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Elastic oscillations of cylindrical fuses
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A fast current pulse causes a material to heat and undergo rapid expansion. We calculate the
response of a cylindrically shaped material to a pulse on the microsecond time scale. The first step
is to obtain the breathing modes of elastic oscillation of the cylinder. These modes are calculated
using a Rayleigh–Ritz variational method introduced by Demarest for cubes. The boundary
conditions are derived, which give the amplitude of each elastic mode in response to the sudden
heating. The results are illustrated by calculations on a station arrester made of a ZnO ceramic.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1402148#
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I. INTRODUCTION

Zinc oxide varistors are a type of fuse used to cla
surges in line voltages. A voltage surge in the input line
absorbed in the varistor, causing it to heat rapidly for la
surges. A very large surge causes it to break or fail by pu
ture or fracture.1 All varistors are cylindrical in shape. De
pending upon their use, some are long cylinders while oth
are short. Recently we have modeled the failures of varis
from the diffusion of heat originating from a curren
filament.1,2 The filament is caused by inhomogeneities in t
material. Another model for failure was considered by Vo
and Clarke,3 who assumed the heating was uniform, and
response was due to the excitation of an elastic wave. T
were only able to solve the two limiting cases of very lo
and thin varistors, or very short ones. Here we solve
general case of cylinders with any aspect ratio betw
length and radius. An entirely numerical solution for a ge
eral cylinder was given by Lengaueret al.4

The present method can be used for any cylindrical
ject that is heated rapidly. The basic idea is that the cylin
has normal modes of elastic oscillation. The heating pu
causes the cylinder to expand, which excites the breath
modes. Fracture is caused by stresses which exceed a m
rial limit. The largest stresses are found at the largest va
of the oscillation amplitudes. Many modes contribute
these oscillations.

Section II solves for the elastic oscillations of a so
cylinder. The oscillations of a finite cylinder have been d
cussed in a number of books on elasticity.5–8 They all state
that the problem has never been solved. Recently, a num
cal solution was presented by Visscheret al.9 Their solution
did not allow the discussion of the symmetry of most of t
modes and only included one set of Lame´ parameters. Here
we solve the problem again so that the mode symmetr
obvious.

a!Author to whom correspondence should be addressed.
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Some torsional modes have simple analytical solutio
but most breathing modes are quite complicated. The b
numerical method is a variation on the Rayleigh–Ritz te
nique, which has become accessible with the age of the c
puter. It has been applied to the vibrations of the cube w
much success.10–14

II. VARIATIONAL METHOD

Here we summarize the variational method. The to
energy density of a vibrating harmonic system is the kine
energy~K! and potential energy (V)

K5
rm

2 E d3r u̇•u̇, ~1!

V5
1

2 E d3r u•L•u, ~2!

E5K1V, ~3!

whererm is the mass density. The tensor operatorL is speci-
fied below. When oscillating the displacementu(r ,t)
5u(r )cos(vt) so the various energies are

K5v2Ks sin2~vt !, Ks5
r

2 E d3r u~r !•u~r !, ~4!

V5Vs cos2~vt !, Vs5
1

2 E d3r u~r !•L•u~r !, ~5!

E5
1

2
$@v2Ks1Vs#2@v2Ks2Vs#cos~2vt !%. ~6!

An accurate solution is obtained by reducing the seco
bracket to be as small as possible. This idea is the bas
the variational procedure. The function to be minimized
F5v2Ks2Vs . In the Rayleigh–Ritz method, the procedu
is to expand the functionu(r ) in a set of basis functions
5 © 2001 American Institute of Physics
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ui(r ) and then perform a variational operation on the coe
cients. We select the basis so that they are orthogonal
the volume of the cylinder

u~r !5(
i 51

N

Aiui~r !, E d3r ui~r !•uj~r !5d i j , ~7!

Ks5
rm

2 (
i j

AiAjE d3r ui~r !•uj~r !5
rm

2 (
i

Ai
2, ~8!

Vs5
1

2 (
i j

AiAjLi j , Li j 5E d3r ui~r !•L•uj~r !, ~9!

dF
dAi

505rmv2Ai2
dVs

dAi
. ~10!

The latter equation is a standard eigenvalue equation.
oscillation frequenciesv i are the square root of the eige
values of the matricLi j /rm .

The elastic displacement is a vectoru(r ) and the differ-
ential equation is a vector wave equation. The boundary c
ditions are that the stress tensors i j obeys 05S inis i j where
ni is the vector normal to the surface. There are three c
ponents to this equation for each surface. The reason tha
problem is difficult to solve is that simple combinations
basis functions do not obey the boundary conditions on a
the surfaces. The interesting aspect of the variational me
is that the perfect variational solution automatically obe
the stress-free boundary conditions. One does not hav
have basis functionsui(r ) which obey the boundary cond
tions, although it reduces the size of the final matrix if th
obey as many as possible in a simple way.

The cylinder has a radiusa and thez direction is along
the axis of the cylinder2b,z,b. We use cylindrical coor-
dinatesr5(r,u,z). We assume the material is isotropic,
the two transverse sound modes have the same velocityct .
This model can be applied to polycrystalline solids when
grains are small and randomly oriented. The vector w
equation for frequencyv is

05rmv2u1m¹2u1~l1m!“~¹"u!. ~11!

The boundary conditions are that 05erz5eru5srr on the
surfacer5a, while at z56b the boundary conditions ar
05erz5euz5szz. These elastic functions are found in th
references. The boundary conditions will be satisfied b
perfect variational solution.

The potential energy for the cylinder has the form

Vs5
rm

2 E d3r $cl
2 ~¹"u!21ct

2@erz
2 1eru

2 1euz
2 24ezz~err

1euu!24erreuu#%, ~12!

where cl ,t are the longitudinal and transverse speeds
sound. The calculation proceeds by evaluating the poten
energy in Eq.~12! and then solving the eigenvalue equati
in Eq. ~10!.

Reference 9 describes a method of solution which can
applied to any object of any shape. They used the basis
xl ymzn. This set is not convenient for the cylinder, but t
computer does all of the work. Figure 1 shows 12 mod
Downloaded 14 Sep 2004 to 211.69.206.97. Redistribution subject to AIP
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with the lowest frequency for a cylinder of length 44 mm an
diameter of 34 mm. Material parameters are the same as
Ref. 4: Young’s modulusE5100 GPa,s50.36, and mass
densityrm55420 kg/m3. The frequency beneath each figure
are in kHz. The modes with the lowest frequency are most
transverse. The first mode is a pure torsional motion.

Among these 12, the only breathing mode has the fr
quency of 46.1 kHz. It is a simple elongation of the cylinder
Using thexl ymzn basis is rather inefficient for our problem
since only a small fraction of the modes which are generat
are breathing modes. Another difficulty is that in a varia
tional calculation an eigenfunction, which varies by a sma
factor O(«) from the exact eigenfunction, produces an ei
genvalue with an error ofO(«2). Prior calculations wanted
eigenvalues so the set of functions need not be large. O
calculation needs accurate eigenvalues and eigenfunctio
so a larger basis set is required. Therefore we developed
new set of basis functions which are suitable for this prob
lem.

III. BASIS FUNCTIONS

The usual way to solve the vector wave equation is t
start with the scalar Helmholtz equation

05@v21v2¹2#f~r !, ~13!

wherev is a velocity. For the cylinder these are the function

f~r !5eil uJl ~qr!cos~kz!, ~14!

v25v2~k21q2!. ~15!

Our interest is in the breathing modes of the cylinder, so w
take l 50.

FIG. 1. The 12 modes with the lowest frequency for a cylinder of length 4
mm and diameter of 34 mm. Material parameters are Young’s modulusE
5100 GPa,s50.36, and mass densityrm55420 kg/m3. The frequency be-
neath each figure is in kHz. The modes with the lowest frequency are mos
transverse. Degenerate modes are omitted.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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The process for finding the solutions to the vector wa
equation are given in Morse and Feshbach.6 We use the fact
that J0(z)852J1(z):

~1! Longitudinal solutions are given byul 5“f, which
for l 50 have the form

ul ~r !52 r̂ qJ1~qr !cos~kz!1 ẑkJ0~qr !sin~kz!. ~16!

This mode has the dilation ¹"ul 52(q2

1k2)J0(qr)cos(kz).
~2! The first transverse wave isut15“3( ẑf). Starting

with f5J0(qr)sin(kz) gives

ut1~r !52 û
df

dr
5 ûqJ1~qr !sin~kz!. ~17!

This mode satisfies“"ut150.
~3! The second transverse wave is given byut25“

3@“3( ẑf)#. Starting withf5J0(qr)sin(kz) gives

ut25 r̂
d2f

dr dz
2

ẑ

r

d

dr S r
df

dr D ~18!

5 r̂ kqJ1~qr !cos~kz!1 ẑq2J0~qr !sin~kz!. ~19!

This mode satisfies“"ut250.
The second solution Eq.~17! is a pure torsional mode. It ca
be made to satisfy all of the stress-free boundary conditi
at z56b by choosingk[kn5p(2n11)/(2b). The choice
of q is given by the zerosl l a of the Bessel function 0
5Jl (l l a). For eachl there are an infinite number ofa’s
which satisfy these equations. For the torsional modes
chooseJ2(qaa)50, which means thatqa5l2a /a. This so-
lution is in standard books. There is also a torsional solut
give by the unrenormalized eigenfunction

ut1~r !5 ûr sin~knz!, ~20!

which has an eigenfrequencyvn5pct(2n11)/(2b). For n
50 this formula predictsf 05v0 /(2p)529.6 kHz, which is
the first mode shown in Fig. 1.

The second transverse modeut2 and the longitudinal
modeul (r ) both have vector components in the two dire
tions (r̂,ẑ). They mix in the cylinder, and the breathin
modes are a mix of these two kinds of modes.

The solutions for the cube provide valuable lessons.
ing basis functions such as sin(knz),cos(knz),kn5p(2n
11)/(2b) gives a potential termVs which is exactly separable
when doing the Rayleigh–Ritz method. However, the res
ing solutions do not obey the boundary condition
Demarest12 showed that using Legendre polynomia
Pn(x/b) as the basis gives a matrix forVs that is not sepa-
rable, but whose eigenfunctions do satisfy the boundary c
ditions. The message in the present problem, for the cylin
is that one cannot use Bessel functions as the basis since
give solutions that are also exactly separable and do not
isfy the boundary conditions. Instead, we must find the
lindrical equivalent of Legendre functions. This featu
seems to be required to obtain the desired boundary co
tions. For the cylinder, the Legendre functions work in thz
direction. However, in the radial direction other functions a
required, which are normalized according to
Downloaded 14 Sep 2004 to 211.69.206.97. Redistribution subject to AIP
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a

r dr Rm~r!Rn~r!5a2dnmNm . ~21!

Bessel functions obey these relations, but they do not give
the variational mixture needed to get the right answer.
stead, we created a new set of polynomials for this probl
They are modeled after the Legendre polynomials in that
set R2n(x),x5r/a, contain only even polynomials, while
companion setS2n11(x) contain only odd polynomials. They
are normalized toR2n(1)51,S2n11(1)51, and obey the or-
thogonality relations

E
0

1

x dx R2n~x!R2m~x!5dnm

1

4n12
, ~22!

E
0

1

x dx S2n11~x!S2m11~x!5dnm

1

4n14
, ~23!

R051, R252x221, R456x2~x221!11, ~24!

S15x, S35x~3x222!, S55x~10x4212x213!, ~25!

R2n52xS2n212R2n22 ,

S2n115
1

n11
@~2n11!R2n2nS2n21#. ~26!

The two sets of functionsR2n ,S2n11 are not mutually or-
thogonal, but we do not mix them. Since we take their d
rivatives we need the following relations:

dR0

dx
50,

dR2

dx
54S1 ,

dR4

dx
58S314S1 , ~27!

d

dx
R2n54x~2n21!R2n221

d

dx
R2n24 , ~28!

dS1

dx
5R0 ,

dS3

dx
5

1

2
@9R215R0#,

dS5

dx
5

1

3
@25R4121R215R0#, ~29!

S1

x
5R0 ,

S3

x
5

1

2
@3R22R0#,

S5

x
5

1

3
@5R423R21R0#. ~30!

One cannot use a stateP0(z) for uz since that would
have the cylinder undergoing center-of-mass motion. A
other feature emphasized by Demarest12 is the symmetry of
the modes. If one has odd polynomials in one direction th
are coupled with even polynomials in the other directio
These rules guide us in the choice of basis functions. O
final choice is made to fit the boundary conditions, which a
explained in Sec. IV. The ansatz wave function is construc
assuming that the maximum polynomial isNth order, where
N is an odd integer. If the variables are (r,z8) then x
5r/a,z5z8/b. It is also useful to use normalized polynom
als which are defined as
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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pl ~z!5A2l 11

2
Pl ~z!, ~31!

r n~x!5A2~n11!HRn~x!

Sn~x! J . ~32!

The symbolr n denotes the normalizedRn or Sn depending
upon whethern is even or odd. The eigenfunction expansi
for N55 is

u~r !5 r̂ur1 ẑuz5(
l

Al ul ~r !, ~33!

ur5p0~z!@A10r 1~x!1A30r 3~x!1A50r 5~x!#1p2~z!

3@A12r 1~x!1A32r 3~x!#1A14p4~z!r 1~x!, ~34!

uz5p1~z!@A01r 0~x!1A21r 2~x!1A41r 4~x!#1p3~z!

3@A03r 0~x!1A23r 2~x!#1A05p5~z!r 0~x!, ~35!

where ul (r ) are the normalized functions such
p0(z)r 3(x). Polynomials are retained up to a combined fi
order in the above example. For actual numerical work
retained polynomials up to 13th order, but the above form
las are presented as an example. Also, it was imperativ
have analytical results for the interactions in order to ch
and test the computer code on small values ofN.

Using these functions, we can construct the vario
stress tensor components

erz5r 1~x!p1~z!F)b ~A5A121A9A14!1
2

a
~A6A21

1A10A41!G1r 3~x!p1~z!FA15

b
A321

A80

a
A41G

1r 1~x!p3~z!FA63

b
A141

A24

a
A23G , ~36!
Downloaded 14 Sep 2004 to 211.69.206.97. Redistribution subject to AIP
e
-
to
k

s

ezz5
1

b
@r 0p0~)A011A7A031A11A05!1A5r 0p2~z!

3~A7A031A11A05!1r 2~x!p0~z!~)A211A7A23!

1A35A23r 2~x!p2~z!1A99A05r 0p4~z!

1)A41r 4~x!p0#, ~37!

err5
1

a F r 0p0S&A1015A3015A2

3
A50D 1r 0p2~z!

3~&A1215A32!1&A14r 0p4~z!

1r 2~x!p0~3)A3017&A50!13)A32r 2~x!p2~z!

15A 10
3 A50r 4~x!p0G , ~38!

euu5
1

a F r 0p0S&A102A301A2

3
A50D 1r 0p2~z!~&A12

2A32!1&A14r 0p4~z!1r 2~x!p0~)A302&A50!

1)A32r 2~x!p2~z!1A10

3
A50r 4~x!p0G . ~39!

Using these results, the kinetic and potential energy terms

2Ks

rm
5A10

2 1A30
2 1A50

2 1A12
2 1A32

2 1A14
2 1A01

2 1A03
2 1A05

2

1A21
2 1A41

2 1A23
2 , ~40!
2Vs

m
5sH F2

a
~&A101A4A301A6A50!1

1

b
~)A011A7A031A11A05!G2

1F2

a
~&A121A4A32!1

A5

b
~A7A031A11A05!G2

1FA120

a
A501

)

b
A41G2

1F2

a
~A12A301A18A50!1

1

b
~)A211A7A23!G2

1FA8

a
A141

A99

b
A05G2

1FA48

a
A32

1
A35

b
A23G2J 1F)b ~A5A1213A14!1

2

a
~A6A211A10A41!G2

1FA15

b
A321

A80

a
A41G2

1FA63

b
A141

A24

a
A23G2

2
8

ab
@&~)A011A7A031A11A05!~A101&A301)A50!1A10~A121&A32!~A7A031A11A05!12A105A32A23

1~2)A3013&A50!~)A211A7A23!13A22A14A0513A10A50A41#2
4

a2 @~&A101A4A301A6A50!
2

1~&A121A4A32!
212A14

2 #, ~41!
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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where s5(cl /ct)
2. Starting from these relations, th

Rayleigh–Ritz method, Eq.~10!, can be used to reduce the
to a matrix eigenvalue equation which is solved on the co
puter. This procedure produces a set of eigenfrequenciev i

and eigenvectorsAn
( i )5(A10

i ,A30
i ,A50

i , ¯ ,A23
i ). The eigen-

vectors are orthogonal

d i j 5(
n

An
~ i !An

~ j ! . ~42!

The eigenfrequencies can be used to construct the ei
modes of the cylinder

Ui~r !5(
l

Al
~ i !ul ~r !, ~43!

d i j 5E
0

1

x dxE
21

1

dzUi~r !•Uj~r !. ~44!

These modes are used in discussing the response to the
den heating.

IV. BOUNDARY CONDITIONS

The vibrations of the cylinder were found in the previo
section. They are now used to calculate the response o
cylinder to a pulse of current. The usual current pulse
testing is a ‘‘4–10,’’ which means that it rises to its max
mum value in 4ms and decays to half its value in 10ms. A
pulse shape which does this approximately is

F~ t !5t exp~2t/t!, ~45!

where the constantt54 ms. Joule heating in the pulse rais
the temperature according toC dT/dt5W0F(t), whereW0

is the power andC is the heat capacity. So the rise in tem
perature is the integral ofF(t) which gives

T~ t !5DT f~ t !, ~46!

f ~ t !512e2t/t~11t/t!, ~47!

whereDT is the final temperature rise caused by the curr
pulse. Eventually the system will cool down, but that is on
much larger time scale than the current pulse. The stress
the two directions are

szz5l“"u12m
]uz

]z
23KaDT f~ t !, ~48!

srr5l“"u12m
]ur

]r
23KaDT f~ t !, ~49!

wherea is the coefficient of linear expansion, andl, m, and
K are elastic moduli defined in the Appendix. For a lo
period, after the system has stopped oscillating, th
stresses must vanish. In that case the only solution to th
equations fort→` are

]uz

]z
5

]ur

]r
5aDT, ~50!

u~r ,`!5raDT5aDT@ar̂S1~x!P0~z!1bẑR0~x!P1~z!#

~51!
Downloaded 14 Sep 2004 to 211.69.206.97. Redistribution subject to AIP
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5aDTFar̂

&
r 1~x!p0~z!1

bẑ

)
r 0~x!p1~z!G . ~52!

The equations of motion in Cartesian coordinates are

rm

]2

]t2 ui~r ,t !5(
j

]

]xj
s i j . ~53!

The source term for the elastic oscillation is the curre
pulse, which causes the cylinder to start expanding. T
Joule heating, which causes the expansion, enters into
diagonal stressess i i . The heating is assumed to be unifor
so that its spatial derivative is zero. In that case it appear
drop out of the calculation. Vojta and Clarke introduced o
way of avoiding this problem, and here we introduce anoth
Our method is to assume the existence of a source term in
dynamical equation. Since the spatial derivative does not
fect the time response, this source term must be proportio
to 3KaDT f(t). The constant of proportionality is chosen s
that the displacementu(r ,t) goes to Eq.~51! in the limit of
infinite time. So we solve the equation

rm

]2

]t2 u~r ,t !5m¹2u1~l1m!“~“"u!1rmL~r ! f ~ t !,

~54!

u~r ,t !5(
i

Ci~ t !Ui~r !, ~55!

where Ui(r ) are the eigenfunctions of frequencyv i found
above by the Demarest method. The coefficientsCi(t) need
to be determined, as does the coefficientL(r ). The above
equation is solved using a Laplace transform. Because of
form for f (t) the displacementu(r ,t50)50, as does its first
time derivative. In this case the above equation is

C̃i~p!5E
0

`

dt e2ptCi~ t !, ~56!

(
i

~p21v i
2!C̃i~p!Ui~r !5L~r ! f̃ ~p!, ~57!

f̃ ~p!5
1

p@11pt#2 , ~58!

whereC̃i(p), f̃ (p) are the Laplace transform of the variou
functions. The solution forC̃i has the form

C̃i~p!5ci

v i
2

p21v i
2 f̃ ~p!, ~59!

ci5
1

v i
2 E d3r Ui~r !•L~r !. ~60!

The inverse Laplace transform gives

Ci~ t !5ciF12
~v it!2

11~v it!2 e2t/tS 11
t

t
1

2

11~v it!2D
2

cos~v i t22u i !

11~v it!2 G , ~61!

tan~u i !5v it. ~62!
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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The constantci has been introduced, which needs to be
termined. The key is thatCi(t5`)5ci so that

u~r ,t5`!5(
i

ciUi~r !5raDT, ~63!

ci5aDTE d3r Ui•r , ~64!

ci5aDTS a

&
A10

~ i !1
b

)
A01

~ i !D . ~65!

The last equation completes the derivation. The vibration
the cylinder are given by Eq.~55!, where the amplitudes ar
given in Eq.~61! in terms of the coefficientsci defined in the
above equation.

As a check on the result, take the second time deriva
of Eq. ~61! and find

]2

]t2 Ci~ t !5v i
2@ci f ~ t !2Ci~ t !#. ~66!

Compare this formula to the differential equation~54! which
gives

L~r !5(
i

civ i
2Ui~r !, ~67!

which agrees with Eq.~60!. The derivation is self-consisten
in that one can find a time-independent functionL(r ) which
generates the correct static displacements at large time.

Equation~61! has two interesting limits:~1! The adia-
batic limit is whenv it@1. In this case

Ci~ t !'ci f ~ t !. ~68!

There is no oscillations since the current pulse was slow
time. ~2! The other limit is whenv it!1 in which case

Ci~ t !'ci@12cos~v i t !#. ~69!

Here the pulse is in thesudden approximation, and the re-
sponse is a pure oscillation. In the present case witt
54 ms most of the elastic modes are in the adiabatic li
and induce no significant oscillation. A very useful quant
is

di5
ci

11~v it!2 , ~70!

which is the coupling of a mode to the oscillatory ter
cos(vi t22ui). The denominator reduces this coupling f
modes of higher frequency.

V. COMPARISON TO PRIOR RESULTS

The above equations were put on the computer and
culated for a ZnO arrester. The parameters are used f
Ref. 4: a517 mm, b522 mm, E5100 GPa, ands50.36.
The calculated speeds of sound are:ct52.60 km/s andcl

55.57 km/s. The frequenciesv i ~in units of 106 rad/s!, f i

5v i /(2p) in units of kHz, and constantsci ,di are shown in
Table I for the lowest six modes. These modes have
largest values ofdi . Note that all of the modes havev it
.1. If v it!1 then the system responds in the sudden
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proximation. If v it@1 then the system responds adiaba
cally. In practice the lowest modes havev it;1 while the
higher modes are in the adiabatic limit. The values ofdi

decline rapidly for modes of higher frequency. The sign
these values is not significant since they are multiplied by
eigenfunctionsUi(r ) which can have either sign.

Figure 2 shows the stressszz(r ,t) as a function of time
in microseconds. The three curves are forz50 ~solid tri-
angles!, z5b/2 ~open triangles!, andz5b ~solid triangles!,
and all are atr50. We setaDT51 in making the graphs.
The oscillations are not dominated by a single frequency.
modes contribute to the oscillations, with varying applitude
The temporal behavior is somewhat complicated.

The stress in the first oscillation is the largest in t
center of the cylinder (z50) and gradually decreases towa
the ends. We have calculated several points between th
shown in order to ascertain that the trend is monoton
These curves are not shown to avoid cluttering the figu
This negative oscillation is a compressive stress. It occ
when the cylinder heats up rapidly and starts to therma

TABLE I. Second column are lowest six breathing mode frequenciesv i in
106 rad/s of the cylinder of ceramic ZnO with height544 mm and
radius517 mm. Third column are frequenciesf i5v i /(2p) in units of kHz.
Fourth and fifth columns are constantsci anddi . The strongest coupling is
to these modes. All other modes havedi<O(0.1)

i v i f i ci di

1 0.290 46.10 27.84 23.35
2 0.470 74.84 21.05 20.23
3 0.590 93.95 6.55 1.00
4 0.697 110.84 25.94 20.68
5 0.749 119.27 9.64 0.97
6 0.840 133.75 7.30 0.59

FIG. 2. The value of the stressszz(t) from a 4–10 pulse calculated assum
ing aDT51 along the axisr50 at the pointsz50, b/2, b. Here H
544 mm,D534 mm. The curve with solid triangles is atz50, in the center
of the cylinder. The curve with open triangles isz5b/2 at the 1/4 and 3/4
point. The first oscillation is compressive, and the stress is largest at
centerz50. The next oscillation att58 ms has about the same stress atz
50,b/2. It is about 10% higher atz5b/4: this curve is not shown. It will
break under tension at anyplace along2b/2<z<b/2. The next big oscilla-
tion is at t517ms, and the stress is largest atz5b/2. The other curve is at
the end of the cylinder.
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expand. The expansion has not yet occurred so the cylin
is under compression. It can break, and in this case wo
break in the center.

The second large oscillation at about 17ms has a posi-
tive amplitude. It is the first expansion of the cylinder, whi
overshoots the equilibrium point. In this case the largeszz
stress is at the pointz5b/2, which is at the 1/4 or 3/4 poin
along the length of the cylinder. The breaking point und
tension is less than the breaking stress under compres
The cylinder could break at this point if it did not break
the first oscillation. In this case the breaking would occur
the 1/4 or 3/4 point. These results are in very good agreem
with those in Ref. 4. They showed only the curve we la
z5b/2, which they asserted had the largest value ofzzstress.
Their curve is very similar to our curve, so we confirm the
results. However, the cylinder will not always break at t
1/4 or 3/4 point since it could break in the first oscillatio
under compression. Experimentally it is found that varist
usually break in the center, and the break is along a pl
perpendicular to thez axis.

The line in Fig. 2 with solid triangles and small amp
tude is the stressszz(t) evaluated at the end of the cylinde
~r50, z5b!. This stress is zero if the boundary conditio
are obeyed perfectly. In the variational calculation the e
stress is quite small but not zero. Increasing the degreeN of
the polynomial causes this stress to become increasing s

In doping these calculations we setaDT51. In practice
this dimensionless quantity isO(1024). The dynamic
stresses are of order mega-Pascal rather than giga-Pasc

VI. ELASTIC MEASUREMENTS

A station arrester of ZnO was obtained. It is a comm
cial unit manufactured by the Ohio Brass Company. Varist
are ZnO ceramics with additives of other metal oxides, e
at the level of 1%. Each manufacturer has a different se
additives, which is proprietary.

The frequencies of the lowest normal modes were m
sured. An HP 3325B frequency synthesizer with frequen
resolution of 1mHz is used to excite the sample via a go
plated PVDF transducer. The sample response is monit
with a similar transducer. The signal is amplified and sen
a Stanford Research SR844 RF lock-in amplifier and
corded on a Sun workstation. The Lorentzian peaks are
fitted, which extracts the center frequency. More details
given in Ref. 15.

The ZnO cylinder hadD54.295 cm,H54.201 cm, and
densityrm55.350 gm/cm3. The frequencies were fit well by
the parameters ofE51.135 Mbar and Poisson ratios
50.391. These cylinders have aluminum electrodes on
end, and are then coated. The electrodes and coatings
etched away, leaving a cylinder of pure ZnO ceramic. T
cylinder hasD54.089 cm, H54.153 cm, and densityrm

55.575 gm/cm3. The lowest frequency modes were me
sured, and thexyzcode was used to fit them, adjusting on
two parameters, which gaveE51.1349 Mbar and s
50.3378. The major change from the coated cylinder w
the Poisson ratio. The lowest 15 modes and their calcula
values are shown in Table II. Many are degenerate since
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have the same value for6n. The only breathing mode
in this list is No. 8. The first cylinder, shown in Fig. 2 and
Table I, had H.D and the first breathing mode wa
No. 4. Here withH;D the first breathing mode has droppe
to No. 8.

The breathing modes were calculated using the basis
with @pl (z),r n(x)#. The same values were used for the si
density, and elastic parameters. These frequencies are s
in Table III, along with the coupling coefficientsci ,di .
Again only a few modes of small frequency have a sign
cant value of couplingdi to the induced oscillations. Figure
shows the value of the stressszz from a 4–10 pulse calcu
lated assumingaDT51 along the axisr50 at the points
z50,b/2,b. The line with solid triangles is atz50, in the
center of the cylinder. The curve with open triangles isz
5b/2 at the 1/4 and 3/4 point. The first oscillation is com
pressive, and the stress is largest at the centerz50. The next
oscillation att58 ms has about the same stress atz50, b/2.
It is about 10% higher atz5b/4: this curve is not shown. It
will break under tension at any place along2b/2<z<b/2.
The next big oscillation is att517ms, and the stress is larg
est atz5b/2. Again the other curve with solid triangles is
the ends of the cylinder and this is small, which means
boundary conditions are obeyed approximately.

Figure 4 shows the same results forsuu(t). The three
curves are the points: solid triangles (r505z), open tri-
angles~r50, z5b/2!, and solid triangles~r5a/2, z50!.
The curve with (r505z) has the largest amplitude for a
oscillations. In both Figs. 3 and 4, the first large expans
peak occurs at 8–10ms. For this peak note thatsuu(t)

TABLE II. Observed and calculated frequencies of a ceramic cylinder
ZnO. Fourth column is error, while last column is mode degeneracy.

Mode Obs-F~kHz! Calc-F ~kHz! % Difference Degeneracy

1 33.195 33.207 20.035 1
2–3 42.375 42.374 0.002 2
4–5 42.597 42.624 20.064 2
6–7 45.881 45.931 20.109 2

8 49.420 49.422 20.004 1
9–10 50.212 50.175 0.073 2

11–12 53.301 53.286 0.028 2
13–14 60.854 60.815 0.065 2

15 63.199 63.242 20.068 1

TABLE III. Second column are lowest eight breathing mode frequenciesv i

in 106 rad/s of the cylinder of ceramic ZnO with height541.5 mm and
radius520.45 mm. Third column are frequenciesf i5v i /(2p) in units of
kHz. Fourth and fifth columns are constantsci anddi . The strongest cou-
pling is to the modes 1, 3, and 4.

i v i f i ci di

1 0.3106 49.43 4.07 1.60
2 0.4239 67.47 21.15 20.30
3 0.5649 89.90 213.47 22.21
4 0.6855 109.09 29.87 1.16
5 0.7267 115.65 6.01 0.64
6 0.7792 124.02 21.34 20.12
7 0.9421 149.95 21.02 0.07
8 0.9727 154.81 21.14 20.07
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.szz(t). We also calculatedsrr(t). It is identical tosuu(t)
along the liner50. Away from that line it is smaller than
suu(t). So for this case withH;D the fracture will be pie
shaped rather than along the plane perpendicular to thz
axis.

It should be kept in mind that these figures do not app
to an actual arrester, since the calculations were done fo
cylinder lacking electrodes.

FIG. 3. The value of the stressszz(t) from a 4–10 pulse calculated assum
ing aDT51 along the axisr50 at the pointsz50,b/2,b. Here H
541.53 mm,D540.89 mm. The curve with solid triangles is atz50, in the
center of the cylinder. The curve with open triangles isz5b/2 at the 1/4 and
3/4 point. The first oscillation is compressive, and the stress is largest a
centerz50. The next oscillation att510ms has about the same stress
z50,b/2. It is about 5% higher atz5b/4: this curve is not shown. It will
break under tension at anyplace along2b/2<z<b/2. The next big oscilla-
tion is at t517ms, and the stress is largest atz5b/2. The other curve is at
the end of the cylinder.

FIG. 4. Time dependent stresssuu(t) from a 4–10 pulse for the cylinder
with H541.53 mm, D540.89 mm. The curve with solid triangles is a
point ~r50, z50!; the curve with open triangles is at point~r50, z5b/2!;
the other line is at~r5a/2, z50!. The stress is smaller whenrÞ0 than
along the axis withr50. The largest stress is found at the point~r50, z
50!.
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APPENDIX: STRESS AND STRAIN

Here we review some standard relations between
various constants used in stress and strain equations:E is
Young’s modulus,s is the Poisson ratio,K is the bulk modu-
lus of elasticity,l is Lame’s constant,m is the modulus of
rigidity, anda is thecoefficient of linear expansion

m5
E

2~11s!
5rct

2, ~A1!

K5
E

3~122s!
5rFcl

2 2
4

3
ct

2G , ~A2!

l5K2
2

3
m5r~cl

2 22ct
2!5

sE

~11s!~122s!
, ~A3!

s5
3K22m

2~3K12m!
5

l

2~l1m!
, ~A4!

E5
9Km

3K1m
5

m~3l12m!

l1m
, ~A5!

rcl
2 5

E~12s!

~11s!~122s!
5K1

4

3
m5l12m, ~A6!

rD25r@cl
2 2ct

2#5
E

2~11s!~122s!
5l1m. ~A7!

The diagonal and off-diagonal stresses are

t i i 5K@¹"u23adT#12mF]ui

]xi
2

1

3
“"uG , ~A8!

t i j 5mS dui

dxj
1

duj

dxi
D . ~A9!
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