubble. Nevertheless, a bubble can exist without these sunspot ßuc-

tuations. Similarly, sunspots are possible in models without bubbles.
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B. A General Equilibrium Overlapping Generations Model of a Bubble

Concern is sometimes expressed that the above inÞnite-horizon models are incon-

sistent in the long run. As Mussa (2003), p. 42, has recently written, �Did the Good

Lord teach people how to solve, intuitively, difference and differential equations but

forget to imbue them with the insight to impose the relevant boundary conditions?�

While several interpretations of this quote are possible (see below), one interpretation

is that, if one considers the long run outcome of the above bubble process, then bubble

models are simply dynamically inconsistent. However, as shown in this subsection,

bubbles which grow forever are consistent in the long run if the economy is growing

faster than the bubble. However, this also requires something like an overlapping-

generations structure, as in Samuelson (1958) and Tirole (1985), even in this inÞnite

horizon framework. This is because the only reason why one would hold an asset with

a price above the fundamental value of the dividend stream is if one hoped to sell it to

someone else in the future. On the other hand, in an inÞnite horizon model, that future

buyer need not be a �greater fool.� Also, if, say, the bubble is nonstochastic, then the

seller need not worry about the timing of the sale, in terms of possible bursting of the

bubble.

We will consider an extremely simple overlapping generations model. Time is

discrete and extends inÞnitely into the future. There is a single consumable good. A

Þxed number, N , of people are born each period and live two periods. People receive

an endowment when young, which depreciates, so, if a young person saves an amount

s of her endowment, she gets δs when old, with 0 < δ < 1. Their utility function is
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assumed to be Leontief, and given by

u(cyt , c
o
t ) = min(c

y
t , c

o
t/α), (5)

where cyt and c
o
t are the consumption, when young and old, respectively, of the typical

member of the generation born in period t. Thus, if the price of the good is positive

in both periods, the optimal consumption would satisfy

cot = αc
y
t . (6)

In the absence of a bubble asset, the only way that the young can save for old age

is by physically storing some of their endowment. This yields a budget constraint

cot = δ(e− cyt ). (7)

This, together with (6) gives

cyt =
δ

α+ δ
e and cot =

αδ

α+ δ
e, so ut =

δ

α+ δ
e. (8)

This is �dynamically inefficient� since everyone could do better if each genera-

tion, when young, shared some of their endowment with the previous generation�s

old. SpeciÞcally, if each young person gave (α/[α + 1])e to that period�s old people,

everyones� consumption would be

cyt =
1

α+ 1
e and cot =

α

α+ 1
e, so ut =

1

α+ 1
e. (9)

Since δ < 1, everyone is better off sharing as in (9), so the free market outcome in (8)

is inefficient.
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However, in the presence of a bubble asset, efficiency can be restored. For suppose

there is a bubble asset with price in period t of pt relative to the consumption good

in period t. Assume that the price process is nonstochastic, so agents can plan easily.

The budget constraint for people who are young in period t is

pt+1c
o
t = pt(e− cyt ), (10)

where we are assuming that

pt+1/pt > δ (11)

so buying the bubble asset is a better investment than storing the good. In addition,

(6) still holds. Let Rt = pt+1/pt be the gross return (capital gain) on the bubble asset.

Then solving (6) and (10) gives

cyt =
Rt

α+Rt
e and cot =

αRt
α+Rt

e. (12)

In addition, markets must clear, so

cyt + c
o
t−1 = e. (13)

That is, the consumption of the period t young and the period t − 1 old must equal

today�s endowment. Combining the demand functions in (12) with the equilibrium

condition in (13) and simplifying gives

Rt = (1− α) + α

Rt−1
. (14)

In addition, in this equilibrium, the old will trade all of their bubble asset for goods.

Thus, if the total amount of the bubble asset per old person is m, then the price of the
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bubble asset will be

1/pt = c
o
t−1/m =

αRt−1
α+Rt−1

e

m
. (15)

One solution of equilibrium condition (14) is Rt = 1 for all t, in which case the price

of the asset is

1/pt =
α

1 + α

e

m
(16)

for all t, so it is possible for the bubble asset to have a positive price.

Also, in this case, the consumption and welfare are as in the sharing case, (9)

above, so the bubble asset has also improved welfare. This is like the original Samuelson

(1958) model, where a bubble in an asset called �money� provides a vehicle by which

the young can save for old age. Thus, in this case a bubble, far from representing a

market failure, is a remarkable example of the invisible hand at work!

It should also be noted that one could model sunspots or other types of endogenous

ßuctuations in this framework. For example, in the above model, let α = 0.5, and

suppose that δ < 0.75. Then, in addition to the equilibrium path R0 = R1 = R2 =

· · · = 1, equation (14) yields a continuum of other equilibrium paths, for example,

R0 = 2, R1 = 0.75, R2 = 1.1667, and so on. Note, however, that these endogenous

ßuctuations are not bubbles. The overpricing is the bubble. Thus, while sunspots and

endogenous ßuctuations are related to bubbles, the two types of phenomena should be

kept separate.

While the above inÞnite-horizon bubble element might play a role in the pricing

of certain types of collectable items such as rare coins or paintings, (LeRoy, 2004), it

seems implausible to me that such inÞnitely lived bubbles could play a major role in
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the classic historical examples of dramatic asset price movements such as Tulip mania

or the dot-com boom. In the above models people hold assets they know are overpriced

because they believe that this overpricing will grow for ever in expected value terms.

It seems unlikely that any investors who saw themselves as buying overpriced tulips or

dot-com stocks expected this overpricing to last forever, even in expected value terms.

It also seems doubtful that these price movements, if they were bubbles, were

allowing investors to save for old age. These models require the economy to be dynam-

ically inefficient. Since actual economies appear to be dynamically efficient (Abel et al.,

1989), this suggests that these overlapping-generations bubble models are not possible

in the economies in which we actually live, since there is no dynamic inefficiency of this

type for these bubbles to correct (though see Cochrane, 2003, who argues that actual

bubble-like assets provide a kind of �convenience yield�).

Returning to the Mussa comment, perhaps Mussa was thinking that the economy

was dynamically efficient, so that inÞnite horizon bubbles were impossible. However,

another possibility is that he believed that any actual bubbles, if they exist, will even-

tually burst, even in expected-value terms. The question then becomes, why would

anyone ever hold an asset which is expected to burst? One natural answer is that

people are just stupid. However, another possibility is that these investors are plan-

ning to sell the bubble asset to a �greater fool,� who will make the mistake of buying

the asset. But then, how can we represent such a greater fool in an economic model

without doing too much damage to the usual economic assumption that all agents are

rational? The remaining sections of this paper will survey some recent papers which
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try to accomplish this task.

3. TRADE DUE TO OVERCONFIDENCE�HARRISON AND KREPS

The Þrst real greater fool bubble model was Harrison and Kreps (1978). This is

also perhaps the simplest greater fool model. Harrison and Kreps show, essentially,

that differences of opinion plus short sales constraints lead to asset overpricing, in the

sense that an agent will pay more for an asset if she knows others disagree with her

(for a related point, see Miller, 1977).

To understand the Harrison and Kreps story, assume that there are two categories

of risk neutral traders, �Momentum Expecting� (ME) traders and �Bounce-back Ex-

pecting� (BE) traders. There is an asset which, in any given period, pays a dividend

of either zero or one. Thus, in any given period there are two possible states, and

each type of trader expects these states to evolve as a Markov process, with transition

matrices !
0.5 0.5
0.2 0.8

"
and

!
0.2 0.8
0.5 0.5

"
,

for ME and BE traders, respectively. Here the Þrst row/column represents the state

with a dividend of zero and the second represents the state where the dividend is one.

Thus, an ME trader expects a zero state to be followed by a zero or one state with

equal probabilities of 0.5 each, but expects a one state to be followed by a one state

with probability of 0.8 (momentum). Similarly, a BE trader expects a one state to be

followed by a zero or one state with equal probabilities of 0.5 each, but expects a zero

state to be followed by a one state with probability of 0.8 (i.e., bouncing back from a
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bad period). Assume the discount factor is δ = 0.75.

Now let�s calculate the �buy and hold� price for the asset in states zero and one,

and compare these to the prices that result if investors can trade the asset with one

another. First consider investor ME. Prices p0 and p1 satisfy the difference equations

pME
0 = 0.75[0.5pME

0 + 0.5(1 + pME
1 )]

pME
1 = 0.75[0.2pME

0 + 0.8(1 + pME
1 )].

Here pME
1 is the ex-dividend price, i.e., the price an ME-investor would be willing to

pay in a period, after the dividend had already been paid out to its previous owner.

This is a system of two equations in two unknowns. Its solution is

pME
0 = 60/31 = 1.9355, pME

1 = 69/31 = 2.2258.

Similarly, the buy-and-hold prices for Investor BE are

pBE0 = 96/49 = 1.9592, pBE1 = 87/49 = 1.7755

Of course, if investors can trade with each other, then each will take advantage of

what they perceive to be the others� mistaken model of the dividend process. Thus,

consider state zero. In this state the BE traders expect the asset to �bounce back.�

They also know that if it does bounce back, the ME traders will expect the stock to

have momentum, so these ME traders will pay the BE traders a lot for the stock. Thus,

the BE traders will hold the asset, planning to sell it to the ME investors when state

one arrives. This yields trade prices that satisfy

pT0 = 0.75[0.2p
T
0 + 0.8(1 + p

T
1 )]

pT1 = 0.75[0.2p
T
0 + 0.8(1 + p

T
1 )].
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This system has solution

pT0 = 12/5 = 2.4, p
T
1 = 12/5 = 2.4.

Thus, since each believes that she can sell the asset to a �greater fool� in what

she sees as a bad state, each is more willing to hold the asset. This leads all investors

bid up the price beyond what they see as the asset�s buy-and-hold value.

It�s not clear whether we should consider this a bubble or not. The asset is always

overpriced relative to its buy-and-hold value, but the overpricing never leads to a crash.

It is tempting to consider the higher price as simply reßecting the value of liquidity.

However, it is more than that, since it has a greater fool ßavor. The price is bid up

precisely because each side is attempting to exploit what it perceives as pricing mistakes

by the other side.

4. A SIMPLE RATIONAL GREATER FOOL BUBBLE

This section presents the most neoclassical of the greater fool bubble models, with

all agents rational, and the bubble driven by asymmetric information and short sales

constraints. We assume a Þnite horizon, not because the world actually has a Þnite

horizon, but because this is a simple way to tie our hands and rule out the inÞnite-

horizon bubbles of the previous section.

A. Asset Markets with Asymmetric Information

This section presents the basic model of an asset market incorporating asymmetric

information and short-sale constraints. The next section then presents an example of

a rational bubble in such asset markets.
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There are two risk-neutral agents in this market, Ellen and Frank, and a Þnite set

of states of the world, Ω. The typical state of the world is ω ∈ Ω. Below we also use b,

eB, fG2 , etc., to denote typical states of the world. Ellen�s and Frank�s prior probability

distributions over Ω are denoted by πE(ω) and πF (ω), respectively. We allow πE(ω)

and πF (ω) to differ, in order to give Ellen and Frank an incentive to trade. However, the

incentive to trade could also be generated by giving people different marginal utilities

of wealth in different states. For example, if Frank�s marginal utility of wealth is higher

than Ellen�s in states with high dividends, then there will be a potential gain from trade

from Ellen selling the asset to Frank.

The market lasts for T periods, so 1 < t < T, but there is no discounting. There

is a riskless asset (money), and a risky asset. A unit of the risky asset will ultimately

pay a single dividend of d(ω) in state ω. Ellen and Frank are initially endowed with

state-dependent amounts of the risky asset, aE0 (ω) and a
F
0 (ω), respectively, as well as

state-dependent endowments of money, mE
0 (ω) and m

F
0 (ω).

Denote Ellen�s and Frank�s net sales of the risky asset in period t by xEt (ω) and

xFt (ω), respectively. Thus, if a
E
t (ω) and a

F
t (ω) are their holdings of the risky asset at

the end of period t, then aEt (ω) = a
E
t−1(ω)− xEt (ω) for Ellen, and similarly for Frank.

In the same way, if mE
t (ω) and m

F
t (ω) are Ellen and Frank�s money holdings at the

end of period t, and pt(ω) is the price of the risky asset in period t, then m
E
t (ω) =

mE
t−1(ω) + pt(ω)x

E
t (ω) for Ellen, and similarly for Frank.

Assume that there are no short sales of the risky asset, so aEt (ω) ≥ 0 and aFt (ω) ≥ 0

for all ω and t. Assume also that the price of the consumption good, in terms of
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money, is Þxed at one. Since Ellen is risk neutral, her overall expected payoff is then

EE [mE
T (ω)+a

E
T (ω)d(ω)], where E

E is the expectation with respect to Ellen�s prior πE .

Similarly, Frank�s overall expected payoff is EF [mF
T (ω) + a

F
T (ω)d(ω)].

Ellen�s and Frank�s underlying information partitions in period t are given by Et

= {Eit} and Ft = {F it }, respectively. These partitions become Þner over time, so Ellen

and Frank do not forget. In general, Ellen and Frank can also learn from the market

price in period t, pt(ω), but in the example below, the underlying partitions will be

chosen so that prices reveal no additional information. That is, the example will be set

up so that pt is �measurable� with respect to each of Et and Ft.

A competitive equilibrium in this market consists of a state-dependent price, pt(ω),

each period, and a pair of state-dependent net trades, xEt (ω) and x
F
t (ω), each period,

for Ellen and Frank, respectively, such that:

(i) pt is measurable with respect to the join (coarsest common reÞnement) of Et

and Ft, so pt depends only on information actually possessed by market participants,

(ii) an agent�s net trades in period t are measurable with respect to the join of

his own partition and the partition generated by pt, so each agent�s net trades depend

only information he/she actually possesses at the time of trade,

(iii) the market clears, so xEt (ω) + x
F
t (ω) = 0, and

(iv) each agent�s net trades are optimal, given his/her information, the set of

state-dependent prices, the short-sale constraints, and his/her (correct) beliefs about

the other�s strategy rule.

Finally, we follow Allen et al. (1993) by saying that a strong bubble exists at a
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state of the world, ω, if all agents know that the risky asset is overpriced for sure.

SpeciÞcally, a strong bubble exists at the state ω and time t if ω ∈ Eit implies that, for

all ω" ∈ Eit , pt(ω") > d(ω"), and similarly when ω ∈ F it .

B. A Simple Example of a Rational Bubble

This section presents a simple bubble. This is a slight simpliÞcation of the example

towards the end of Conlon (2004), and is simpler than the Allen et al. example.

Before presenting the formal example, it may help to explain the intuition. There

are two traders, Ellen and Frank. In some states of the world (i.e., b and eB), Ellen is

a �bad seller� who knows that the asset is worthless, but wants to sell it to Frank. In

certain other states of the world (eG1 , e
G
2 and e

G
3 ) Ellen is a �good seller� who believes

that the asset may be valuable, but is willing to sell it to Frank because Frank places

more value on the asset (in expected value terms) than Ellen. Frank is willing to buy

the asset from Ellen in some of these states because there are potential gains from

trade in the good states, and Frank can�t always tell the difference between the good

states and the bad states. That is, Frank is willing to run the risk of buying in the bad

states, to get the asset in the good states.

In the same way, there are certain states (b and fB) in which Frank is a bad seller

who knows that the asset is worthless and wants to sell, and certain states (fG1 , f
G
2 and

fG3 ) in which Frank is a good seller who believes that the asset may be valuable, but is

willing to sell, and Ellen is willing to buy in some of these states, since she cannot tell

them apart. Finally, in one of the bad states, b, both know that the asset is worthless,
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but each is willing to hold it in the (mistaken) belief that he/she will be able to sell it

later. A strong bubble therefore exists in state b.

Assume, then, that there are three periods, t = 1, 2, 3, so T = 3, and nine states

of nature, b, eB, fB , eG1 , e
G
2 , e

G
3 , f

G
1 , f

G
2 , and f

G
3 . Ellen and Frank each initially owns

one unit of the asset in all states, so aE0 (ω) = a
F
0 (ω) = 1 for all ω ∈ Ω. The asset only

pays a nonzero dividend in states eG3 and f
G
3 , and this dividend is 4.

Following Allen et al., assume Ellen and Frank have different prior probabilities

over the states of the world, as given in the two rows of Table 1, where A = 1/14 so

the probabilities add to one. These different prior probabilities are used to give the

agents an incentive to trade, though other approaches also work.

Table 1: Prior Probabilities

State b eB fB eG1 eG2 eG3 fG1 fG2 fG3

Ellen A A A 2A A A 4A A 2A
Frank A A A 4A A 2A 2A A A

Next, the information partitions, Et = {Eit} and Ft = {Fit}, for Ellen and Frank,

respectively, are given as follows. Ellen�s initial information partition has three cells:

EBS1 = {b, eB}, EBUY1 = {fB, fG1 , fG2 , fG3 }, EGS1 = {eG1 , eG2 , eG3 } (17)

while Frank�s initial information partition has the three cells

FBS1 = {b, fB}, FBUY1 = {eB, eG1 , eG2 , eG3 }, FGS1 = {fG1 , fG2 , fG3 } (18)

(see Figure 1). Note that EBS1 represents states where Ellen is a bad seller, who knows

that the asset is worthless, and EGS1 represents states where Ellen is a good seller, who
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thinks that the asset may be valuable, i.e., may pay a positive dividend. Note also

that Frank cannot distinguish between the good states from EGS1 , and the bad state,

eB, from EBS1 . This is why Frank is willing to buy from Ellen in some of the states, in

FBUY1 , where Ellen is bad. For similar reasons, Ellen is willing to buy from Frank in

some of the states where Frank is bad.

FIGURE 1: The players� information sets. Solid curves: Ellen�s information sets.
Dashed curves: Frank�s information sets. Dotted curves: Dividend paying states.

In period 2, both players learn the true state, ω, if it is b, eG1 , or f
G
1 . Ellen�s

underlying information partition in period 2 is therefore:

E12 = {b}, EBS2 = {eB}, E22 = {fG1 },

EBUY2 = {fB, fG2 , fG3 }, E32 = {eG1 }, EGS2 = {eG2 , eG3 }
(19)

and Frank�s underlying partition in period 2 is

F 12 = {b}, FBS2 = {fB}, F 22 = {eG1 },

FBUY2 = {eB, eG2 , eG3 }, F 32 = {fG1 }, FGS2 = {fG2 , fG3 }.
(20)

In period 3 Ellen and Frank learn the true state if it is eB eG2 , f
B or fG2 , so Ellen�s

underlying partition in period 3 is
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E13 = {b}, E23 = {eB}, E33 = {fG1 }, E43 = {fB},

E53 = {fG2 }, E63 = {fG3 }, E73 = {eG1 }, E83 = {eG2 }, E93 = {eG3 }
(21)

and symmetrically for Frank. Thus, no one ever forgets, and by the end of period 3,

both agents have perfect information.

Recall that the asset only pays a nonzero dividend in states eG3 and fG3 . Thus,

when Ellen observes the event EBS1 , she knows the asset is actually worthless, and when

Frank observes the event FBS1 , he knows the asset is worthless. This implies that, in

state b, both Ellen and Frank know the asset is worthless (though neither knows that

the other knows). Thus, if the price of the asset is nevertheless positive in this state,

this will represent a strong bubble. State b will therefore be our �bubble state.�

We now construct an equilibrium with a positive price in state b, so a strong bubble

really does exist in this state. First, Table 2 gives an equilibrium set of prices.

Table 2: Equilibrium Prices

State b eB fB eG1 eG2 eG3 fG1 fG2 fG3

t = 1 1 1 1 1 1 1 1 1 1
t = 2 0 2 2 0 2 2 0 2 2
t = 3 0 0 0 0 0 4 0 0 4

Thus, in most states, prices rise for various periods before crashing. In the dividend

paying states eG3 and f
G
3 the price rises to the true dividend, d(eG3 ) = d(f

G
3 ) = 4.

Next, Table 3 gives the net sales, from Ellen to Frank, in the equilibrium. Thus,

Ellen sells to Frank in information sets EBS2 = {eB} and EGS2 = {eG2 , eG3 }, and Frank

sells to Ellen in information sets FBS2 = {fB} and FGS2 = {fG2 , fG3 }.
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Table 3: Net Sales from Ellen to Frank

State b eB fB eG1 eG2 eG3 fG1 fG2 fG3

t = 1 0 0 0 0 0 0 0 0 0
t = 2 0 1 −1 0 1 1 0 −1 −1
t = 3 0 0 0 0 0 0 0 0 0

To see that this is an equilibrium, Þrst note that prices and net trades in each

period are measurable with respect to each player�s partition for that period. Thus,

conditions (i) and (ii) for an equilibrium are met. In addition, markets clear (condition

(iii)) and the short-sale constraints are satisÞed.

Next, consider whether Ellen�s behavior is optimal (Frank�s problem is clearly

symmetrical). In each of Ellen�s initial three information sets, Ellen�s expectation of

the second period price, p2, is 1. For example, at cell E
BS
1 = {b, eB},

EE [p2|EBS1 ] =
(0)(A) + (2)(A)

A+A
= 1 = p1(ω) for ω ∈ EBS1 . (22)

Ellen�s expected period 2 price is therefore equal to the period 1 price, given ω ∈ EBS1 .

Thus, since Ellen is risk neutral, she is willing to hold the asset in period 1, given EBS1 .

Similar results hold for EBUY1 and EGS1 .

Turn, then, to period 2. At Ellen�s information sets EBUY2 = {fB , fG2 , fG3 } and

EGS2 = {eG2 , eG3 }, her expected value for p3 is 2, by calculations like that in (22). This,

in turn, equals p2 at these information sets. Thus, the period 2 price again equals her

expected period 3 price at these information sets. Therefore, since she is risk neutral,

she is indifferent between buying, selling, and doing nothing at these information sets.

Thus, she is willing to buy at EBUY2 and sell at EGS2 , as called for by the equilibrium.
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At information set EBS2 = {eB}, the second period price p2 = 2 as well, but Ellen

knows that the state is eB , so p3 will be zero for sure. Ellen therefore strictly prefers

selling her unit of the asset at this cell. However, she is short-sale constrained, and so,

can only sell the one unit she owns. Finally, at Ellen�s other singleton information sets,

E12 , E
2
2 and E

3
2 , the period 2 price is zero, as is the expected period 3 price. Thus,

Ellen is willing to not trade, as called for by the equilibrium.

In period 3, price equals dividend (p3(ω) = d(ω)), and all information is revealed.

Therefore, Ellen is willing to not trade in period 3, as called for by the equilibrium.

Similarly, Frank is willing to do everything that the equilibrium calls on him to do.

Thus, the above prices and net trades actually do constitute an equilibrium.

Also, p1(b) = 1, so p1 is positive in state b, even though both Ellen and Frank

know that the asset is actually worthless. There is therefore a strong bubble in state b.

Intuitively, in state b, Ellen believes that the state might be eB. But in state eB, Ellen

will be able to sell the asset to Frank. This is because, in state eB, Frank believes that

the state might be eG3 , where the asset pays a dividend of 4. Similarly, Frank, in state

b, thinks he might be able to sell the asset to Ellen. Of course, in state b, neither of

them wants to buy the asset, so the bubble will burst by the second period.

A useful way to understand bubbles of this sort is that, since some agent types know

the asset is worthless, this creates a two-sided lemons problem in this market (Akerlof,

1970). That is, agents are more willing to sell if they have negative information about

the asset, so buyers tend to distrust sellers. In the bubble equilibrium, some gains from

trade are realized in spite of this lemons problem. This suggests that asset price bubbles
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tend to occur in markets where there is a lemons problem of this sort, but agents trade

in spite of the lemons problem. A bubble is then a situation in which all agents expect

to be on the selling side of a lemons market.

5. TRADE DUE TO OVERCONFIDENCE�THE SCHEINKMAN-XIONG

MODEL

The model of Scheinkman and Xiong (2003) is economically very similar to the

Harrison-Kreps (1978) model. However, in their model time is continuous, so tools

from stochastic calculus must be used. In addition, the differences of opinion that lead

to trade are motivated by having different traders placing conÞdence in different signals

of asset value.

We will consider an extremely simple two-period discrete-time version of their

model. Assume an asset has a random fundamental value X, which can ultimately

take on two values, zero or one. All investors place prior probability 1/2 on each of

these two values, so it is reasonable to consider the fundamental value of the asset

to be one half. In addition, assume that there is one signal S, which can take on

two values, SH and SL (Scheinkman and Xiong consider a model with two signals).

Finally, there are two kinds of traders, C-Traders (i.e., conÞdent traders), who believe

that the signal is informative, speciÞcally that ProbC(XH |SH) = ProbC(XL|SL) = q,

with q > 1/2, and N-Traders (nonconÞdent, or neutral traders) who believe that S is

completely uninformative.

The sequence of play is that, at the beginning of period 0 agents trade. Then they
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observe the signal S. Then at the beginning of period 1 they trade again, then they

observe the true value of X, which is paid out to whoever owns the asset.

This model, of course, is very easy to solve by backwards induction. If the C-

Traders observe SH , then their posterior probability is

ProbC(X = 1|SH) = 0.5q/[0.5q + 0.5(1− q)] = q,

by Bayes� rule. Thus, the C-Traders buy all of the asset from the N-Traders at price

pH1 = q. On the other hand, if the C-Traders observe SL, then they sell all of their

asset to the N-Traders, who are willing to pay pL1 = 1/2, since they think the signal is

uninformative. This gives the period 1 prices.

As of Period 0, all traders think that SH and SL are equally likely, so all traders

are willing to hold the asset at price

p0 =
1

2
q +

1

2

1

2
=
1

4
+
1

2
q >

1

2
,

since q > 1/2. Thus, there is a bubble in the sense that the market price exceeds the

�fundamental� value at which any agent would have been willing to buy and hold the

asset.

Of course, this simple example does not do justice to Scheinkman and Xiong�s

rich model. In addition, one of the values of their model is that it has provided a

very convenient work-horse with which Scheinkman, Xiong, and their coauthors have

been able to analyze a number of interesting Þnancial phenomena. For example, Hong,

Scheinkman and Xiong (2006) have used the model to explain the dramatic drop in
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price, documented by Ofek and Richardson (2003), which followed the expiration of lock

ups of dot com stocks. Essentially, they argue that, if agents are over conÞdent, then

they assume that well-informed insiders share their opinion. Thus, since the optimistic

traders will be holding the asset on the eve of lock up expiration, their overpricing will

be aggravated because they believe that insiders share their optimism.

6. RIDING BUBBLES

Intuitively, it makes sense that, as a bubble develops, more and more people begin

to suspect that the asset is overpriced, and that this puts pressure on the bubble to

eventually burst. However, the above models do not conform to this intuition, since, in

those models, all agents believe that prices are above fundamentals from the beginning.

In addition, in the Harrison and Kreps and Scheinkman and Xiong models, the bubble

never really bursts. The model which best captures the picture of bubbles eventually

bursting under the pressure of increasing skepticism is Abreu and Brunnermeier (2003).

This section will present a simple special case of the Abreu-Brunnermeier model.

Consider an asset market with some rational traders and some irrational traders.

Assume that the normal rate of return on assets is r = 0. Let the market have an asset

with a fundamental value which grows at a constant rate g > 0 until some random time

�t0, after which the fundamental value ceases to grow. Thus, normalizing the initial value

to one, the value at time t is min(egt, eg�t0). Abreu and Brunnermeier assume that the

time �t0 is exponentially distributed with PDF φ(t0) = λe−λt0 . However, it simpliÞes

the algebra to take the limit as λ→ 0, so �t0 has an improper prior distribution which
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is uniform on [0, ∞).

Though the fundamental value stops growing at time �t0, the market price continues

to grow for a while at the old rate g. This is partly because the rational traders do

not immediately learn that the fundamental value has ceased growing, partly because

rational traders do not initially sell out when they learn the asset has ceased growing,

and partly because there are some �behavioral� traders, who do not sell out until after

the price crashes.

Thus, assume that there is a mass of rational investors, indexed by i. Initially, at

time �t0, the rational traders are not informed that the fundamental value has stopped

growing, though they do know the distribution of �t0. However, once the fundamental

value has ceased growing, the rational investors begin to learn this. SpeciÞcally, at

time ti, investor i learns that �t0 < ti. Assume that the ti are uniformly distributed

between �t0 and �t0 + η.

Assume also that, if a fraction γ of rational investors sell their holdings of the

asset, then the price will crash. Now, by time �t0+η, all rational traders will know that

the asset is overpriced. One can ask, then, whether this will cause the asset price to

collapse by that date, or indeed, whether any rational trader will sell their holdings by

that date.

To investigate this question, assume that investor i follows the strategy �sell the

asset at date ti+ s.� Assume also that investor i expects other rational investors, e.g.,

investor j to sell out at time tj+s
e, where se is common to the other rational investors.

One can ask whether there is a symmetric Nash equilibrium where all rational investors
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choose the same holding period s∗, and how big this s∗ can be.

It turns out to be fairly easy to Þnd such a Nash equilibrium. To see this, look

at the problem from the perspective of investor i. She knows that �t0 is somewhere

between ti − η and ti. Also, since i�s prior was that �t0 was uniform on [0, ∞), her

posterior is uniform on [ti − η, ti].

Now, investor i believes that the market will crash at time �t0 + γη + s
e. Thus, if

she plans to sell out at time ti + s, her expected payoff is

Prob(�t0 + γη + s
e ≥ ti + s)eg(ti+s)

+Prob(�t0 + γη + s
e < ti + s)E[e

g�t0 |ti − η < �t0 < ti + s− se − γη]

= 1
η (γη + s

e − s)eg(ti+s) + # ti+s−se−γη
ti−η

1
η e
gt0dt0

= 1
η (γη + s

e − s)eg(ti+s) + 1
ηg

$
eg(ti+s−s

e−γη) − eg(ti−η)%
The Þrst order conditions for Investor i�s choice of s then give

g

η
(γη + se − s)eg(ti+s) + 1

η

$
eg(ti+s−s

e−γη) − eg(ti+s)% = 0.
Setting se = s for a symmetric equilibrium gives

(gγ − 1

η
)eg(ti+s) +

1

η
eg(ti−γη) = 0,

or

egs =
1

1− gγη e
−gγη,

or

s∗ =
1

g
ln

!
1

1− gγη e
−gγη

"
.
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Since e−gγη > 1− gγη, it follows that s∗ > 0, so agents do ride the bubble in this

model. Also, if η gets bigger, s∗ gets bigger, so if there is more uncertainty about when

rational traders receive their information, then they ride the bubble longer. Similarly,

if the fraction, γ, of rational traders needed to burst a bubble increases, then rational

traders ride the bubble longer, as expected. Finally, rewriting s∗ as

s∗ = ln
!

1

(1− gγη)1/g e
−γη

"

shows that, if the growth rate, g rises, then rational traders ride the bubble longer.

7. COMPARING THE MODELS

This survey has presented a number of recent greater fool bubble models. There

is, of course, insufficient grounds, at this point, to choose between them on empirical

grounds. Nevertheless, it is possible to list some of the strengths and weaknesses of

each model, with a view towards deciding how they can best be combined and applied

to understand various asset-market phenomena.

The most obvious advantage of the pure asymmetric-information model of Section

4 is that it is methodologically very conservative. Agents are perfectly rational, they

can be given a common prior, and they are in equilibrium at all times. This also means

that welfare analysis can be performed in a methodologically very conservative way �

the policy maker�s standard of Pareto optimality is given by the utility functions which

agents themselves maximize.

That said, to me, one of the major beneÞts of this methodological conservatism

is that, once we realize that one can capture bubbles in a very traditional model, it
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becomes much easier to set philosophical issues aside, and look at less conservative

models. For example, if one wants to model the volume of trade on the typical asset

market, then models with perfectly rational investors seem much less realistic than

models in which investors are overconÞdent. This is important since, in bubble models,

the volume of trade is necessary to answer the follow-up question with which we began

this survey � �why would a rational person buy an overpriced asset?�

In the end, however, I believe that it is hybrid models, which combine overconÞ-

dence with nontrivial information structures, which hold the most promise for capturing

the dynamics of greater-fool bubbles. In simple overconÞdence models, people learn

nothing about fundamentals from the behavior of other people. On the other hand,

in actual market crashes, for example, an important factor in the crash must be that

investors see falling prices as reßecting negative information that other investors have

learned earlier.

Thus, asymmetric information should be important in capturing the fragility in the

prices of bubble assets. If investors are not conÞdent that prices equal fundamentals,

then their expectations about asset prices presumably become very sensitive to what

they think others believe about asset prices, and this sensitivity may be important in

explaining the volatility of bubble assets.
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