
Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

1 of 44 04/18/2008 08:28 AM

��������	 |
���
�	�	 | ��	���
�	 | �������	���	 | �������	 | ����
� | �����
��������������
�

Introduction to Parallel Computing

Table of Contents

Abstract1.

Overview

What is Parallel Computing?1.

Why Use Parallel Computing?2.

2.

Concepts and Terminology

von Neumann Computer Architecture1.

Flynn's Classical Taxonomy2.

Some General Parallel Terminology3.

3.

Parallel Computer Memory Architectures

Shared Memory1.

Distributed Memory2.

Hybrid Distributed-Shared Memory3.

4.

Parallel Programming Models

Overview1.

Shared Memory Model2.

Threads Model3.

Message Passing Model4.

Data Parallel Model5.

Other Models6.

5.

Designing Parallel Programs

Automatic vs. Manual Parallelization1.

Understand the Problem and the Program2.

Partitioning3.

Communications4.

Synchronization5.

Data Dependencies6.

Load Balancing7.

Granularity8.

I/O9.

Limits and Costs of Parallel Programming10.

Performance Analysis and Tuning11.

6.

Parallel Examples

Array Processing1.

PI Calculation2.

Simple Heat Equation3.

1-D Wave Equation4.

7.

References and More Information8.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

2 of 44 04/18/2008 08:28 AM

Abstract

This presentation covers the basics of parallel computing. Beginning with a brief overview and some concepts and

terminology associated with parallel computing, the topics of parallel memory architectures and programming models are

then explored. These topics are followed by a discussion on a number of issues related to designing parallel programs. The

last portion of the presentation is spent examining how to parallelize several different types of serial programs.

Level/Prerequisites: None

Overview

What is Parallel Computing?

Traditionally, software has been written for serial computation:

To be run on a single computer having a single Central Processing Unit (CPU);

A problem is broken into a discrete series of instructions.

Instructions are executed one after another.

Only one instruction may execute at any moment in time.

In the simplest sense, parallel computing is the simultaneous use of multiple compute resources to solve a

computational problem.

To be run using multiple CPUs

A problem is broken into discrete parts that can be solved concurrently

Each part is further broken down to a series of instructions

Instructions from each part execute simultaneously on different CPUs

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

3 of 44 04/18/2008 08:28 AM

The compute resources can include:

A single computer with multiple processors;

An arbitrary number of computers connected by a network;

A combination of both.

The computational problem usually demonstrates characteristics such as the ability to be:

Broken apart into discrete pieces of work that can be solved simultaneously;

Execute multiple program instructions at any moment in time;

Solved in less time with multiple compute resources than with a single compute resource.

Parallel computing is an evolution of serial computing that attempts to emulate what has always been the state of

affairs in the natural world: many complex, interrelated events happening at the same time, yet within a sequence.

Some examples:

Planetary and galactic orbits

Weather and ocean patterns

Tectonic plate drift

Rush hour traffic in LA

Automobile assembly line

Daily operations within a business

Building a shopping mall

Ordering a hamburger at the drive through.

Traditionally, parallel computing has been considered to be "the high end of computing" and has been motivated by

numerical simulations of complex systems and "Grand Challenge Problems" such as:

weather and climate

chemical and nuclear reactions

biological, human genome

geological, seismic activity

mechanical devices - from prosthetics to spacecraft

electronic circuits

manufacturing processes

Today, commercial applications are providing an equal or greater driving force in the development of faster

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

4 of 44 04/18/2008 08:28 AM

computers. These applications require the processing of large amounts of data in sophisticated ways. Example

applications include:

parallel databases, data mining

oil exploration

web search engines, web based business services

computer-aided diagnosis in medicine

management of national and multi-national corporations

advanced graphics and virtual reality, particularly in the entertainment industry

networked video and multi-media technologies

collaborative work environments

Ultimately, parallel computing is an attempt to maximize the infinite but seemingly scarce commodity called time.

Overview

Why Use Parallel Computing?

The primary reasons for using parallel computing:

Save time - wall clock time

Solve larger problems

Provide concurrency (do multiple things at the same time)

Other reasons might include:

Taking advantage of non-local resources - using available compute resources on a wide area network, or even

the Internet when local compute resources are scarce.

Cost savings - using multiple "cheap" computing resources instead of paying for time on a supercomputer.

Overcoming memory constraints - single computers have very finite memory resources. For large problems,

using the memories of multiple computers may overcome this obstacle.

Limits to serial computing - both physical and practical reasons pose significant constraints to simply building ever

faster serial computers:

Transmission speeds - the speed of a serial computer is directly dependent upon how fast data can move

through hardware. Absolute limits are the speed of light (30 cm/nanosecond) and the transmission limit of

copper wire (9 cm/nanosecond). Increasing speeds necessitate increasing proximity of processing elements.

Limits to miniaturization - processor technology is allowing an increasing number of transistors to be placed

on a chip. However, even with molecular or atomic-level components, a limit will be reached on how small

components can be.

Economic limitations - it is increasingly expensive to make a single processor faster. Using a larger number of

moderately fast commodity processors to achieve the same (or better) performance is less expensive.

The future: during the past 10 years, the trends indicated by ever faster networks, distributed systems, and

multi-processor computer architectures (even at the desktop level) clearly show that parallelism is the future of

computing.

 Who and What?

Top500.org provides statistics on parallel computing users - the charts below are just a sample. Some things to note:

Sectors may overlap - for example, research may be classified research. Respondents have to choose between

the two.

"Not Specified" is by far the largest application - probably means multiple applications.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

5 of 44 04/18/2008 08:28 AM

Concepts and Terminology

von Neumann Architecture

For over 40 years, virtually all computers have followed a common machine model known as the von Neumann

computer. Named after the Hungarian mathematician John von Neumann.

A von Neumann computer uses the stored-program concept. The CPU executes a stored program that specifies a

sequence of read and write operations on the memory.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

6 of 44 04/18/2008 08:28 AM

Basic design:

Memory is used to store both program and data instructions

Program instructions are coded data which tell the computer to do something

Data is simply information to be used by the program

A central processing unit (CPU) gets instructions and/or data from memory, decodes the instructions and then

sequentially performs them.

Concepts and Terminology

Flynn's Classical Taxonomy

There are different ways to classify parallel computers. One of the more widely used classifications, in use since

1966, is called Flynn's Taxonomy.

Flynn's taxonomy distinguishes multi-processor computer architectures according to how they can be classified

along the two independent dimensions of Instruction and Data. Each of these dimensions can have only one of two

possible states: Single or Multiple.

The matrix below defines the 4 possible classifications according to Flynn.

S I S D

Single Instruction, Single Data

S I M D

Single Instruction, Multiple Data

M I S D

Multiple Instruction, Single Data

M I M D

Multiple Instruction, Multiple Data

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

7 of 44 04/18/2008 08:28 AM

 Single Instruction, Single Data (SISD):

A serial (non-parallel) computer

Single instruction: only one instruction stream is being acted on by the CPU during

any one clock cycle

Single data: only one data stream is being used as input during any one clock cycle

Deterministic execution

This is the oldest and until recently, the most prevalent form of computer

Examples: most PCs, single CPU workstations and mainframes

 Single Instruction, Multiple Data

(SIMD):

A type of parallel computer

Single instruction: All processing units

execute the same instruction at any given

clock cycle

Multiple data: Each processing unit can

operate on a different data element

This type of machine typically has an

instruction dispatcher, a very

high-bandwidth internal network, and a very

large array of very small-capacity instruction

units.

Best suited for specialized problems

characterized by a high degree of

regularity,such as image processing.

Synchronous (lockstep) and deterministic

execution

Two varieties: Processor Arrays and Vector

Pipelines

Examples:

Processor Arrays: Connection

Machine CM-2, Maspar MP-1, MP-2

Vector Pipelines: IBM 9000, Cray

C90, Fujitsu VP, NEC SX-2, Hitachi

S820

 Multiple Instruction, Single Data

(MISD):

A single data stream is fed into multiple

processing units.

Each processing unit operates on the data

independently via independent instruction

streams.

Few actual examples of this class of parallel

computer have ever existed. One is the

experimental Carnegie-Mellon C.mmp

computer (1971).

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

8 of 44 04/18/2008 08:28 AM

Some conceivable uses might be:

multiple frequency filters operating on

a single signal stream

multiple cryptography algorithms

attempting to crack a single coded

message.

 Multiple Instruction, Multiple Data

(MIMD):

Currently, the most common type of parallel

computer. Most modern computers fall into

this category.

Multiple Instruction: every processor may be

executing a different instruction stream

Multiple Data: every processor may be

working with a different data stream

Execution can be synchronous or

asynchronous, deterministic or

non-deterministic

Examples: most current supercomputers,

networked parallel computer "grids" and

multi-processor SMP computers - including

some types of PCs.

Concepts and Terminology

Some General Parallel Terminology

Like everything else, parallel computing has its own "jargon". Some of the more commonly used terms associated with

parallel computing are listed below. Most of these will be discussed in more detail later.

Task

A logically discrete section of computational work. A task is typically a program or program-like set of instructions

that is executed by a processor.

Parallel Task

A task that can be executed by multiple processors safely (yields correct results)

Serial Execution

Execution of a program sequentially, one statement at a time. In the simplest sense, this is what happens on a one

processor machine. However, virtually all parallel tasks will have sections of a parallel program that must be

executed serially.

Parallel Execution

Execution of a program by more than one task, with each task being able to execute the same or different statement

at the same moment in time.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

9 of 44 04/18/2008 08:28 AM

Shared Memory

From a strictly hardware point of view, describes a computer architecture where all processors have direct (usually

bus based) access to common physical memory. In a programming sense, it describes a model where parallel tasks

all have the same "picture" of memory and can directly address and access the same logical memory locations

regardless of where the physical memory actually exists.

Distributed Memory

In hardware, refers to network based memory access for physical memory that is not common. As a programming

model, tasks can only logically "see" local machine memory and must use communications to access memory on

other machines where other tasks are executing.

Communications

Parallel tasks typically need to exchange data. There are several ways this can be accomplished, such as through a

shared memory bus or over a network, however the actual event of data exchange is commonly referred to as

communications regardless of the method employed.

Synchronization

The coordination of parallel tasks in real time, very often associated with communications. Often implemented by

establishing a synchronization point within an application where a task may not proceed further until another task(s)

reaches the same or logically equivalent point.

Synchronization usually involves waiting by at least one task, and can therefore cause a parallel application's wall

clock execution time to increase.

Granularity

In parallel computing, granularity is a qualitative measure of the ratio of computation to communication.

Coarse: relatively large amounts of computational work are done between communication events

Fine: relatively small amounts of computational work are done between communication events

Observed Speedup

Observed speedup of a code which has been parallelized, defined as:

wall-clock time of serial execution

wall-clock time of parallel execution

One of the simplest and most widely used indicators for a parallel program's performance.

Parallel Overhead

The amount of time required to coordinate parallel tasks, as opposed to doing useful work. Parallel overhead can

include factors such as:

Task start-up time

Synchronizations

Data communications

Software overhead imposed by parallel compilers, libraries, tools, operating system, etc.

Task termination time

Massively Parallel

Refers to the hardware that comprises a given parallel system - having many processors. The meaning of many

keeps increasing, but currently BG/L pushes this number to 6 digits.

Scalability

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

10 of 44 04/18/2008 08:28 AM

Refers to a parallel system's (hardware and/or software) ability to demonstrate a proportionate increase in parallel

speedup with the addition of more processors. Factors that contribute to scalability include:

Hardware - particularly memory-cpu bandwidths and network communications

Application algorithm

Parallel overhead related

Characteristics of your specific application and coding

Parallel Computer Memory Architectures

Shared Memory

 General Characteristics:

Shared memory parallel computers vary widely, but generally have in common the ability for all processors to

access all memory as global address space.

Multiple processors can operate independently but share the same memory resources.

Changes in a memory location effected by one processor are visible to all other processors.

Shared memory machines can be divided into two main classes based upon memory access times: UMA and

NUMA.

 Uniform Memory Access (UMA):

Most commonly represented today by Symmetric Multiprocessor (SMP) machines

Identical processors

Equal access and access times to memory

Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent means if one processor updates a location in

shared memory, all the other processors know about the update. Cache coherency is accomplished at the hardware

level.

 Non-Uniform Memory Access (NUMA):

Often made by physically linking two or more SMPs

One SMP can directly access memory of another SMP

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

11 of 44 04/18/2008 08:28 AM

Not all processors have equal access time to all memories

Memory access across link is slower

If cache coherency is maintained, then may also be called CC-NUMA - Cache Coherent NUMA

 Advantages:

Global address space provides a user-friendly programming perspective to memory

Data sharing between tasks is both fast and uniform due to the proximity of memory to CPUs

 Disadvantages:

Primary disadvantage is the lack of scalability between memory and CPUs. Adding more CPUs can geometrically

increases traffic on the shared memory-CPU path, and for cache coherent systems, geometrically increase traffic

associated with cache/memory management.

Programmer responsibility for synchronization constructs that insure "correct" access of global memory.

Expense: it becomes increasingly difficult and expensive to design and produce shared memory machines with ever

increasing numbers of processors.

Parallel Computer Memory Architectures

Distributed Memory

 General Characteristics:

Like shared memory systems, distributed memory systems vary widely but share a common characteristic.

Distributed memory systems require a communication network to connect inter-processor memory.

Processors have their own local memory. Memory addresses in one processor do not map to another processor, so

there is no concept of global address space across all processors.

Because each processor has its own local memory, it operates independently. Changes it makes to its local memory

have no effect on the memory of other processors. Hence, the concept of cache coherency does not apply.

When a processor needs access to data in another processor, it is usually the task of the programmer to explicitly

define how and when data is communicated. Synchronization between tasks is likewise the programmer's

responsibility.

The network "fabric" used for data transfer varies widely, though it can can be as simple as Ethernet.

 Advantages:

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

12 of 44 04/18/2008 08:28 AM

Memory is scalable with number of processors. Increase the number of processors and the size of memory increases

proportionately.

Each processor can rapidly access its own memory without interference and without the overhead incurred with

trying to maintain cache coherency.

Cost effectiveness: can use commodity, off-the-shelf processors and networking.

 Disadvantages:

The programmer is responsible for many of the details associated with data communication between processors.

It may be difficult to map existing data structures, based on global memory, to this memory organization.

Non-uniform memory access (NUMA) times

Parallel Computer Memory Architectures

Hybrid Distributed-Shared Memory

Summarizing a few of the key characteristics of shared and distributed memory machines:

Comparison of Shared and Distributed Memory Architectures

Architecture CC-UMA CC-NUMA Distributed

Examples

SMPs

Sun Vexx

DEC/Compaq

SGI Challenge

IBM POWER3

SGI Origin

Sequent

HP Exemplar

DEC/Compaq

IBM POWER4 (MCM)

Cray T3E

Maspar

IBM SP2

Communications

MPI

Threads

OpenMP

shmem

MPI

Threads

OpenMP

shmem

MPI

Scalability to 10s of processors to 100s of processors to 1000s of processors

Draw Backs
Memory-CPU

bandwidth

Memory-CPU

bandwidth

Non-uniform access

times

System administration

Programming is hard to develop and

maintain

Software

Availability
many 1000s ISVs many 1000s ISVs 100s ISVs

The largest and fastest computers in the world today employ both shared and distributed memory architectures.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

13 of 44 04/18/2008 08:28 AM

The shared memory component is usually a cache coherent SMP machine. Processors on a given SMP can address

that machine's memory as global.

The distributed memory component is the networking of multiple SMPs. SMPs know only about their own memory

- not the memory on another SMP. Therefore, network communications are required to move data from one SMP to

another.

Current trends seem to indicate that this type of memory architecture will continue to prevail and increase at the

high end of computing for the foreseeable future.

Advantages and Disadvantages: whatever is common to both shared and distributed memory architectures.

Parallel Programming Models

Overview

There are several parallel programming models in common use:

Shared Memory

Threads

Message Passing

Data Parallel

Hybrid

Parallel programming models exist as an abstraction above hardware and memory architectures.

Although it might not seem apparent, these models are NOT specific to a particular type of machine or memory

architecture. In fact, any of these models can (theoretically) be implemented on any underlying hardware. Two

examples:

Shared memory model on a distributed memory machine: Kendall Square Research (KSR) ALLCACHE

approach.

Machine memory was physically distributed, but appeared to the user as a single shared memory (global

address space). Generically, this approach is referred to as "virtual shared memory". Note: although KSR is no

longer in business, there is no reason to suggest that a similar implementation will not be made available by

another vendor in the future.

1.

Message passing model on a shared memory machine: MPI on SGI Origin.

The SGI Origin employed the CC-NUMA type of shared memory architecture, where every task has direct

2.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

14 of 44 04/18/2008 08:28 AM

access to global memory. However, the ability to send and receive messages with MPI, as is commonly done

over a network of distributed memory machines, is not only implemented but is very commonly used.

Which model to use is often a combination of what is available and personal choice. There is no "best" model,

although there certainly are better implementations of some models over others.

The following sections describe each of the models mentioned above, and also discuss some of their actual

implementations.

Parallel Programming Models

Shared Memory Model

In the shared-memory programming model, tasks share a common address space, which they read and write

asynchronously.

Various mechanisms such as locks / semaphores may be used to control access to the shared memory.

An advantage of this model from the programmer's point of view is that the notion of data "ownership" is lacking, so

there is no need to specify explicitly the communication of data between tasks. Program development can often be

simplified.

An important disadvantage in terms of performance is that it becomes more difficult to understand and manage data

locality.

 Implementations:

On shared memory platforms, the native compilers translate user program variables into actual memory addresses,

which are global.

No common distributed memory platform implementations currently exist. However, as mentioned previously in the

Overview section, the KSR ALLCACHE approach provided a shared memory view of data even though the

physical memory of the machine was distributed.

Parallel Programming Models

Threads Model

In the threads model of parallel programming, a single process can have multiple, concurrent execution paths.

Perhaps the most simple analogy that can be used to describe threads is the concept of a single program that includes

a number of subroutines:

The main program a.out is scheduled to run by the

native operating system. a.out loads and acquires all

of the necessary system and user resources to run.

a.out performs some serial work, and then creates a

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

15 of 44 04/18/2008 08:28 AM

number of tasks (threads) that can be scheduled and

run by the operating system concurrently.

Each thread has local data, but also, shares the entire

resources of a.out. This saves the overhead

associated with replicating a program's resources for

each thread. Each thread also benefits from a global

memory view because it shares the memory space of

a.out.

A thread's work may best be described as a subroutine within the main program. Any thread can execute any

subroutine at the same time as other threads.

Threads communicate with each other through global memory (updating address locations). This requires

synchronization constructs to insure that more than one thread is not updating the same global address at any

time.

Threads can come and go, but a.out remains present to provide the necessary shared resources until the

application has completed.

Threads are commonly associated with shared memory architectures and operating systems.

 Implementations:

From a programming perspective, threads implementations commonly comprise:

A library of subroutines that are called from within parallel source code

A set of compiler directives imbedded in either serial or parallel source code

In both cases, the programmer is responsible for determining all parallelism.

Threaded implementations are not new in computing. Historically, hardware vendors have implemented their own

proprietary versions of threads. These implementations differed substantially from each other making it difficult for

programmers to develop portable threaded applications.

Unrelated standardization efforts have resulted in two very different implementations of threads: POSIX Threads

and OpenMP.

POSIX Threads

Library based; requires parallel coding

Specified by the IEEE POSIX 1003.1c standard (1995).

C Language only

Commonly referred to as Pthreads.

Most hardware vendors now offer Pthreads in addition to their proprietary threads implementations.

Very explicit parallelism; requires significant programmer attention to detail.

OpenMP

Compiler directive based; can use serial code

Jointly defined and endorsed by a group of major computer hardware and software vendors. The OpenMP

Fortran API was released October 28, 1997. The C/C++ API was released in late 1998.

Portable / multi-platform, including Unix and Windows NT platforms

Available in C/C++ and Fortran implementations

Can be very easy and simple to use - provides for "incremental parallelism"

Microsoft has its own implementation for threads, which is not related to the UNIX POSIX standard or OpenMP.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

16 of 44 04/18/2008 08:28 AM

Parallel Programming Models

Message Passing Model

The message passing model demonstrates the following characteristics:

A set of tasks that use their own local

memory during computation. Multiple tasks

can reside on the same physical machine as

well across an arbitrary number of machines.

Tasks exchange data through

communications by sending and receiving

messages.

Data transfer usually requires cooperative operations to be performed by each process. For example, a send

operation must have a matching receive operation.

 Implementations:

From a programming perspective, message passing implementations commonly comprise a library of subroutines

that are imbedded in source code. The programmer is responsible for determining all parallelism.

Historically, a variety of message passing libraries have been available since the 1980s. These implementations

differed substantially from each other making it difficult for programmers to develop portable applications.

In 1992, the MPI Forum was formed with the primary goal of establishing a standard interface for message passing

implementations.

Part 1 of the Message Passing Interface (MPI) was released in 1994. Part 2 (MPI-2) was released in 1996. Both

MPI specifications are available on the web at www.mcs.anl.gov/Projects/mpi/standard.html.

MPI is now the "de facto" industry standard for message passing, replacing virtually all other message passing

implementations used for production work. Most, if not all of the popular parallel computing platforms offer at least

one implementation of MPI. A few offer a full implementation of MPI-2.

For shared memory architectures, MPI implementations usually don't use a network for task communications.

Instead, they use shared memory (memory copies) for performance reasons.

Parallel Programming Models

Data Parallel Model

The data parallel model demonstrates the following characteristics:

Most of the parallel work focuses on

performing operations on a data set. The

data set is typically organized into a

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

17 of 44 04/18/2008 08:28 AM

common structure, such as an array or

cube.

A set of tasks work collectively on the

same data structure, however, each task

works on a different partition of the same

data structure.

Tasks perform the same operation on their

partition of work, for example, "add 4 to

every array element".

On shared memory architectures, all tasks may

have access to the data structure through global

memory. On distributed memory architectures

the data structure is split up and resides as

"chunks" in the local memory of each task.

 Implementations:

Programming with the data parallel model is usually accomplished by writing a program with data parallel

constructs. The constructs can be calls to a data parallel subroutine library or, compiler directives recognized by a

data parallel compiler.

Fortran 90 and 95 (F90, F95): ISO/ANSI standard extensions to Fortran 77.

Contains everything that is in Fortran 77

New source code format; additions to character set

Additions to program structure and commands

Variable additions - methods and arguments

Pointers and dynamic memory allocation added

Array processing (arrays treated as objects) added

Recursive and new intrinsic functions added

Many other new features

Implementations are available for most common parallel platforms.

High Performance Fortran (HPF): Extensions to Fortran 90 to support data parallel programming.

Contains everything in Fortran 90

Directives to tell compiler how to distribute data added

Assertions that can improve optimization of generated code added

Data parallel constructs added (now part of Fortran 95)

Implementations are available for most common parallel platforms.

Compiler Directives: Allow the programmer to specify the distribution and alignment of data. Fortran

implementations are available for most common parallel platforms.

Distributed memory implementations of this model usually have the compiler convert the program into standard

code with calls to a message passing library (MPI usually) to distribute the data to all the processes. All message

passing is done invisibly to the programmer.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

18 of 44 04/18/2008 08:28 AM

Parallel Programming Models

Other Models

Other parallel programming models besides those previously mentioned certainly exist, and will continue to evolve

along with the ever changing world of computer hardware and software. Only three of the more common ones are

mentioned here.

 Hybrid:

In this model, any two or more parallel programming models are combined.

Currently, a common example of a hybrid model is the combination of the message passing model (MPI) with either

the threads model (POSIX threads) or the shared memory model (OpenMP). This hybrid model lends itself well to

the increasingly common hardware environment of networked SMP machines.

Another common example of a hybrid model is combining data parallel with message passing. As mentioned in the

data parallel model section previously, data parallel implementations (F90, HPF) on distributed memory

architectures actually use message passing to transmit data between tasks, transparently to the programmer.

 Single Program Multiple Data (SPMD):

SPMD is actually a "high level" programming model that can be built upon any combination of the previously

mentioned parallel programming models.

A single program is executed by all tasks

simultaneously.

At any moment in time, tasks can be executing the

same or different instructions within the same

program.

SPMD programs usually have the necessary logic programmed into them to allow different tasks to branch or

conditionally execute only those parts of the program they are designed to execute. That is, tasks do not necessarily

have to execute the entire program - perhaps only a portion of it.

All tasks may use different data

 Multiple Program Multiple Data (MPMD):

Like SPMD, MPMD is actually a "high level" programming model that can be built upon any combination of the

previously mentioned parallel programming models.

MPMD applications typically have multiple

executable object files (programs). While the

application is being run in parallel, each task can be

executing the same or different program as other

tasks.

All tasks may use different data

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

19 of 44 04/18/2008 08:28 AM

Designing Parallel Programs

Automatic vs. Manual Parallelization

Designing and developing parallel programs has characteristically been a very manual process. The programmer is

typically responsible for both identifying and actually implementing parallelism.

Very often, manually developing parallel codes is a time consuming, complex, error-prone and iterative process.

For a number of years now, various tools have been available to assist the programmer with converting serial

programs into parallel programs. The most common type of tool used to automatically parallelize a serial program is

a parallelizing compiler or pre-processor.

A parallelizing compiler generally works in two different ways:

Fully Automatic

The compiler analyzes the source code and identifies opportunities for parallelism.

The analysis includes identifying inhibitors to parallelism and possibly a cost weighting on whether or

not the parallelism would actually improve performance.

Loops (do, for) loops are the most frequent target for automatic parallelization.

Programmer Directed

Using "compiler directives" or possibly compiler flags, the programmer explicitly tells the compiler

how to parallelize the code.

May be able to be used in conjunction with some degree of automatic parallelization also.

If you are beginning with an existing serial code and have time or budget constraints, then automatic parallelization

may be the answer. However, there are several important caveats that apply to automatic parallelization:

Wrong results may be produced

Performance may actually degrade

Much less flexible than manual parallelization

Limited to a subset (mostly loops) of code

May actually not parallelize code if the analysis suggests there are inhibitors or the code is too complex

Most automatic parallelization tools are for Fortran

The remainder of this section applies to the manual method of developing parallel codes.

Designing Parallel Programs

Understand the Problem and the Program

Undoubtedly, the first step in developing parallel software is to first understand the problem that you wish to solve

in parallel. If you are starting with a serial program, this necessitates understanding the existing code also.

Before spending time in an attempt to develop a parallel solution for a problem, determine whether or not the

problem is one that can actually be parallelized.

Example of Parallelizable Problem:

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

20 of 44 04/18/2008 08:28 AM

Calculate the potential energy for each of several thousand independent

conformations of a molecule. When done, find the minimum energy

conformation.

This problem is able to be solved in parallel. Each of the molecular conformations is independently

determinable. The calculation of the minimum energy conformation is also a parallelizable problem.

Example of a Non-parallelizable Problem:

Calculation of the Fibonacci series (1,1,2,3,5,8,13,21,...) by use of the formula:

 F(k + 2) = F(k + 1) + F(k)

This is a non-parallelizable problem because the calculation of the Fibonacci sequence as shown would entail

dependent calculations rather than independent ones. The calculation of the k + 2 value uses those of both k +

1 and k. These three terms cannot be calculated independently and therefore, not in parallel.

Identify the program's hotspots:

Know where most of the real work is being done. The majority of scientific and technical programs usually

accomplish most of their work in a few places.

Profilers and performance analysis tools can help here

Focus on parallelizing the hotspots and ignore those sections of the program that account for little CPU usage.

Identify bottlenecks in the program

Are there areas that are disproportionately slow, or cause parallelizable work to halt or be deferred? For

example, I/O is usually something that slows a program down.

May be possible to restructure the program or use a different algorithm to reduce or eliminate unnecessary

slow areas

Identify inhibitors to parallelism. One common class of inhibitor is data dependence, as demonstrated by the

Fibonacci sequence above.

Investigate other algorithms if possible. This may be the single most important consideration when designing a

parallel application.

Designing Parallel Programs

Partitioning

One of the first steps in designing a parallel program is to break the problem into discrete "chunks" of work that can

be distributed to multiple tasks. This is known as decomposition or partitioning.

There are two basic ways to partition computational work among parallel tasks: domain decomposition and

functional decomposition.

 Domain Decomposition:

In this type of partitioning, the data associated with a problem is decomposed. Each parallel task then works on a

portion of of the data.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

21 of 44 04/18/2008 08:28 AM

There are different ways to partition data:

 Functional Decomposition:

In this approach, the focus is on the computation that is to be performed rather than on the data manipulated by the

computation. The problem is decomposed according to the work that must be done. Each task then performs a

portion of the overall work.

Functional decomposition lends itself well to problems that can be split into different tasks. For example:

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

22 of 44 04/18/2008 08:28 AM

Ecosystem Modeling

Each program calculates the population of a given group, where each group's growth depends on that of its

neighbors. As time progresses, each process calculates its current state, then exchanges information with the

neighbor populations. All tasks then progress to calculate the state at the next time step.

Signal Processing

An audio signal data set is passed through four distinct computational filters. Each filter is a separate process.

The first segment of data must pass through the first filter before progressing to the second. When it does, the

second segment of data passes through the first filter. By the time the fourth segment of data is in the first

filter, all four tasks are busy.

Climate Modeling

Each model component can be thought of as a separate task. Arrows represent exchanges of data between

components during computation: the atmosphere model generates wind velocity data that are used by the

ocean model, the ocean model generates sea surface temperature data that are used by the atmosphere model,

and so on.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

23 of 44 04/18/2008 08:28 AM

Combining these two types of problem decomposition is common and natural.

Designing Parallel Programs

Communications

 Who Needs Communications?

The need for communications between tasks depends upon your problem:

You DON'T need communications

Some types of problems can be decomposed and executed in parallel with virtually no need for tasks to share

data. For example, imagine an image processing operation where every pixel in a black and white image

needs to have its color reversed. The image data can easily be distributed to multiple tasks that then act

independently of each other to do their portion of the work.

These types of problems are often called embarrassingly parallel because they are so straight-forward. Very

little inter-task communication is required.

You DO need communications

Most parallel applications are not quite so simple, and do require tasks to share data with each other. For

example, a 3-D heat diffusion problem requires a task to know the temperatures calculated by the tasks that

have neighboring data. Changes to neighboring data has a direct effect on that task's data.

 Factors to Consider:

There are a number of important factors to consider when designing your program's inter-task communications:

Cost of communications

Inter-task communication virtually always implies overhead.

Machine cycles and resources that could be used for computation are instead used to package and transmit

data.

Communications frequently require some type of synchronization between tasks, which can result in tasks

spending time "waiting" instead of doing work.

Competing communication traffic can saturate the available network bandwidth, further aggravating

performance problems.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

24 of 44 04/18/2008 08:28 AM

Latency vs. Bandwidth

latency is the time it takes to send a minimal (0 byte) message from point A to point B. Commonly expressed

as microseconds.

bandwidth is the amount of data that can be communicated per unit of time. Commonly expressed as

megabytes/sec.

Sending many small messages can cause latency to dominate communication overheads. Often it is more

efficient to package small messages into a larger message, thus increasing the effective communications

bandwidth.

Visibility of communications

With the Message Passing Model, communications are explicit and generally quite visible and under the

control of the programmer.

With the Data Parallel Model, communications often occur transparently to the programmer, particularly on

distributed memory architectures. The programmer may not even be able to know exactly how inter-task

communications are being accomplished.

Synchronous vs. asynchronous communications

Synchronous communications require some type of "handshaking" between tasks that are sharing data. This

can be explicitly structured in code by the programmer, or it may happen at a lower level unknown to the

programmer.

Synchronous communications are often referred to as blocking communications since other work must wait

until the communications have completed.

Asynchronous communications allow tasks to transfer data independently from one another. For example,

task 1 can prepare and send a message to task 2, and then immediately begin doing other work. When task 2

actually receives the data doesn't matter.

Asynchronous communications are often referred to as non-blocking communications since other work can

be done while the communications are taking place.

Interleaving computation with communication is the single greatest benefit for using asynchronous

communications.

Scope of communications

Knowing which tasks must communicate with each other is critical during the design stage of a parallel code.

Both of the two scopings described below can be implemented synchronously or asynchronously.

Point-to-point - involves two tasks with one task acting as the sender/producer of data, and the other acting as

the receiver/consumer.

Collective - involves data sharing between more than two tasks, which are often specified as being members

in a common group, or collective. Some common variations (there are more):

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

25 of 44 04/18/2008 08:28 AM

Efficiency of communications

Very often, the programmer will have a choice with regard to factors that can affect communications

performance. Only a few are mentioned here.

Which implementation for a given model should be used? Using the Message Passing Model as an example,

one MPI implementation may be faster on a given hardware platform than another.

What type of communication operations should be used? As mentioned previously, asynchronous

communication operations can improve overall program performance.

Network media - some platforms may offer more than one network for communications. Which one is best?

Overhead and Complexity

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

26 of 44 04/18/2008 08:28 AM

Finally, realize that this is only a partial list of things to consider!!!

Designing Parallel Programs

Synchronization

 Types of Synchronization:

Barrier

Usually implies that all tasks are involved

Each task performs its work until it reaches the barrier. It then stops, or "blocks".

When the last task reaches the barrier, all tasks are synchronized.

What happens from here varies. Often, a serial section of work must be done. In other cases, the tasks are

automatically released to continue their work.

Lock / semaphore

Can involve any number of tasks

Typically used to serialize (protect) access to global data or a section of code. Only one task at a time may use

(own) the lock / semaphore / flag.

The first task to acquire the lock "sets" it. This task can then safely (serially) access the protected data or code.

Other tasks can attempt to acquire the lock but must wait until the task that owns the lock releases it.

Can be blocking or non-blocking

Synchronous communication operations

Involves only those tasks executing a communication operation

When a task performs a communication operation, some form of coordination is required with the other

task(s) participating in the communication. For example, before a task can perform a send operation, it must

first receive an acknowledgment from the receiving task that it is OK to send.

Discussed previously in the Communications section.

Designing Parallel Programs

Data Dependencies

 Definition:

A dependence exists between program statements when the order of statement execution affects the results of the

program.

A data dependence results from multiple use of the same location(s) in storage by different tasks.

Dependencies are important to parallel programming because they are one of the primary inhibitors to parallelism.

 Examples:

Loop carried data dependence

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

27 of 44 04/18/2008 08:28 AM

DO 500 J = MYSTART,MYEND

 A(J) = A(J-1) * 2.0

500 CONTINUE

The value of A(J-1) must be computed before the value of A(J), therefore A(J) exhibits a data dependency on

A(J-1). Parallelism is inhibited.

If Task 2 has A(J) and task 1 has A(J-1), computing the correct value of A(J) necessitates:

Distributed memory architecture - task 2 must obtain the value of A(J-1) from task 1 after task 1 finishes its

computation

Shared memory architecture - task 2 must read A(J-1) after task 1 updates it

Loop independent data dependence

task 1 task 2

------ ------

X = 2 X = 4

 . .

 . .

Y = X**2 Y = X**3

As with the previous example, parallelism is inhibited. The value of Y is dependent on:

Distributed memory architecture - if or when the value of X is communicated between the tasks.

Shared memory architecture - which task last stores the value of X.

Although all data dependencies are important to identify when designing parallel programs, loop carried

dependencies are particularly important since loops are possibly the most common target of parallelization efforts.

 How to Handle Data Dependencies:

Distributed memory architectures - communicate required data at synchronization points.

Shared memory architectures -synchronize read/write operations between tasks.

Designing Parallel Programs

Load Balancing

Load balancing refers to the practice of distributing work among tasks so that all tasks are kept busy all of the time.

It can be considered a minimization of task idle time.

Load balancing is important to parallel programs for performance reasons. For example, if all tasks are subject to a

barrier synchronization point, the slowest task will determine the overall performance.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

28 of 44 04/18/2008 08:28 AM

 How to Achieve Load Balance:

Equally partition the work each task receives

For array/matrix operations where each task performs similar work, evenly distribute the data set among the

tasks.

For loop iterations where the work done in each iteration is similar, evenly distribute the iterations across the

tasks.

If a heterogeneous mix of machines with varying performance characteristics are being used, be sure to use

some type of performance analysis tool to detect any load imbalances. Adjust work accordingly.

Use dynamic work assignment

Certain classes of problems result in load imbalances even if data is evenly distributed among tasks:

Sparse arrays - some tasks will have actual data to work on while others have mostly "zeros".

Adaptive grid methods - some tasks may need to refine their mesh while others don't.

N-body simulations - where some particles may migrate to/from their original task domain to another

task's; where the particles owned by some tasks require more work than those owned by other tasks.

When the amount of work each task will perform is intentionally variable, or is unable to be predicted, it may

be helpful to use a scheduler - task pool approach. As each task finishes its work, it queues to get a new piece

of work.

It may become necessary to design an algorithm which detects and handles load imbalances as they occur

dynamically within the code.

Designing Parallel Programs

Granularity

 Computation / Communication Ratio:

In parallel computing, granularity is a qualitative measure of the ratio of computation to communication.

Periods of computation are typically separated from periods of communication by synchronization events.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

29 of 44 04/18/2008 08:28 AM

 Fine-grain Parallelism:

Relatively small amounts of computational work are done between communication

events

Low computation to communication ratio

Facilitates load balancing

Implies high communication overhead and less opportunity for performance

enhancement

If granularity is too fine it is possible that the overhead required for communications and

synchronization between tasks takes longer than the computation.

 Coarse-grain Parallelism:

Relatively large amounts of computational work are done between

communication/synchronization events

High computation to communication ratio

Implies more opportunity for performance increase

Harder to load balance efficiently

 Which is Best?

The most efficient granularity is dependent on the algorithm and the hardware

environment in which it runs.

In most cases the overhead associated with communications and synchronization is high

relative to execution speed so it is advantageous to have coarse granularity.

Fine-grain parallelism can help reduce overheads due to load imbalance.

Designing Parallel Programs

I/O

 The Bad News:

I/O operations are generally regarded as inhibitors to parallelism

Parallel I/O systems are immature or not available for all platforms

In an environment where all tasks see the same filespace, write operations will result in file overwriting

Read operations will be affected by the fileserver's ability to handle multiple read requests at the same time

I/O that must be conducted over the network (NFS, non-local) can cause severe bottlenecks

 The Good News:

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

30 of 44 04/18/2008 08:28 AM

Some parallel file systems are available. For example:

GPFS: General Parallel File System for AIX (IBM)

Lustre: for Linux clusters (Cluster File Systems, Inc.)

PVFS/PVFS2: Parallel Virtual File System for Linux clusters (Clemson/Argonne/Ohio State/others)

PanFS: Panasas ActiveScale File System for Linux clusters (Panasas, Inc.)

HP SFS: HP StorageWorks Scalable File Share. Lustre based parallel file system (Global File System for

Linux) product from HP

The parallel I/O programming interface specification for MPI has been available since 1996 as part of MPI-2.

Vendor and "free" implementations are now commonly available.

Some options:

If you have access to a parallel file system, investigate using it. If you don't, keep reading...

Rule #1: Reduce overall I/O as much as possible

Confine I/O to specific serial portions of the job, and then use parallel communications to distribute data to

parallel tasks. For example, Task 1 could read an input file and then communicate required data to other tasks.

Likewise, Task 1 could perform write operation after receiving required data from all other tasks.

For distributed memory systems with shared filespace, perform I/O in local, non-shared filespace. For

example, each processor may have /tmp filespace which can used. This is usually much more efficient than

performing I/O over the network to one's home directory.

Create unique filenames for each tasks' input/output file(s)

Designing Parallel Programs

Limits and Costs of Parallel Programming

 Amdahl's Law:

Amdahl's Law states that potential program speedup is defined by the fraction of code (P) that can be parallelized:

 1

 speedup = --------

 1 - P

If none of the code can be parallelized, P = 0 and the speedup = 1 (no speedup). If all of the code is parallelized, P =

1 and the speedup is infinite (in theory).

If 50% of the code can be parallelized, maximum speedup = 2, meaning the code will run twice as fast.

Introducing the number of processors performing the parallel fraction of work, the relationship can be modeled by:

 1

 speedup = ------------

 P + S

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

31 of 44 04/18/2008 08:28 AM

 N

where P = parallel fraction, N = number of processors and S = serial fraction.

It soon becomes obvious that there are limits to the scalability of parallelism. For example, at P = .50, .90 and .99

(50%, 90% and 99% of the code is parallelizable):

 speedup

 N P = .50 P = .90 P = .99

 ----- ------- ------- -------

 10 1.82 5.26 9.17

 100 1.98 9.17 50.25

 1000 1.99 9.91 90.99

 10000 1.99 9.91 99.02

However, certain problems demonstrate increased performance by increasing the problem size. For example:

 2D Grid Calculations 85 seconds 85%

 Serial fraction 15 seconds 15%

We can increase the problem size by doubling the grid dimensions and halving the time step. This results in four

times the number of grid points and twice the number of time steps. The timings then look like:

 2D Grid Calculations 680 seconds 97.84%

 Serial fraction 15 seconds 2.16%

Problems that increase the percentage of parallel time with their size are more scalable than problems with a fixed

percentage of parallel time.

 Complexity:

In general, parallel applications are much more complex than corresponding serial applications, perhaps an order of

magnitude. Not only do you have multiple instruction streams executing at the same time, but you also have data

flowing between them.

The costs of complexity are measured in programmer time in virtually every aspect of the software development

cycle:

Design

Coding

Debugging

Tuning

Maintenance

Adhering to "good" software development practices is essential when when working with parallel applications -

especially if somebody besides you will have to work with the software.

 Portability:

Thanks to standardization in several APIs, such as MPI, POSIX threads, HPF and OpenMP, portability issues with

parallel programs are not as serious as in years past. However...

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

32 of 44 04/18/2008 08:28 AM

All of the usual portability issues associated with serial programs apply to parallel programs. For example, if you

use vendor "enhancements" to Fortran, C or C++, portability will be a problem.

Even though standards exist for several APIs, implementations will differ in a number of details, sometimes to the

point of requiring code modifications in order to effect portability.

Operating systems can play a key role in code portability issues.

Hardware architectures are characteristically highly variable and can affect portability.

 Resource Requirements:

The primary intent of parallel programming is to decrease execution wall clock time, however in order to

accomplish this, more CPU time is required. For example, a parallel code that runs in 1 hour on 8 processors

actually uses 8 hours of CPU time.

The amount of memory required can be greater for parallel codes than serial codes, due to the need to replicate data

and for overheads associated with parallel support libraries and subsystems.

For short running parallel programs, there can actually be a decrease in performance compared to a similar serial

implementation. The overhead costs associated with setting up the parallel environment, task creation,

communications and task termination can comprise a significant portion of the total execution time for short runs.

 Scalability:

The ability of a parallel program's performance to scale is a result of a number of interrelated factors. Simply adding

more machines is rarely the answer.

The algorithm may have inherent limits to scalability. At some point, adding more resources causes performance to

decrease. Most parallel solutions demonstrate this characteristic at some point.

Hardware factors play a significant role in scalability. Examples:

Memory-cpu bus bandwidth on an SMP machine

Communications network bandwidth

Amount of memory available on any given machine or set of machines

Processor clock speed

Parallel support libraries and subsystems software can limit scalability independent of your application.

Designing Parallel Programs

Performance Analysis and Tuning

As with debugging, monitoring and analyzing parallel program execution is significantly more of a challenge than

for serial programs.

A number of parallel tools for execution monitoring and program analysis are available.

Some are quite useful; some are cross-platform also.

One starting point: Performance Analysis Tools Tutorial

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

33 of 44 04/18/2008 08:28 AM

Work remains to be done, particularly in the area of scalability.

Parallel Examples

Array Processing

This example demonstrates calculations on 2-dimensional array

elements, with the computation on each array element being

independent from other array elements.

The serial program calculates one element at a time in

sequential order.

Serial code could be of the form:

do j = 1,n

do i = 1,n

 a(i,j) = fcn(i,j)

end do

end do

The calculation of elements is independent of one another -

leads to an embarrassingly parallel situation.

The problem should be computationally intensive.

Array Processing

Parallel Solution 1

Arrays elements are distributed so that each processor owns a

portion of an array (subarray).

Independent calculation of array elements insures there is no

need for communication between tasks.

Distribution scheme is chosen by other criteria, e.g. unit stride

(stride of 1) through the subarrays. Unit stride maximizes

cache/memory usage.

Since it is desirable to have unit stride through the subarrays,

the choice of a distribution scheme depends on the

programming language. See the Block - Cyclic Distributions

Diagram for the options.

After the array is distributed, each task executes the portion of

the loop corresponding to the data it owns. For example, with

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

34 of 44 04/18/2008 08:28 AM

Fortran block distribution:

do j = mystart, myend

do i = 1,n

 a(i,j) = fcn(i,j)

end do

end do

Notice that only the outer loop variables are different from the

serial solution.

 One Possible Solution:

Implement as SPMD model.

Master process initializes array, sends info to worker processes and receives results.

Worker process receives info, performs its share of computation and sends results to master.

Using the Fortran storage scheme, perform block distribution of the array.

Pseudo code solution: red highlights changes for parallelism.

find out if I am MASTER or WORKER

if I am MASTER

 initialize the array

 send each WORKER info on part of array it owns

 send each WORKER its portion of initial array

 receive from each WORKER results

else if I am WORKER

 receive from MASTER info on part of array I own

 receive from MASTER my portion of initial array

 # calculate my portion of array

 do j = my first column,my last column

 do i = 1,n

 a(i,j) = fcn(i,j)

 end do

 end do

 send MASTER results

endif

Array Processing

Parallel Solution 2: Pool of Tasks

The previous array solution demonstrated static load balancing:

Each task has a fixed amount of work to do

May be significant idle time for faster or more lightly loaded processors - slowest tasks determines overall

performance.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

35 of 44 04/18/2008 08:28 AM

Static load balancing is not usually a major concern if all tasks are performing the same amount of work on identical

machines.

If you have a load balance problem (some tasks work faster than others), you may benefit by using a "pool of tasks"

scheme.

 Pool of Tasks Scheme:

Two processes are employed

Master Process:

Holds pool of tasks for worker processes to do

Sends worker a task when requested

Collects results from workers

Worker Process: repeatedly does the following

Gets task from master process

Performs computation

Sends results to master

Worker processes do not know before runtime which portion of array they will handle or how many tasks they will

perform.

Dynamic load balancing occurs at run time: the faster tasks will get more work to do.

Pseudo code solution: red highlights changes for parallelism.

find out if I am MASTER or WORKER

if I am MASTER

 do until no more jobs

 send to WORKER next job

 receive results from WORKER

 end do

 tell WORKER no more jobs

else if I am WORKER

 do until no more jobs

 receive from MASTER next job

 calculate array element: a(i,j) = fcn(i,j)

 send results to MASTER

 end do

endif

 Discussion:

In the above pool of tasks example, each task calculated an individual array element as a job. The computation to

communication ratio is finely granular.

Finely granular solutions incur more communication overhead in order to reduce task idle time.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

36 of 44 04/18/2008 08:28 AM

A more optimal solution might be to distribute more work with each job. The "right" amount of work is problem

dependent.

Parallel Examples

PI Calculation

The value of PI can be calculated in a number of ways.

Consider the following method of approximating PI

Inscribe a circle in a square1.

Randomly generate points in the square2.

Determine the number of points in the square

that are also in the circle

3.

Let r be the number of points in the circle

divided by the number of points in the square

4.

PI ~ 4 r5.

Note that the more points generated, the better

the approximation

6.

Serial pseudo code for this procedure:

npoints = 10000

circle_count = 0

do j = 1,npoints

 generate 2 random numbers between 0 and 1

 xcoordinate = random1 ; ycoordinate = random2

 if (xcoordinate, ycoordinate) inside circle

 then circle_count = circle_count + 1

end do

PI = 4.0*circle_count/npoints

Note that most of the time in running this program

would be spent executing the loop

Leads to an embarrassingly parallel solution

Computationally intensive

Minimal communication

Minimal I/O

PI Calculation

Parallel Solution

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

37 of 44 04/18/2008 08:28 AM

Parallel strategy: break the loop into portions that can be

executed by the tasks.

For the task of approximating PI:

Each task executes its portion of the loop a

number of times.

Each task can do its work without requiring any

information from the other tasks (there are no data

dependencies).

Uses the SPMD model. One task acts as master

and collects the results.

Pseudo code solution: red highlights changes for

parallelism.

npoints = 10000

circle_count = 0

p = number of tasks

num = npoints/p

find out if I am MASTER or WORKER

do j = 1,num

 generate 2 random numbers between 0 and 1

 xcoordinate = random1 ; ycoordinate = random2

 if (xcoordinate, ycoordinate) inside circle

 then circle_count = circle_count + 1

end do

if I am MASTER

 receive from WORKERS their circle_counts

 compute PI (use MASTER and WORKER calculations)

else if I am WORKER

 send to MASTER circle_count

endif

Parallel Examples

Simple Heat Equation

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

38 of 44 04/18/2008 08:28 AM

Most problems in parallel computing require communication

among the tasks. A number of common problems require

communication with "neighbor" tasks.

The heat equation describes the temperature change over time,

given initial temperature distribution and boundary conditions.

A finite differencing scheme is employed to solve the heat

equation numerically on a square region.

The initial temperature is zero on the boundaries and high in

the middle.

The boundary temperature is held at zero.

For the fully explicit problem, a time stepping algorithm is

used. The elements of a 2-dimensional array represent the

temperature at points on the square.

The calculation of an element is dependent upon neighbor

element values.

A serial program would contain code like:

do iy = 2, ny - 1

do ix = 2, nx - 1

 u2(ix, iy) =

 u1(ix, iy) +

 cx * (u1(ix+1,iy) + u1(ix-1,iy) - 2.*u1(ix,iy)) +

 cy * (u1(ix,iy+1) + u1(ix,iy-1) - 2.*u1(ix,iy))

end do

end do

Simple Heat Equation

Parallel Solution 1

Implement as an SPMD model

The entire array is partitioned and distributed as subarrays to

all tasks. Each task owns a portion of the total array.

Determine data dependencies

interior elements belonging to a task are independent of

other tasks

border elements are dependent upon a neighbor task's

data, necessitating communication.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

39 of 44 04/18/2008 08:28 AM

Master process sends initial info to workers, checks for

convergence and collects results

Worker process calculates solution, communicating as

necessary with neighbor processes

Pseudo code solution: red highlights changes for parallelism.

find out if I am MASTER or WORKER

if I am MASTER

 initialize array

 send each WORKER starting info and subarray

 do until all WORKERS converge

 gather from all WORKERS convergence data

 broadcast to all WORKERS convergence signal

 end do

 receive results from each WORKER

else if I am WORKER

 receive from MASTER starting info and subarray

 do until solution converged

 update time

 send neighbors my border info

 receive from neighbors their border info

 update my portion of solution array

 determine if my solution has converged

 send MASTER convergence data

 receive from MASTER convergence signal

 end do

 send MASTER results

endif

Simple Heat Equation

Parallel Solution 2: Overlapping Communication and Computation

In the previous solution, it was assumed that blocking communications were used by the worker tasks. Blocking

communications wait for the communication process to complete before continuing to the next program instruction.

In the previous solution, neighbor tasks communicated border data, then each process updated its portion of the

array.

Computing times can often be reduced by using non-blocking communication. Non-blocking communications allow

work to be performed while communication is in progress.

Each task could update the interior of its part of the solution array while the communication of border data is

occurring, and update its border after communication has completed.

Pseudo code for the second solution: red highlights changes for non-blocking communications.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

40 of 44 04/18/2008 08:28 AM

find out if I am MASTER or WORKER

if I am MASTER

 initialize array

 send each WORKER starting info and subarray

 do until all WORKERS converge

 gather from all WORKERS convergence data

 broadcast to all WORKERS convergence signal

 end do

 receive results from each WORKER

else if I am WORKER

 receive from MASTER starting info and subarray

 do until solution converged

 update time

 non-blocking send neighbors my border info

 non-blocking receive neighbors border info

 update interior of my portion of solution array

 wait for non-blocking communication complete

 update border of my portion of solution array

 determine if my solution has converged

 send MASTER convergence data

 receive from MASTER convergence signal

 end do

 send MASTER results

endif

Parallel Examples

1-D Wave Equation

In this example, the amplitude along a uniform, vibrating string is calculated after a specified amount of time has

elapsed.

The calculation involves:

the amplitude on the y axis

i as the position index along the x axis

node points imposed along the string

update of the amplitude at discrete time steps.

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

41 of 44 04/18/2008 08:28 AM

The equation to be solved is the one-dimensional wave equation:

A(i,t+1) = (2.0 * A(i,t)) - A(i,t-1) + (c * (A(i-1,t) - (2.0 * A(i,t)) + A(i+1,t)))

where c is a constant

Note that amplitude will depend on previous timesteps (t, t-1) and neighboring points (i-1, i+1). Data dependence

will mean that a parallel solution will involve communications.

1-D Wave Equation

Parallel Solution

Implement as an SPMD model

The entire amplitude array is partitioned and distributed as subarrays to all tasks. Each task owns a portion of the

total array.

Load balancing: all points require equal work, so the points should be divided equally

A block decomposition would have the work partitioned into the number of tasks as chunks, allowing each task to

own mostly contiguous data points.

Communication need only occur on data borders. The larger the block size the less the communication.

Pseudo code solution:

find out number of tasks and task identities

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

42 of 44 04/18/2008 08:28 AM

#Identify left and right neighbors

left_neighbor = mytaskid - 1

right_neighbor = mytaskid +1

if mytaskid = first then left_neigbor = last

if mytaskid = last then right_neighbor = first

find out if I am MASTER or WORKER

if I am MASTER

 initialize array

 send each WORKER starting info and subarray

else if I am WORKER

 receive starting info and subarray from MASTER

endif

#Update values for each point along string

#In this example the master participates in calculations

do t = 1, nsteps

 send left endpoint to left neighbor

 receive left endpoint from right neighbor

 send right endpoint to right neighbor

 receive right endpoint from left neighbor

#Update points along line

 do i = 1, npoints

 newval(i) = (2.0 * values(i)) - oldval(i)

 + (sqtau * (values(i-1) - (2.0 * values(i)) + values(i+1)))

 end do

end do

#Collect results and write to file

if I am MASTER

 receive results from each WORKER

 write results to file

else if I am WORKER

 send results to MASTER

endif

This completes the tutorial.

Please complete the online evaluation form.

Where would you like to go now?

Agenda

Back to the top

References and More Information

Author: Blaise Barney, Livermore Computing.

A search on the WWW for "parallel programming" will yield a wide variety of information.

These materials were primarily developed from the following sources, some of which are no longer maintained or

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

43 of 44 04/18/2008 08:28 AM

available.

Tutorials located in the Maui High Performance Computing Center's "SP Parallel Programming Workshop".

Tutorials located at the Cornell Theory Center's "Education and Training" web page.

"Designing and Building Parallel Programs". Ian Foster.

https://computing.llnl.gov/tutorials/parallel_comp/

Last Modified: 09/13/2007 16:32:42 blaiseb@llnl.gov

UCRL-MI-133316

Introduction to Parallel Computing https://computing.llnl.gov/tutorials/parallel_comp/

44 of 44 04/18/2008 08:28 AM

