Galaxies

ASTR 101

5/4/2016
The Milky Way galaxy

- Shape of a flattened disk with a central spherical bulge
- 100,000 light years (30 k parsecs) in diameter
- There are about 200 billion stars in the Milky way galaxy
- Almost all objects we see in the night sky belongs to the Milky way.
Star Clusters:

- **Open clusters**: located in the galactic disk, few hundred to thousands of younger stars.

- **Globular clusters**: located in the galactic halo, hundreds of thousands to millions of old stars, about 200 in the Milky Way.

![Diagram showing different parts of the galaxy, including the galactic halo, galactic disk, galactic bulge, and galactic center.](image-url)
Discovering the Milky Way

- Galileo observed the Milky Way through his telescope in 1610, and was able to see that the Milky Way was made up of countless stars.
- William Herschel, in the late 1700s, tried to determine the shape of the Milky Way by counting number of stars in different parts of sky.
- He came up with the above shape. He thought Sun was approximately at the center.
- He was not aware that most of the galaxy, particularly the center, is blocked from view by vast clouds of gas and dust.
 (dark lanes through Sagittarius gave the "jaw" on the right.)
- During that time Milky Way was thought to be the entire Universe.
Harlow Shapley, around 1915 began a study of the distribution of globular clusters using the 60 inch reflecting telescope at the Mt Wilson observatory.

- Globular clusters are large and bright, can be seen at relatively great distances.
 - He found Cepheid variables stars in two of them, which enabled to estimate distances to them.
 - He also assumed all globular clusters were of same brightness, to estimate distance to rest of the clusters.
• Assuming globular clusters are distributed uniformly through out the galaxy, distribution of them roughly traces the shape of the galaxy.

• When the location of these clusters were plotted Shapley found that the clusters were distributed roughly around a center in the direction of Sagittarius.

• Which Shapley claimed had to be the center of the Milky way.

• The Sun, as it turned out, was located in the galactic disk, about half the way out from the center.
The Messier Catalog and Nebulas

- Even before the telescope, many observers noted few nebulous objects (Andromeda nebula, Orion nebula, beehive) in the night sky.
- That number grew rapidly with the telescopic observations.
- Charles Messier was an 18th-century French astronomer whose primary interest was to discover new comets.
 - On August 28, 1758, while searching for comets, Messier found a small cloudy (nebulous) object in the constellation Taurus, which looked like a comet.
 - But repeated observations revealed that it didn't move in relation to the background stars, so was not a comet, but located far away among the stars.
- Over time the Messier and his contemporary observers found many such objects.
 - To avoid confusion in future comet searches, Messier compiled a catalog of these nebulous “non-cometary” objects.
 - By 1782 he had cataloged over 100 such objects which became the Messier Catalog.
Messier's catalog is still in use, specially by amateur astronomers. It is a collection of bright deep sky objects in the northern hemisphere.

Objects in the messier catalog are given the designation M followed by the number in the catalog, original Messier catalog had 103 objects, current version has 110 objects.

- M1 crab nebula, M31 Andromeda galaxy, M42 Orion nebula....
William Hershel

- After the discovery of Uranus, William Hershel became the Royal astronomer to King George II. He built large telescopes (up to 40” in diameters) and did serious astronomical observations.
- He and his sister Caroline Herschel did a systematic survey of the sky and found many more nebulous objects and star clusters.
- The catalog he published *Catalogue of Nebulae and Clusters of Stars* (CN) had 2500 entries.
In 1878 it was expanded into the General Catalogue of Nebulae and Clusters of Stars (GC) with 5,079 objects by his son, John Herschel. He set up an observatory in South Africa and included southern sky objects.

In 1888 Danish astronomer Johan Dreyer compiled the New General Catalog (NGC) using observations from John and William Herschel and others which contained 7840 objects.

The NGC is still widely used by astronomers.
• As telescopes grew more powerful, astronomers found that some of the cloudy patches in the sky, nebulae, were also made up of stars (like globular and open clusters).

• Yet some of the nebulae remained hazy even through larger telescopes available to the 19th century astronomers.

• William Persons (3rd Earl of Ross) in 1845 built a large telescope with a 6 feet diameter mirror on his estate.

• When he turned his telescope to M51 nebula in April 1845, he noticed the spiral shape of the nebula.

• Following year he saw a similar spiral shape in M99, fourteen more over next five years.
Leviathan of Parsonstown (Lord Rosse’s 6’ telescope)

The Leviathan of Parsonstown

One of the original 61 mirrors (4 tons)

An illustration showing Lord Rosse’s 6’ telescope and 3’ telescope

Restored Lord Rosse’s telescope today

Nature of Nebulae

• In the decades after Lord Ross’ discovery, astronomers found many other spiral nebulae.
• But it was not clear what they were. There were two conflicting ideas about their nature.
• Some held the view that the Milky way was the entire universe, its sole constituent. So they thought:
 – Spiral nebulae were just gas clouds in the Milky way.
 – Likely they were gas clouds where new stars and planetary systems are being formed as suggested by Laplace.
• Other astronomers argued that those spiral nebulae were “island universes” like the Milky Way.
 – They were simply too far away, so they looked like a nebula.
 – It was first suggested by the philosopher Immanuel Kant, in the later part of the 18th Century.
 • He postulated that nebulas were separate stellar systems similar to our Milky, which he called “island universes”.
 • Kant’s ideas were more on philosophical grounds than scientific.
 • There were no observational evidence to support his model in his time.
 • But it initiated the debate about the nature of nebula which continued until the 20th century.
The "Great Debate" of 1920

• By the 1920s, a debate was raging among astronomers:
 – whether the spiral nebulae were gaseous objects within the Milky way
 – or separate "island universes" like the Milky Way

• This argument culminated in a debate between two astronomers Harlow Shapley and Herber Curtis about the nature of the spiral nebula.
 – on 26 April, 1920 before the National Academy of Sciences at the Smithsonian Museum of Natural History.

• **Harlow Shapley:** Shapley was the astronomer who used globular clusters to determine the size of the Milky Way.
 – He showed that the Milky Way was larger than it was believed at the time. So he argued that the Milky Way was large enough to be the whole universe and contain the spiral nebulae.

• **Heber Curtis:** Curtis’ main assertion was that the spiral nebulae were objects like the Milky Way, “Island Universes” as Kant envisioned, not objects contained in the Milky Way

• The data used by both Shapley and Curtis in their debate was not of enough precision to conclusively solve the debate over the nature of the spiral nebulae.
Soon after the debate, in 1923 Edwin Hubble using the new 100-inch telescope on Mount Wilson was able to take images of M31, which resolved it into stars.

He even identified several Cepheid variable in M31, which enabled to estimate the distance to it.

Hubble estimated that M31 was about a million light years away, much larger than the size of the Milky way (100,000 light years estimated by Shapley).

Hubble found Cepheid variables in few other galaxies and finally settled the debate over the nature of spiral nebulae once and for all.

The universe became a much bigger place. Milky Way Galaxy was by no means the whole universe or the “center” of the Universe.
Galaxies are the basic building blocks of the Universe.
There are many galaxy types, having diverse shapes and sizes and features:
- Shapes: Elliptical, spiral, irregular
- Sizes: Dwarf galaxies hundreds of million stars to giants with hundreds of trillions starts
Galaxy classification

- Hubble introduced a classification scheme of galaxies according to their appearance (morphology)
 - elliptical, spiral, barred spiral, and irregular.
 - and then sub-classifies these categories with respect to properties such as the amount of flattening for elliptical galaxies and the nature of the arms for spiral galaxies.
- He arranged those in a diagram "tuning fork" diagram shown above believing that they evolved from left to right, which turn out to be wrong.
Properties of Galaxies

<table>
<thead>
<tr>
<th></th>
<th>Spiral (S) and barred spiral (SB) galaxies</th>
<th>Elliptical galaxies (E)</th>
<th>Irregular galaxies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (M_\odot)</td>
<td>10^9 to 4×10^{11}</td>
<td>10^5 to 10^{13}</td>
<td>10^8 to 3×10^{10}</td>
</tr>
<tr>
<td>Luminosity (L_\odot)</td>
<td>10^8 to 2×10^{10}</td>
<td>3×10^5 to 10^{11}</td>
<td>10^7 to 10^9</td>
</tr>
<tr>
<td>Diameter (kpc)</td>
<td>5 to 250</td>
<td>1 to 200</td>
<td>1 to 10</td>
</tr>
<tr>
<td>Stellar populations</td>
<td>Spiral arms: young Population I</td>
<td>Population II and old Population I</td>
<td>mostly Population I</td>
</tr>
<tr>
<td></td>
<td>Nucleus and throughout disk: Population II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and old Population I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of</td>
<td>77%</td>
<td>20%*</td>
<td>3%</td>
</tr>
<tr>
<td>observed galaxies</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- M101
- NGC 1365
- NGC 4482
• Everything in the galaxy rotate around its common center (center of mass).
• Rate of rotation is governed by gravitation of the matter in the galaxy.
• As for the solar system, we expect rotation speed diminish with distance from the center.
• But when the speeds of stars were measured (using Doppler shift of spectral lines) it turned out that their speed won’t fall off as expected!
Either Newton’s laws are flawed or some invisible matter in the galaxy causing the matter (stars, gas clouds) in the galaxy to move faster.

Measurements of galaxy rotational curves show there must be 3 to 10 times more mass than visible matter to account for observed rotational speeds.
Dark Matter

- Measurement of speeds of galaxies in clusters of galaxies also show that there must be more mass than visible to account for galaxy speeds. The discrepancy is even larger in galaxy clusters.

Fritz Zwicky who first postulated the existence of dark matter by studying the speeds of galaxies in the Coma cluster of galaxies in 1930.
Dark Matter

• Many evidence to suggest that most of the matter in the universe is invisible form of matter called “dark matter”,
 – more than five times the visible matter.

• Most accept the existence of the dark matter as real even though we do not know what it is made of. Dark matter holds galaxies together and determines the structure of the universe.

• What could this dark matter be? It is dark at all wavelengths, not just the visible.
 – Stellar-mass black holes?
 – Brown dwarfs, faint white dwarfs, and red dwarfs?
 – Weird subatomic particles?
 – Could be, although no direct evidence so far

One of the major unsolved problem in physics today!
In the early 20th century the common worldview was that the universe was static and eternal—unchanging with time.

In 1917 Albert Einstein came up with a theory "The General theory of Relativity" which explained gravity in terms of the curvature of space-time.

But when Einstein tried to model the universe according to general relativity he could not find a stable solution which explained the static universe.

- instead universe would collapse or expand according to his theory of general relativity.

Einstein who firmly believed in a static universe, was not ready to accept such dynamic universe yet.

So he modified the theory, introducing an extra terms to the equations of general relativity. (called gravitational constant) to make it static.
Review Questions

• Where is the Sun located in the Milky way galaxy.
• Where are the globular clusters located in a galaxy.
• What are the main features of a spiral galaxy like Milky way.
• Which part of the milky way star formation still going on.
• What are the evidence that there is a super massive black hole at the center of the Milky way?
• What is the difference between a galaxy and a globular cluster.
• Why is it likely that the milky way was formed by merging smaller galaxies?
• What type of objects are in the Measure catalog?
• What is NGC in the NGC catalog stand for.
• How did Sharply measure the size and shape of the Milky way?
• What was the first convincing evidence that spiral nebulae were galaxies outside the Milky way?
• What type of galaxies are the Magellanic clouds?
• What is the nearest external galaxy?
• How did Hubble measure the distance to Andromeda galaxy?
• What are the evidence that most of the matter in the universe is invisible dark matter?