PHYS 401 Electromagnetic Theory, Homework #2. Due on Friday 9/14

1) Show that the divergence of curl is always zero. Then check that for the function $x^2\hat{x} + 3xz^2\hat{y} - 2xz\hat{z}$.

2) A vector field $\vec{V} = r^3 \hat{r}$ is defined in the region between two concentric cylindrical surfaces with r = 1 and r = 2. Both cylinders are extending from z = 0 to z = 5. Verify the divergence theorem by evaluating

a)
$$\oint_{surface} V \cdot da$$

b) $\oint_{volume} \nabla \cdot V dv$

3) A vector field is given in a cylindrical coordinate system by $\vec{B} = \frac{\hat{2}\cos\phi}{r}$. Verify Stokes's theorem for a segment of a cylindrical surface defined by r = 2, $\pi/3 \le \phi \le \pi/2$, $0 \le z \le 3$ as shown in the diagram below.

4) A vector field \vec{V} in spherical coordinates is given by:

 $\vec{V} = r^2 sin\theta \hat{r} + r^2 scos\theta \hat{\theta} + r^2 tan\theta \hat{\phi}$ '

Prove the divergence theorem for this field for a conical volume with spherical top as shown in the above figure (left)

5) An electric charge Q is uniform ally smeared on the surface of a spherical shell of radius R. Write an expression in a suitable coordinate system to represent the volume charge density ρ of that charge distribution. Make sure that the volume integral of ρ is equal to Q.

6) Evaluate the following integrals:

i)
$$\int_{0}^{5} (2x^2 - 3x + 1)\delta(x + 1)dx$$

ii) $\int_{0}^{5} (4x^3 - 5x + 2)\delta(x - 2)dx$

iii) if the function f(x) = 0 when $x = x_0$ (and only when $x = x_0$)

show that
$$\delta(\mathbf{f}(\mathbf{x})) = \frac{\delta(x - x_0)}{\left|\frac{df}{dx}\right|_{x = x_0}}$$

iv) show that $x \frac{d}{dx} \delta(x) = -\delta(x)$ (Hint: use integration by parts)

v) use the result (iii) to evaluate $\int_{-\infty}^{\infty} x^2 \delta(\sin x) dx$

(note: $\sin x = 0$ for more than one value of x)