Exam Notes

- Multiple Choice
- No Calculators → Quick estimate
- Use estimates to eliminate wrong answers
- Use part of an answer to narrow the field (i.e. direction of a vector, sign of a charge, ...)

- Kinematics: use energy rather than forces

* These notes will be posted on my web site
 www.phy.olemiss.edu/~jgladdenu/
Topics

- Math Review
- Kinematics - Projectile Motion
- Newton's Laws
- Vectors
- Rotational Motion
- Friction
- Gravity
- Energy & Work
- Momentum
- Properties of Fluids & Solids
- Electrodynamics
- Circuits
- Magnetism
- Waves
- Simple Harmonic Motion
- Light and Optics
Math Review

- Trig Functions

Sine, Cosine, Tangent

SoH CAH TOA

\[
\sin \theta = \frac{O}{H} \\
\cos \theta = \frac{A}{H} \\
\tan \theta = \frac{O}{A}
\]

\(\Theta \) in degrees

0 - 360°

in radians

0 - 2\pi

360° = 2\pi radians

Pythagorean Theorem

\[H^2 = A^2 + O^2 \]
Radians

\[S = \theta \cdot r \]

if \(\theta \) is in radians

\[C = 2\pi r \quad (\theta = 2\pi) \]

Graphs

\[y = mx + b \]

\[m = \text{slope} \]

\[= \frac{\text{rise}}{\text{run}} \]

\[= \frac{\Delta y}{\Delta x} \]

at \(x_1 \):

\[m = \frac{\Delta y}{\Delta x} \]

of tangent line
Scalars: Magnitude Only (Number + Unit)

Vectors: Magnitude and Direction

Scalar
Mass
Time
Current
Energy/Work

Vector
Acceleration
Force
Electric Field

Distance
Speed

Vector Addition

\[\vec{V} = \vec{V}_1 + \vec{V}_2 \]
Adding Vectors

Components

\[\vec{F} = \vec{F}_x + \vec{F}_y \]

\[\sin \theta = \frac{|F_y|}{|F|} \]

\[F_y = F \sin \theta \]

\[\cos \theta = \frac{F_x}{F} \]

\[F_x = F \cos \theta \]

Kinematics

Displacement
- Vector
- Units: Meters

Velocity: Time rate of change of Displacement

\[\vec{v} = \frac{\Delta \vec{x}}{\Delta t} \]
Units: \[\frac{m}{sec} \]

Direction is same as \[\Delta \vec{x} \]
Acceleration: time rate of change of velocity
\[\vec{a} = \frac{\Delta \vec{v}}{\Delta t} \]

Units: \(\left[\frac{m}{s^2} \right] \)

\(\Delta \vec{v} \) can be a change in magnitude or direction.

Equations of Motion

For \(\vec{a} = \) constant:

1. \(v_f = v_o + a \, t \) \(\rightarrow \) line

2. \(v_f^2 = v_o^2 + 2a(x-x_o) \)

3. \(\vec{v} = \frac{v_o + v_f}{2} \)

4. \(x(t) = x_o + v_o \, t + \frac{1}{2} \, a \, t^2 \)

Para bola
Projectile Motion

\[a = g = -9.8 \, \text{m/s}^2 \approx 10 \, \text{m/s}^2 \]

Acceleration due to gravity

\[y(t) = y_0 + v_0 t + \frac{1}{2} g t^2 \]

\[v = \frac{\Delta y}{\Delta t} \]

\[v = v_0 + g t \]
What is h?

$a = -9.8 \text{ m/s}^2$

$v_0 = 10 \text{ m/s}$

$v = -10 \text{ m/s}$

\[
y(t) = y_0 + v_0 t + \frac{1}{2} g t^2
\]

\[
v^2 = v_0^2 + 2 g \left(y - y_0 \right)
\]

\[
o = 100 \frac{m^2}{s^2} + 2 \left(-10 \frac{m}{s^2} \right) (h)
\]

\[
h = \frac{100 \frac{m^2}{s^2}}{20 \frac{m^2}{s^2}} = 5 \text{ m}
\]
Z-D Projectile Motion

$\vec{v}_0 = \vec{v}_0 \sin \theta$
$\vec{v}_0 = \vec{v}_0 \cos \theta$

Treat vertical and horizontal components separately.

in vertical: $a_y = g$

in horizontal: $a_x = 0$

Vertical

$\vec{v}_y(t) = \vec{v}_{0y} + gt$

$\vec{v}_y^2 = \vec{v}_{0y}^2 + 2g(y - y_0)$

$y(t) = y_0 + v_{0y}t + \frac{1}{2}gt^2$

Horizontal

1. $\vec{v}_x(t) = \vec{v}_{0x} + ax \to 0$
2. $x(t) = x_0 + v_{0x}t + \frac{1}{2}at^2 \to 0$
Newton's Laws of Mechanics

1. Law of Inertia

Inertia: resistance to a change in the motion of a mass [unit: kg]

Force is required to change velocity.

2. Net force acting on a body is proportional to the acceleration produced

\[\Sigma \vec{F} = M \vec{a} \]

\[\Sigma \vec{F} = \vec{F}_s + \vec{F}_g \]

Net = 0

Unit of Force: kg \(\cdot \) \(\frac{m}{s^2} \) = 1 Newton

\[= 1 \text{ N} \]
3) Action / Reaction

- For every force acting on an object, there is an equal and opposite force acting on a different object.

- Forces come in Pairs

\[mg \uparrow \quad F_e \]

+ Newton's 3rd Law: Pair forces can never cancel each other!
Uniform Circular Motion

- Radius is constant
- Speed constant
- $|\mathbf{v}|$ is constant, but direction is changing

Centripetal Acceleration
\[
\mathbf{a}_c = \frac{\mathbf{v}^2}{\mathbf{r}}
\]
\[
F_c = M \mathbf{a}_c = M \frac{\mathbf{v}^2}{\mathbf{r}}
\]

\[
\mathbf{v} = \frac{2\pi \mathbf{r}}{T_{oz}} \quad \text{"period"}
\]

\[
S = \Theta \mathbf{r}
\]

\[
\mathbf{v} = \omega \mathbf{r}, \quad \omega = \frac{\Delta \Theta}{\Delta t}
\]

\[
\mathbf{a}_T = \alpha \mathbf{r}, \quad \alpha = \frac{\Delta \omega}{\Delta t}
\]

\[\rightarrow \text{tangential acceleration} = 0 \quad \text{for uniform circular motion}\]
Equilibrium

Conditions:

1. \[\sum F = 0 \implies \ddot{a} = 0 \]
2. \[\sum \vec{F} = 0 \]

\[\implies \text{torque - rotational counterpart to force} \]

Torque

\[\tau = F \cdot \sin \theta \]

Newton's 2nd:

\[\sum \vec{F} = m \ddot{x} \]
\[\sum \vec{F} = I \ddot{\theta} \]

"Moment of inertia" depends on the mass and distribution of mass
Friction

\[F_f = \mu_s \vec{F}_N \] \hspace{1cm} \text{normal force}

\[F_f = \mu_k \vec{F}_N \]

\[\mu_s = \text{Static} \]
\[\mu_k = \text{Kinetic} \]

\[\mu_s > \mu_k \]

\[\sum \vec{F}_x = m \ddot{a}_x \]
\[\sum \vec{F}_y = m \ddot{a}_y \]

\[F_g = mg \]
\[F_{gx} = mg \sin \theta \]
\[F_{gy} = mg \cos \theta \]

\[\sum \vec{F}_x = -\mu_k \vec{F}_N + mg \sin \theta = M \dot{a}_x \]
\[\sum \vec{F}_y = \vec{F}_N - mg \cos \theta = 0 \]
Gravity

- Universal Gravity

\[F_g = G \frac{M_1 M_2}{r^2} \]

\[\Rightarrow \text{Universal gravitational Constant} \]

\[F_g = G \frac{M_{\text{Earth}} M_E}{R_E^2} = \frac{M_{\text{Earth}} g}{R_E} \]

\[g = G \frac{M_E}{R_E^2} \]
Fundamental Forces
"action at a distance"

1. Gravity
2. Electro magnetic
3. Weak Nuclear Force
4. Strong Nuclear Force

Energy + Work

Scalars

\[
W = F \cdot d \cdot \cos \theta
\]

Centripetal Force does no work!
\[
\theta = 90^\circ \Rightarrow \cos \theta = 0
\]
Work - Energy Theory

\[Work = \Delta E \]

Kinetic Energy = \(\frac{1}{2} mv^2 \)

Potential Energy
- gravitational
 \[PE_g = mg \ell \]
- elastic
 \[PE_e = \frac{1}{2} k (\Delta x)^2 \]

- Friction
 - no PE
 - non-conservative force
Conservation of Energy

\[\Sigma E_{\text{before}} = \Sigma E_{\text{after}} \]

\[\left(KE + PE \right)_{\text{before}} + W_{\text{NC}} = \left(KE + PE \right)_{\text{after}} \]

\[W_{\text{NC}}: \text{Work done by non conservative forces (friction)} \]

\[u_0 = 0 \]

\[\text{Frictionless} \]

\[\Sigma E_{\text{before}} = \left[KE + PE \right] = Mgh \]

\[\Sigma E_{\text{after}} = \left[KE + PE^{\theta} \right] = \frac{1}{2} m u^2 \]

\[Mgh = \frac{1}{2} m u^2 \Rightarrow u = \sqrt{2gh} \]
Work by conservative force does not depend on path.

Power

- time rate at which work is done

\[P = \frac{\text{Work}}{\text{time}} \]

\[\left[\frac{N \cdot m}{s} = \frac{J}{s} = 1 \text{ Watt} \right] \]
Momentum
\[\vec{P} = m \vec{V} \]

Conservation of Momentum
\[\Sigma \vec{P}_{\text{before}} = \Sigma \vec{P}_{\text{after}} \]

A \hspace{1cm} B

After
\[\begin{align*}
\Sigma P_{\text{after}} &= m_A \vec{V}_A' + m_B \vec{V}_B' \\
0 &= m_A \vec{V}_A' + m_B \vec{V}_B' \\
m_A \vec{V}_A' &= -m_B \vec{V}_B'
\end{align*} \]
Collisions

1. Elastic - KE is conserved

\[\frac{1}{2} m_A v_A^2 + \frac{1}{2} m_B v_B^2 = \frac{1}{2} m_A v_A'^2 + \frac{1}{2} m_B v_B'^2 \]

2. Inelastic Collision

Objects Stick together

\[v_A' = v_B' \]
Properties of Fluids and Solids

Fluid: anything that will flow (liquid, gas)
Solid: rigid (hold its shape)

Mass density: \(\rho = \frac{\text{Mass}}{\text{Volume}} \)

Specific gravity: \(\frac{\rho}{\rho_{\text{water}}} \)

\(\rho_{\text{water}} = 1 \ \frac{\text{gram}}{\text{cm}^3} = 1000 \ \frac{\text{kg}}{\text{m}^3} \)

Stress = \(\frac{\text{Force}}{\text{area}} \) [Units: \(\frac{N}{m^2} = \text{Pascal} \)]

\[\text{Strain} = \frac{\Delta L}{L_0} \]

Young's modulus \(\frac{F}{A} = \frac{E}{L_0} \frac{\Delta L}{L_0} \)
Fluids

Pressure: Force per unit area

\[P = \rho g h + P_{atm} \]

Atmospheric Pressure

Buoyancy

\[F_b = S_f Vg \]

Volume of fluid displaced

Will it float?

\[F_g \leq F_b \]
Fluid Flow

Laminar flow - no turbulence

1. Equ. of Continuity

\[S_1 A_1 u_1 = S_2 A_2 u_2 \]

If \(S_1 = S_2 \)

\[A_1 u_1 = A_2 u_2 \Rightarrow \frac{A_1}{A_2} = \frac{u_2}{u_1} \]
Bernoulli Equ

\[p_1 + \frac{1}{2} \rho v_i^2 + \rho g y_1 = p_2 + \frac{1}{2} \rho v_2^2 + \rho g y_2 \]
Electric Statics

- 2 types of electric charge

 (+) - Source is Protons

 (-) - Source is electrons

- Charge is quantized

 \[q_e = -1.6 \times 10^{-19} \text{ C} \]

 \[q_p = +1.6 \times 10^{-19} \text{ C} \]

- Charge is conserved

- If equal # of (+) and (-)

 \[\rightarrow \text{ electrically neutral} \]

\[+ - + - \\
- + - + \]
Charge Transfer

① Contact - Direct transfer of charge (Conduction)

② Induction
- Like charges repel, opposite charges attract
- Conductor: Charge flows very easily
- Insulators: All e's are strongly bound to atoms
- Conducting Sphere

- $-Q$ $+Q$
Coulomb's Law

\[F = \frac{k q_1 q_2}{r^2} = \frac{1}{4\pi \varepsilon_0} \frac{q_1 q_2}{r^2} \]

\[k = \frac{1}{4\pi \varepsilon_0} \]

\[\text{Coulomb's Constant} \]

\[k = 9 \times 10^9 \text{ N m}^2/\text{C}^2 \]

\[\varepsilon_0 \]

\[\text{permittivity of free space (vacuum)} \]

Electric Field

\[\vec{E} = \frac{\vec{F}}{q} \]

For a point charge

\[E = k \frac{Q}{r^2} \]
\[\vec{E}_{\text{net}} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \ldots \]
Field Lines

1. Never cross

2. More dense regions of higher density of lines are strong
For Parallel Plates
\[C = k \varepsilon_0 \frac{A}{d} \]

For dielectric constant \(\varepsilon \) of air
\[= 1 \]
Circuits

- Closed conductive path through which charge can flow

\[E = \frac{\Delta Q}{\Delta t} \]

\[I = \frac{C}{\text{sec}} = 1 \text{ ampere} \]

Series

\[R_{\text{tot}} = R_1 + R_2 + R_3 \]
Ohm's Law

\[E = I R_{\text{tot}} \]

or

\[V = I R \]

Parallel Circuit

\[I = I_1 + I_2 + I_3 \]

\[\frac{1}{R_{\text{tot}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \]
Electric Power

\[P = I \ V, \text{ if } V = IR \]
\[P = I^2 R \]
\[= \frac{V^2}{R} \]

Magnetism

All magnetic fields come from moving charges.

\[B = \frac{\mu_0 I}{2\pi r} \]

\[\text{(B)} \]
Charge moving in a magnetic field

\[F = q v B \sin \theta \]
Waves

\[y(x) = A \sin \left(\frac{2\pi}{\lambda} x \right) \]

\[y(t) = A \sin \left(\frac{2\pi}{T} t \right) \]

\(T \): "period"

\[y(x, t) = A \sin \left(\frac{2\pi}{T} t + 2\pi \frac{x}{\lambda} \right) \]

Frequency: \(f = \frac{1}{T} \quad [\text{sec}^{-1} = \text{Hertz}] \)

Speed: \(v = f \lambda \)
1) Transverse Wave
 - Displacement is \(\perp \) to wave velocity
 - Light
 - Ocean waves
 - Waves on a string

2) Longitudinal Waves
 - Displacement is \(\parallel \) to wave velocity
 - Sound

Sound

Faster in a dense medium
The faster in a stiff medium

Amplitude / Volume

Intensity of Sound

\[\beta = 10 \log_{10} \left(\frac{I}{I_0} \right) \text{ decibels} \]
$I_o = \text{threshold intensity for hearing} \quad 10^{-12} \text{ W/m}^2$

Pitch : Frequency

20 Hz - 20,000 Hz : human hearing

Infrasound

Ultrasound
Simple Harmonic Motion

- Need a force F to the displacement

Hooke's Law

\[F = -k \Delta x \]

\[\frac{\ell}{2 \mu} \]

\[\frac{\ell}{m} \]

\[F = ma \]

\[x(t) = A \sin(\omega t) \]

\[\frac{2\pi f}{T} = \frac{2\pi}{1} \]

Energy: \[PE = \frac{1}{2} k \Delta x^2 \]

Mass-Spring: \[T = 2\pi \sqrt{\frac{m}{k}} \]

Pendulum: \[T = 2\pi \sqrt{\frac{L}{g}} \]
Light + Optics

Light is an electromagnetic field wave.

Visible:

\[\lambda = 390 \text{ nm} \quad \text{to} \quad 700 \text{ nm} \]

\(\lambda \) = long \(\lambda \) \quad \rightarrow \quad \text{Short } \lambda \\

ROYGBIV

Speed of light

\[C = 3 \times 10^8 \frac{m}{s} \quad \text{in a vacuum} \]

\[C = \frac{\lambda}{\nu} \]

Index of Refraction

\[\nu = \frac{C}{\nu} \]

\(\nu_{\text{air}} \approx 1.0003 \)

\(\nu_{\text{glass}} \approx 1.5 \)

\(\nu_{\text{water}} \approx 1.3 \)
Law of Reflection

$$\theta_i = \theta_r$$

Law of Refraction

Medium 1

Medium 2 (water)

Fast to slow: bends toward the normal, $$\theta_r < \theta_i$$

Slow to fast: bends away from normal, $$\theta_r > \theta_i$$
Snell's Law

\[n_1 \sin \theta_i = n_2 \sin \theta_r \]

Slow to Fast

Total internal Reflection

When \(\theta_r = 90^\circ \)

then \(\theta_c = \) Critical angle (\(\theta_c \))

\[\theta_c = \sin^{-1} \left(\frac{n_2}{n_1} \right) \]

Mirrors

\[f = \frac{R}{2} \]

Concave

Convex
\[\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \]
Lens Makers' Equ.

\[\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} \]

\[M = \frac{h_i}{h_o} = -\frac{d_i}{d_o} \]