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Elastic oscillations of cylindrical fuses
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A fast current pulse causes a material to heat and undergo rapid expansion. We calculate the
response of a cylindrically shaped material to a pulse on the microsecond time scale. The first step
is to obtain the breathing modes of elastic oscillation of the cylinder. These modes are calculated
using a Rayleigh—Ritz variational method introduced by Demarest for cubes. The boundary

conditions are derived, which give the amplitude of each elastic mode in response to the sudden
heating. The results are illustrated by calculations on a station arrester made of a ZnO ceramic.
© 2001 American Institute of Physic§DOI: 10.1063/1.1402148

I. INTRODUCTION Some torsional modes have simple analytical solutions,
but most breathing modes are quite complicated. The best

Zinc oxide varistors are a type of fuse used to clampnumerical method is a variation on the Rayleigh—Ritz tech-
surges in line voltages. A voltage surge in the input line isnique, which has become accessible with the age of the com-
absorbed in the varistor, causing it to heat rapidly for largeputer. It has been applied to the vibrations of the cube with
surges. A very large surge causes it to break or fail by puncmuch succes¥4
ture or fracturé. All varistors are cylindrical in shape. De-
pending upon their use, some are long cylinders while others
are short. Recently we have modeled the failures of varistorﬁ VARIATIONAL METHOD
from the diffusion of heat originating from a current
filament!? The filament is caused by inhomogeneities inthe  Here we summarize the variational method. The total
material. Another model for failure was considered by VOjtaenergy density of a vibrating harmonic system is the kinetic
and Clarke® who assumed the heating was uniform, and theenergy(K) and potential energy\)
response was due to the excitation of an elastic wave. They
were only able to solve the two limiting cases of very long K= P_mf d3r 0 U 1)
and thin varistors, or very short ones. Here we solve the 2 '
general case of cylinders with any aspect ratio between
length and radius. An entirely numerical solution for a gen-  y/— Ef d3ru-C-u )
eral cylinder was given by Lengauet al? 2 '

The present method can be used for any cylindrical ob-
ject that is heated rapidly. The basic idea is that the cylinder
has normal modes of elastic oscillation. The heating pulsevherep,, is the mass density. The tensor operatds speci-
causes the cylinder to expand, which excites the breathinfled below. When oscillating the displacemeni(r,t)
modes. Fracture is caused by stresses which exceed a mateu(r)cost) so the various energies are
rial limit. The largest stresses are found at the largest value
of the oscillation amplitudes. Many modes contribute to _ .2 ; _P 3
these oscillations. P ’ K= w*Kssim(ot), K2 f dr u(r)-u(r), @

Section |l solves for the elastic oscillations of a solid
cylinder. The oscillations of a finite cylinder have been dis-  y/—y, cod(wt), V :Ef d3r u(r)- £-u(r) (5)
cussed in a number of books on elastiGit§.They all state ® ’ °2 ’
that the problem has never been solved. Recently, a numeri-
cgl solution was pr'esentgd by Visscheral® Their solution &= E{[wZKS-I—VS]—[szs—Vs]COS(Zwt)}. 6)

did not allow the discussion of the symmetry of most of the
modes and only included one set of Lap@rameters. Here ap accurate solution is obtained by reducing the second
we solve the problem again so that the mode symmetry i§ 5cket to be as small as possible. This idea is the basis of

E=K+V, (3

obvious. the variational procedure. The function to be minimized is
F=w?K;—Vs. In the Rayleigh—Ritz method, the procedure

dAuthor to whom correspondence should be addressed. is to expand the functiom(r) in a set of basis functions
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u;(r) and then perform a variational operation on the coeffi-
cients. We select the basis so that they are orthogonal ov
the volume of the cylinder

=
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u<r>=i§1 Aui(r), fd3r ui(r)-u(r) =4, (7)
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The latter equation is a standard eigenvalue equation. Th
oscillation frequenciesv; are the square root of the eigen-
values of the matrit;; /py,.

The elastic displacement is a vectdir) and the differ-
ential equation is a vector wave equation. The boundary con-
ditions are that the stress tensgy obeys Oinnio-ij where  FIG. 1. The 12 modes with the lowest frequency for a cylinder of length 44
n; is the vector normal to the surface. There are three com™m and diameter of 34 mm. Mater.ial parameters are Young's modtlus
ponens to this equation for each surface. The reason that gt O 039, o0 mess enepty S0kt e fedvencybe
problem is difficult to solve is that simple combinations of yransverse. Degenerate modes are omitted.
basis functions do not obey the boundary conditions on all of
the surfaces. The interesting aspect of the variational method
is that the perfect variational solution automatically obeysyth the lowest frequency for a cylinder of length 44 mm and
the stress-free boundary conditions. One does not have @ameter of 34 mm. Material parameters are the same as in
have basis functions;(r) which obey the boundary condi- Ref. 4: Young’s modulu€ =100 GPa,o=0.36, and mass
tions, although it reduces the size of the final matrix if theyqensityp,,=5420 kg/ni. The frequency beneath each figure

obey as many as possible in a simple way. are in kHz. The modes with the lowest frequency are mostly
The cylinder has a radius and thez direction is along  transverse. The first mode is a pure torsional motion.
the axis of the cylinder-b<z<b. We use cylindrical coor- Among these 12, the only breathing mode has the fre-

dinatesr=(p,6,z). We assume the material is isotropic, so quency of 46.1 kHz. It is a simple elongation of the cylinder.
the two transverse sound modes have the same velacity Using thex”y™z" basis is rather inefficient for our problem
This model can be applied to polycrystalline solids when thesince only a small fraction of the modes which are generated
grains are small and randomly oriented. The vector wavgye preathing modes. Another difficulty is that in a varia-
equation for frequency is tional calculation an eigenfunction, which varies by a small
0=pmw2u+ uV2u+ (A + w)V(V-u). (11) factor O(¢) _from the exact eigenfl_Jnction, pr(_)duces an ei-
genvalue with an error oD (&?). Prior calculations wanted
The boundary conditions are that@,,=e,;,=0,, on the  ejgenvalues so the set of functions need not be large. Our
surfacep=a, while atz=*b the boundary conditions are calculation needs accurate eigenvalues and eigenfunctions,
O0=e,,=ey,=0,,. These elastic functions are found in the so a larger basis set is required. Therefore we developed a

references. The boundary conditions will be satisfied by gew set of basis functions which are suitable for this prob-
perfect variational solution. lem.

The potential energy for the cylinder has the form

p
Vs=7mf @ {C2(V-u)2+ L%, + €2+ e, —de,fe,, Il BASIS FUNCTIONS
The usual way to solve the vector wave equation is to
+€49) —4€,,00l}, (12)  start with the scalar Helmholtz equation
where ¢, are the longitudinal and transverse speeds of  0=[w2+0v2V2]¢(r), (13

sound. The calculation proceeds by eva}luatlng the pOte.nt'a\I/l/hereu is a velocity. For the cylinder these are the functions

energy in Eq(12) and then solving the eigenvalue equation _

in Eq. (10). o(r)=e"% (qp)cogkz), (14
Reference 9 describes a method of solution whichcanbe  ,  , ,

applied to any object of any shape. They used the basis set w”=v (k0. (19

x”y™z". This set is not convenient for the cylinder, but the Our interest is in the breathing modes of the cylinder, so we

computer does all of the work. Figure 1 shows 12 modegake /'=0.
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The process for finding the solutions to the vector wave a 5
equation are given in Morse and Feshb&dftie use the fact f p dp Ru(p)Ra(p) =a"SnmNp- (21)
thatJo(2)' = —J41(2):
(1) Longitudinal solutions are given hy,=V ¢, which  Bessel functions obey these relations, but they do not give us
for /=0 have the form the variational mixture needed to get the right answer. In-
. . . stead, we created a new set of polynomials for this problem.
uAr)=—TqJi(ar)cogkz)+zkJo(qr)sin(kz). (16) They are modeled after the Legendre polynomials in that one
This mode has the dilation V-u,=—(qg? setR,,(X),x=pl/a, contain only even polynomials, while a

0

+k?)Jo(qr)coska). companion se§,,, 1(x) contain only odd polynomials. They
(2) The first transverse wave i, =V X (2¢). Starting ~ are normalized t&,,(1)=1S;,,1(1)=1, and obey the or-
with ¢=Jy(qr)sink2) gives thogonality relations
~do . . 1 1
Upa(r) = = b= = 93u(an)sin(k2). 17 fo X dX Ron(X)Rom(X) = dnirig =5 (22
This mode satisfie¥ -u,;=0. 1 1
(3) The second transverse wave is given ipy=V fOXdX S+ 100 Som+21(X) = Snmig (23
X[V X (2¢)]. Starting with¢p=Jy(qr)sink2) gives
26 zd( do Ro=1, Ry,=2x?—1, Ry=6x?(x>—1)+1, (24)
Up=F——— - —|r—— 18
? drdz rdr( dr) (8 Si=X, S3=x(3x*—2), S;=x(10x*—122+3), (25
=PkaJy(gr)cogkz) +2q°J(qr)sin(kz). (19 Ron=2XS>n_1— Ron_2,

This mode satisfie¥ -u;,=0. 1

The second solution E@17) is a pure torsional mode. It can Sni1i=——=[(2n+1)R,,— NS 1] (26)
. . n+1

be made to satisfy all of the stress-free boundary conditions
atz==b by choosingk=k,=7(2n+1)/(2b). The choice The two sets of function®,,,S,,.1 are not mutually or-
of g is given by the zeros\,, of the Bessel function 0 thogonal, but we do not mix them. Since we take their de-
=J,(\,,). For each” there are an infinite number afs rivatives we need the following relations:
which satisfy these equations. For the torsional modes we

choosel,(q,a) =0, which means thag,=\,,/a. This so- d_Ro:O @248 d;R42853+4S 27)
lution is in standard books. There is also a torsional solution — dx "odx 1 dx b
give by the unrenormalized eigenfunction d d

U(r) = B sin(k.2). 20 xR =4x(2n=1)Ran 2+ o Ran-a (29
which has an eigenfrequeney,= 7c,(2n+1)/(2b). Forn ds, ds, 1
=0 this formula predict = wy/(27) =29.6 kHz, which is A Ro, A §[9R2+ 5Ro],
the first mode shown in Fig. 1.

The second transverse modg and the longitudinal ds
modeu,(r) both have vector components in the two direc- -~ = 3 [25R4+21R,+5Ro], (29
tions (p,2). They mix in the cylinder, and the breathing
modes are a mix of these two kinds of modes. S, S; 1

The solutions for the cube provide valuable lessons. Us-  ~-=Ro, —-=5[3R;~Ro],

ing basis functions such as di),cosk,2),k,=m(2n

+1)/(2b) gives a potential terri which is exactly separable S 1
when doing the Rayleigh—Ritz method. However, the result-  ~-= 3[5Ra=3Ry+Ro]. (30

ing solutions do not obey the boundary conditions.

Demaresf showed that using Legendre polynomials One cannot use a stafy(z) for u, since that would
P.(x/b) as the basis gives a matrix fof; that is not sepa- have the cylinder undergoing center-of-mass motion. An-
rable, but whose eigenfunctions do satisfy the boundary corsther feature emphasized by Demateis the symmetry of
ditions. The message in the present problem, for the cylindethe modes. If one has odd polynomials in one direction they
is that one cannot use Bessel functions as the basis since thage coupled with even polynomials in the other direction.
give solutions that are also exactly separable and do not sathese rules guide us in the choice of basis functions. Our
isfy the boundary conditions. Instead, we must find the cy<inal choice is made to fit the boundary conditions, which are
lindrical equivalent of Legendre functions. This feature explained in Sec. IV. The ansatz wave function is constructed
seems to be required to obtain the desired boundary condassuming that the maximum polynomialNgh order, where
tions. For the cylinder, the Legendre functions work in the N is an odd integer. If the variables arg,¢’) then x
direction. However, in the radial direction other functions are=p/a,z=2z'/b. It is also useful to use normalized polynomi-
required, which are normalized according to als which are defined as
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[27+1 1
p(2)= 5 P(2), (3D ezz:B["oPo(‘@AmJr V7Aga+ V11Ag5) + \Bropy(2)
R.(X) X (VTAot V11Ag) +12(X)Po(2) (VA V7Az)
ra(x)=+2(n+ 1)[ ] (32
) Sn(x) +/35A31 5(X)P2(2) + V%Al oP4(2)
The symbolr, denotes the normalizeld,, or S, depending +V3Aur2(X)Pol, (37)
upon whethen is even or odd. The eigenfunction expansion
for N=5 is
R R 1 2
U(r):pup'f'ZUZ:Z A/U/(r), (33) epp:a ropo \/2A10+5A30+5 §A50 +r0p2(Z)
X(V2A15+5A5)) +V2A 41 z
U= Po D) Asdf 1(0)+ Aggra(X) + Asg s(X) 1+ Pa(2) (VA1 +5As) + V2R oP(2)
X[ Agat 1(X) + Agt 5() 1+ Arapa(2)11(x),  (34) T r2(X)Po(3V3As0t 7TV2As0) +3V3As 2(X)P2(2)
U= Pa( D[ Aot oX) + Al 2(X) + Agif 4(X) 1+ Pal2) + 5V A 4(x)pol, (39
X[ Aol o(X) + Azl 2(X) ]+ AgsPs(Z)T o(X), (39
where u,(r) are the normalized functions such as
pPo(2)r5(x). Polynomials are retained up to a combined fifth _ \F
order in the above example. For actual numerical work we €96~ 7| "oPo V2A10—Agot 3As0 +10p2(2)(V2A,
retained polynomials up to 13th order, but the above formu-
las are presented as an example. Also, it was imperative to —Ag2) +V2A14 0P4(2) + 1 2(X) Po(V3Azg— V2As0)
have analytical results for the interactions in order to check 10
and test the computer code on small valuedlof _ +V3Azf 2(X)pa(2) + \/;Ag,ou(x)po : (39
Using these functions, we can construct the various
stress tensor components
V3 2 Using these results, the kinetic and potential energy terms are
€,,=r1(X)p1(2) F(\/—A12+ VOAL)+ = (V6Ay
r V8o,
+10A4) | +13(X)P1(2)| ——Agpt — a Ay s
o Afg+ ASgt At ATyt Adpt Al AGi+ AG+ Al
/63 ﬁ "
+r1(X)pa(2) o Pt Al (36) + A2+ AL AL, (40)
2Vs V5 ?
,U« (‘/_A10+ VAAz+ BAs) + ‘/_'0\01Jr V7Ags+ 11 1Aos) (‘/7A12+ VaAz) + F(\ﬁ Ags+ 11Aqs)
V120 vi ( J—g /48
+[TA50+ F (\/—2A30+ \/—8A50)+ (‘/_A21+ V7 A23) A14+ b Aos TAsz
V35 P V15 Jyso |? [\e3 V24 7
+ TA o (\/—A12+ 3Aw)+ < (\/—A21+ \/—0A41) A32+ ?AM + TA14+ — Az

8
~ab [V2(V3Ag1+ VT Agst V11Age) (Aygt V2Ag0+ V3As0) + VI0(Ag o+ V2A50) (VT Agst V11Ags) + 21/ 105A50A 5

4
+(2V3 Azt 3V2A50) (V3Az1+ \TAs) + 3122A 1 Agst 3110A50A 4] — ?[(ﬁAlO_F VAAg+ VBAsp)?

+(V2AL+ VA5 2+ 2A2], (41)
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where s=(c,/c)?. Starting from these relations, the ap b
Rayleigh—Ritz method, Eq10), can be used to reduce them =aAT| —r1(X)po(2) + —ro(X)p1(2) |- (52
to a matrix eigenvalue equation which is solved on the com- V2 V3

puter. This procedure produces a set of eigenfrequensies The equations of motion in Cartesian coordinates are

and eigenvectord\\)= (Al ;, A5y, ALy, -+ ,Ab). The eigen- )

J
vectors are orthogonal Pm—zUi(r,t)=2 —ay. (53
at 70X
= (HaG) . . .
5ij ; An'An (42) The source term for the elastic oscillation is the current

) ) _ pulse, which causes the cylinder to start expanding. The
The eigenfrequencies can be used to construct the eigefipyle heating, which causes the expansion, enters into the
modes of the cylinder diagonal stresses;; . The heating is assumed to be uniform
. so that its spatial derivative is zero. In that case it appears to
Ui(f)=§/: APu(r), (43)  drop out of the calculation. Vojta and Clarke introduced one
’ way of avoiding this problem, and here we introduce another.
1 1 Our method is to assume the existence of a source term in the
Sij = fo X dxf_ldzui(r) ~Uj(r). (44) dynamical equation. Since the spatial derivative does not af-
fect the time response, this source term must be proportional
These modes are used in discussing the response to the sg-3K «ATf(t). The constant of proportionality is chosen so
den heating. that the displacement(r,t) goes to Eq(51) in the limit of
infinite time. So we solve the equation

2

J
IV. BOUNDARY CONDITIONS me U(r,t):/.LV2U+()\"F,U,)V(V'U)‘Fpm/\(r)f(t),
The vibrations of the cylinder were found in the previous (54)
section. They are now used to calculate the response of the
cylinder to a pulse of current. The usual current pulse for U(r.t)=2i Ci(H)Ui(r), (59

testing is a “4—10,” which means that it rises to its maxi-
mum value in 4us and decays to half its value in &. A where U;(r) are the eigenfunctions of frequenay found
pulse shape which does this approximately is above by the Demarest method. The coeffici€ljid) need

_ to be determined, as does the coefficidtr). The above

Fl)=texp—tr), (45) equation is solved using a Laplace transform. Because of the

where the constant=4 us. Joule heating in the pulse raises form for f(t) the displacemeni(r,t=0)=0, as does its first
the temperature according @dT/dt=WgF(t), whereW, time derivative. In this case the above equation is
is the power andC is the heat capacity. So the rise in tem-

perature is the integral d¥(t) which gives Ci(p)= fwdt e PiC,(1), (56)
T(H)=ATH(1), (46) °
f(hy=1-e ""(1+t/7), (47) 2 (PP e))Ci(pIUIN=A(NT(p), (57)
I
whereAT is the final temperature rise caused by the current
pulse. Eventually the system will cool down, but that is on a 1

much larger time scale than the current pulse. The stresses in fp)= p[1+p7]?’ (58)

the two directions are ~ ~ _
whereC,;(p),f(p) are the Laplace transform of the various

0= \V-U+2pu %—3KaATf(t), (48  functions. The solution fo€; has the form
2
~ Wi ~
au,, Ci(p)=Cilef(P), (59)
T,p=AV-u+ 2M$—3KQATf(t), (49 P™T o
wherea is the coefficient of linear expansion, andu, and Ci=—12f d3r Ui(r)-A(r). (60)
K are elastic moduli defined in the Appendix. For a long @;

period, after the system has stopped oscillating, thesghe inverse Laplace transform gives
stresses must vanish. In that case the only solution to these

2
equations fott—o are [P D (k2 AN B |
Cih=ci| 1 1+(wi7')2e 1+ T+1+(wi7)2
u, du,
Tz AT (50 cog wxt—26;)
" Trtwr? | ©
u(r,o)=raAT=aAT[apS;(X)Py(z) +bZRy(X)P1(2)] :
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The constant; has been introduced, which needs to be de-TABLE I. Second column are lowest six breathing mode frequensjes

termined. The key is tha’.t:-(t=oo)=c- so that 10°rad/s of the cylinder of ceramic ZnO with heigid4 mm and
: : radius=17 mm. Third column are frequenciés= w;/(2) in units of kHz.

Fourth and fifth columns are constamisandd; . The strongest coupling is

u(r,t=o)= E ciUi(r)=raAT, (63)  to these modes. All other modes hae<O(0.1)
I
i wj fi C; di
_ 3
Ci= aATf d°r U;-r, 64 1 0.290 46.10 ~7.84 -3.35
2 0.470 74.84 ~1.05 -0.23
a b 3 0.590 93.95 6.55 1.00
ci=aAT| —Al+—Al . (65 4 0.697 110.84 —5.94 -0.68
ol V3 5 0.749 119.27 9.64 0.97
6 0.840 133.75 7.30 0.59

=

The last equation completes the derivation. The vibrations of
the cylinder are given by Eq55), where the amplitudes are
given in Eq.(61) in terms of the coefficients; defined in the o ) )
above equation. proximation. I_f w1 then the system responds_ adiabati-

As a check on the result, take the second time derivativ&@lly- In practice the lowest modes haugr~1 while the
of Eq. (61) and find higher modes are in the adiabatic limit. The valuesdpf
decline rapidly for modes of higher frequency. The sign of
these values is not significant since they are multiplied by the
eigenfunctiondJ;(r) which can have either sign.

Figure 2 shows the stregs, (r,t) as a function of time
in microseconds. The three curves are fer0 (solid tri-
angles, z=b/2 (open triangles andz=b (solid triangle$,

2 and all are ap=0. We setaeAT=1 in making the graphs.
A(n)= EI G i U(r), 67) The oscillations are not dominated by a single frequency. All
modes contribute to the oscillations, with varying applitudes.
The temporal behavior is somewhat complicated.

The stress in the first oscillation is the largest in the
center of the cylinderd=0) and gradually decreases toward
the ends. We have calculated several points between those
shown in order to ascertain that the trend is monotonic.
Ci(t)~c;f(t). (68)  These curves are not shown to avoid cluttering the figure.

Th . ilati : th t oul | . This negative oscillation is a compressive stress. It occurs
‘ere 1S no oscifiations since Ihe current puise was SIow iy e, the cylinder heats up rapidly and starts to thermally
time. (2) The other limit is whernw;7<1 in which case

Ci(t)~ci[1—cogw;t)]. (69

Here the pulse is in theudden approximatigrand the re-
sponse is a pure oscillation. In the present case with
=4 us most of the elastic modes are in the adiabatic limit
and induce no significant oscillation. A very useful quantity
is

(92
—2Cith=ofef()-Ci()]. (66)

Compare this formula to the differential equati@@) which
gives

which agrees with Eq60). The derivation is self-consistent,
in that one can find a time-independent functid(r) which
generates the correct static displacements at large time.

Equation(61) has two interesting limits{1) The adia-
batic limit is whenw;7>1. In this case

100

_1+(wiT)2’
which is the coupling of a mode to the oscillatory term

cos;t—26). The denominator reduces this coupling for
modes of higher frequency.

d; (70

zz-stress (GPa)

V. COMPARISON TO PRIOR RESULTS

t (us)

The above equations were put on the computer and cal-
culated for a ZnO arrester. The parameters are used fI’OIﬁG' 2. The value of the stregs,(t) from a 4—10 pulse calculated assum-

o . . - ing aAT=1 along the axisp=0 at the pointsz=0,b/2,b. Here H
Ref. 4:a=17mm, b=22mm, E=100GPa, andr=0.36. =44 mm,D =34 mm. The curve with solid triangles isat 0, in the center

The calculated speeds of sound acg=2.60km/s andc,  of the cylinder. The curve with open triangleszs b/2 at the 1/4 and 3/4
=5.57km/s. The frequencies; (in units of 1€ rad/9, f; point. The first oscillation is compressive, and the stress is largest at the
= w;/(27) in units of kHz, and constants ,d; are shown in C_egtbe/fzzjto_- Ths nf)itcs/scrlml'lart:on ;‘tj b‘i ‘{fsthhas about the same St”lstsséﬁt
Table | for the lowest six modes. These modes have thg *\* IS about 19% higner @=b/%. Tis curve IS not shown. 1t wi
reak under tension at anyplace alontp/2<z<b/2. The next big oscilla-
largest values ofl;. Note that all of the modes hawe;r o is att= 17 us, and the stress is largestzat b/2. The other curve is at

>1. If wj7<1 then the system responds in the sudden apthe end of the cylinder.
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expand. The expansion has not yet occurred so the cylindéABLE II. Observed and calculated frequencies of a ceramic cylinder of
is under compression. It can break, and in this case wouldno: Fourth column is error, while last column is mode degeneracy.

break in the center. o ) Mode Obs-HkHz) Calc-F(kHz) % Difference  Degeneracy
The second large oscillation at about 43 has a posi-

tive amplitude. It is the first expansion of the cylinder, which 2_13 3;32%3‘2 22'23% _O'g%%z L ,
overshpots the eq.uilibrium po'int.lln this case the Iarggst 4-5 42597 42624 _0.064 5
stress is at the poirg=b/2, which is at the 1/4 or 3/4 point 6-7 45.881 45.931 ~0.109 2
along the length of the cylinder. The breaking point under 8 49.420 49.422 —0.004 1
tension is less than the breaking stress under compression.9-10  50.212 50.175 0.073 2
The cylinder could break at this point if it did not break in iéji gg'ggi Zg;?g 8'822 ;
the first oscillation. In this case the breaking would occur at 15 63.199 63.242 0.068 1

the 1/4 or 3/4 point. These results are in very good agreement
with those in Ref. 4. They showed only the curve we label
z=b/2, which they asserted had the largest valuezstress.
Their curve is very similar to our curve, so we confirm their have the same value fot-n. The only breathing mode
results. However, the cylinder will not always break at thein this list is No. 8. The first cylinder, shown in Fig. 2 and in
1/4 or 3/4 point since it could break in the first oscillation Table I, had H>D and the first breathing mode was
under compression. Experimentally it is found that varistordNo. 4. Here withH~D the first breathing mode has dropped
usually break in the center, and the break is along a plan® No. 8.
perpendicular to the axis. The breathing modes were calculated using the basis set
The line in Fig. 2 with solid triangles and small ampli- With [p,(2),r,(X)]. The same values were used for the size,
tude is the stress, (t) evaluated at the end of the cylinder: density, and elastic parameters. These frequencies are shown
(p=0, z=b). This stress is zero if the boundary conditionsin Table lll, along with the coupling coefficients; ,d; .
are obeyed perfectly. In the variational calculation the endgain only a few modes of small frequency have a signifi-
stress is quite small but not zero. Increasing the deljreé  cant value of couplingl; to the induced oscillations. Figure 3
the polynomial causes this stress to become increasing smafinows the value of the stress, from a 4-10 pulse calcu-
In doping these calculations we seAT=1. In practice lated assumingrAT=1 along the axisp=0 at the points
this dimensionless quantity |Q(10_4) The dynamic z=O,b/2,b. The line with solid triangles is at=0, in the
stresses are of order mega-Pascal rather than giga-Pascalcenter of the cylinder. The curve with open triangleszis
=h/2 at the 1/4 and 3/4 point. The first oscillation is com-
pressive, and the stress is largest at the certd). The next
VI. ELASTIC MEASUREMENTS oscillation att=8 us has about the same stresgat0, b/2.
. . . It is about 10% higher at=Db/4: this curve is not shown. It
A station arrester of ZnO was obtained. It is a commer-

. . . . will break under tension at any place alorgh/2<z=<hb/2.
cial unit manufactured by the Ohio Brass Company. Vanstorsl_he next big oscillation is at= 1};23 and t;rg)stress is larg-

are ZnO ceramics with additives of other metal oxides, each : . o .
. st atz=b/2. Again the other curve with solid triangles is at
at the level of 1%. Each manufacturer has a different set o . L .
. C . he ends of the cylinder and this is small, which means the
additives, which is proprietary. » :
) boundary conditions are obeyed approximately.
The frequencies of the lowest normal modes were mea- .
. : Figure 4 shows the same results @g,(t). The three
sured. An HP 3325B frequency synthesizer with frequency AT " .
resolution of 1uHz is used to excite the sample via a gold - > &€ the points: solid trianglep£0=2), open tri-
M P 9 angles(p=0, z=b/2), and solid trianglegp=a/2, z=0).

plated PVDF transducer. The sample response is monitor . .
) o . ; o e curve with p=0=2) has the largest amplitude for all
with a similar transducer. The signal is amplified and sentto. . ~. . . .
. o oscillations. In both Figs. 3 and 4, the first large expansion
a Stanford Research SR844 RF lock-in amplifier and re- eak occurs at 8—1(us. For this peak note thaty(t)
corded on a Sun workstation. The Lorentzian peaks are the ' P 00
fitted, which extracts the center frequency. More details are
given in Ref. 15. TABLE Ill. Second column are lowest eight breathing mode frequengjes
The ZnO cylinder hadd =4.295cm,H=4.201cm, and in 10°rad/s of the cylinder of ceramic ZnO with height1.5 mm and
densityp,,=5.350 gm/crﬁ. The frequencies were fit well by radius=20.45 mm. Third column are frequenciés= w; /(27) in units of
the parameters oE=1.135Mbar and Poisson ratio- kHz. Fourth and fifth columns are constaetsandd; . The strongest cou-
. ) . gling is to the modes 1, 3, and 4.
=0.391. These cylinders have aluminum electrodes on th
end, and are then coated. The electrodes and coatings were i o f; ci d;
etched away, leaving a cylinder of pure ZnO ceramic. This

: . 1 0.3106 49.43 4.07 1.60
=5.575gm/cm. The lowest frequency modes were mea- 3 0.5649 89.90 —13.47 —2.21
sured, and thayzcode was used to fit them, adjusting only 4 0.6855 109.09 -9.87 1.16
two parameters, which gaveE=1.1349 Mbar and o 5 0.7267 115.65 6.01 0.64
_ ; ; 6 0.7792 124.02 -1.34 -0.12
=0.3378. The major change from the coated cylinder was 7 0.9421 149.95 102 007
the Poisson ratio. The lowest 15 modes and their calculated g 0.9727 154.81 114 007

values are shown in Table Il. Many are degenerate since they
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zz-stress (GPa)

-100 T T T
20 30
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FIG. 3. The value of the stress, (t) from a 4—10 pulse calculated assum-
ing «aAT=1 along the axisp=0 at the pointsz=0b/2b. Here H
=41.53 mm,D =40.89 mm. The curve with solid triangles iszt 0, in the
center of the cylinder. The curve with open triangleg4sb/2 at the 1/4 and
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APPENDIX: STRESS AND STRAIN

Here we review some standard relations between the
various constants used in stress and strain equatins:
Young'’s modulusg is the Poisson ratidf is the bulk modu-
lus of elasticity,\ is Lame’s constanty is the modulus of
rigidity, and « is the coefficient of linear expansion

3/4 point. The first oscillation is compressive, and the stress is largest at the

centerz=0. The next oscillation at=10 s has about the same stress at
z=0,/2. It is about 5% higher at=b/4: this curve is not shown. It will
break under tension at anyplace alon§)/2<z<b/2. The next big oscilla-
tion is att=17 us, and the stress is largestzat b/2. The other curve is at
the end of the cylinder.

>0,4t). We also calculated,,(t). It is identical too4(t)
along the linep=0. Away from that line it is smaller than
oge(t). So for this case withtH~D the fracture will be pie

shaped rather than along the plane perpendicular tozthe

axis.

It should be kept in mind that these figures do not apply!he diagonal and off-diagonal stresses are

to an actual arrester, since the calculations were done for a

cylinder lacking electrodes.

00-stress (GPa)

t (us)

FIG. 4. Time dependent stress),(t) from a 4—10 pulse for the cylinder
with H=41.53 mm, D=40.89 mm. The curve with solid triangles is at
point (p=0, z=0); the curve with open triangles is at poift=0, z=b/2);
the other line is alp=a/2, z=0). The stress is smaller when#0 than
along the axis withp=0. The largest stress is found at the pdipt=0, z
=0).
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