PHYS 401 Electromagnetic Theory, Homework \#2. Due on Friday 9/14

1) Show that the divergence of curl is always zero. Then check that for the function $x^{2} \hat{x}+3 x z^{2} \hat{y}-2 x z \hat{z}$.
2) A vector field $\vec{V}=r^{3} \hat{r}$ is defined in the region between two concentric cylindrical surfaces with $r=1$ and $r=2$. Both cylinders are extending from $\mathrm{z}=0$ to $\mathrm{z}=5$. Verify the divergence theorem by evaluating
a) $\oint_{\text {surface }} V \cdot d a$
b) $\oint_{\text {volume }} \nabla \cdot V d v$
3) A vector field is given in a cylindrical coordinate system by $\vec{B}=\frac{\hat{c} \cos \phi}{r}$. Verify Stokes's theorem for a segment of a cylindrical surface defined by $r=2, \pi / 3 \leq \varphi \leq \pi / 2,0 \leq z \leq 3$ as shown in the diagram below.

4) A vector field \vec{V} in spherical coordinates is given by:

$$
\vec{V}=r^{2} \sin \theta \hat{r}+r^{2} \operatorname{scos} \theta \hat{\theta}+r^{2} \tan \theta \widehat{\phi}
$$

Prove the divergence theorem for this field for a conical volume with spherical top as shown in the above figure (left)
5) An electric charge Q is uniform ally smeared on the surface of a spherical shell of radius R. Write an expression in a suitable coordinate system to represent the volume charge density ρ of that charge distribution. Make sure that the volume integral of ρ is equal to Q .
6) Evaluate the following integrals:
i) $\int_{0}^{5}\left(2 x^{2}-3 x+1\right) \delta(x+1) d x$
ii) $\int_{0}^{5}\left(4 x^{3}-5 x+2\right) \delta(x-2) d x$
iii) if the function $f(x)=0$ when $x=x_{0}$ (and only when $x=x_{0}$)

$$
\text { show that } \delta(\mathrm{f}(\mathrm{x}))=\frac{\delta\left(x-x_{0}\right)}{\left|\frac{d f}{d x}\right|_{x=x_{0}}}
$$

$i v)$ show that $x \frac{d}{d x} \delta(x)=-\delta(x)$ (Hint: use integration by parts)
v) use the result (iii) to evaluate $\int_{-\infty}^{\infty} x^{2} \delta(\sin x) d x$ (note: $\sin x=0$ for more than one value of x)

