Phys 451 Homework Set 5 due Monday Oct 6, 2008

#1- An particle of mass m is in the ground state \(|\psi_1\rangle \) of an infinite square well of width \(a \). The well suddenly expands to width \(2a \). Find the probability that the particle will transition to the \(n \)th level \(|\phi_n\rangle \) of the new system. In which state \(n \) do we have the maximum chance of finding the particle after expansion?

New eigenstates and energies
\[
|\psi_n\rangle = \frac{1}{\sqrt{a}} \sin\left(\frac{n\pi}{2a} x\right) \quad E_n = \frac{n^2 \pi^2}{2ma^2}
\]

\[
|\psi_i\rangle = \sum_n a_n |\phi_n\rangle \quad \text{expansion of ground state } |\psi_i\rangle \text{ in new states in terms new states } |\phi_n\rangle
\]

\[
a_n = <\psi_i|\phi_n> = \left[\int_a^{-a} \sqrt{a} \sin\left(\frac{n\pi}{2a} x\right) \sin\left(\frac{m\pi}{2a} x\right) dx \right] + 0 \quad n = 0, 1, 2, 3, 4 \ldots
\]

\[
a_n = \frac{\sqrt{2}}{n} \left(\frac{n\pi}{2} \right) = 0 \quad n = 4, 6, 8, \ldots \quad n \neq 2
\]

\[
a_{11} = \frac{\sqrt{2}}{\pi} \left(\frac{\sin(\frac{\pi}{2})}{-1} - \frac{\sin(3\pi)}{2} \right) = \frac{\sqrt{2}}{\pi} (1 + \frac{2}{3}) = 0.6 \quad P_{11} = \frac{\sqrt{2}}{\pi} \frac{4}{3} = 0.360
\]

\[
a_{13} = \frac{\sqrt{2}}{\pi} \left(\frac{\sin(2\pi)}{-1} - \frac{\sin(5\pi)}{2} \right) = \frac{\sqrt{2}}{\pi} (1, -1) = \frac{\sqrt{2}}{\pi} \left(\frac{2}{1} - \frac{2}{5} \right) = P_{13} = \frac{8\sqrt{2}}{5\pi} = 0.519
\]

\[
a_{15} = \frac{\sqrt{2}}{\pi} \left(\frac{\sin(3\pi)}{-1} - \frac{\sin(7\pi)}{2} \right) = \frac{\sqrt{2}}{\pi} (2, -2) = 0.172 \quad P_{15} = \frac{\sqrt{2}}{\pi} \left(\frac{2}{3} - \frac{2}{7} \right) = 0.029
\]

\[
a_{17} = \frac{\sqrt{2}}{\pi} \left(\frac{\sin(5\pi)}{-1} - \frac{\sin(9\pi)}{2} \right) = \frac{\sqrt{2}}{\pi} (2, -2) = 0.080 \quad P_{17} = \frac{\sqrt{2}}{\pi} \left(\frac{2}{5} - \frac{2}{9} \right) = 0.006
\]

Some violation of probability density during this instantaneous perturbation!

#2- Given that the harmonic oscillator ground state wave function is given by
\[
|\psi_0\rangle = \pi^{-\frac{1}{4}} e^{\frac{1}{2}y^2}
\]

Use the raising operator \(a^+ \) to find
\[
|\psi_i\rangle = \frac{1}{\sqrt{2}} \left(\frac{d}{dy} + y \right) |\psi_0\rangle = \pi^{-\frac{1}{4}} \frac{1}{\sqrt{2}} \left(\frac{d}{dy} + y \right) e^{\frac{1}{2}y^2} = \frac{\sqrt{2}}{\pi^{-\frac{1}{4}}} y e^{\frac{1}{2}y^2}
\]
#3- A stream of particles of mass m and energy E move in the +x direction from $-\infty$ into a step barrier at $x=0$ of height V_0 with $(E>V_0)$. (a) Find the reflection and transmission coefficients R and T for the particle. (b) Determine the transmission current J_T of particle moving beyond $x>0$.

\[\psi_1(x) = e^{ikx} + R e^{-ikx}, \quad \psi_2(x) = Te^{iqx} \]

\[k = \sqrt{\frac{2mE}{\hbar}} \]

\[q = \sqrt{\frac{2m(E-V_0)}{\hbar}} \]

Boundary conditions at $x=0$

\[\psi_1(0) = \psi_2(0) \]

\[i(k-q)R = i(k+q)T \]

(a) $R = \frac{k-q}{k+q}$, $T = \frac{k+q}{k+q}$

(b) $J_r = \frac{\hbar}{m} |\psi_1|^2$, $J_t = \frac{\hbar}{m} |\psi_2|^2$ \[J_i = J_r + J_t \] with $J_i = J_i$ since $\frac{\partial}{\partial x} (\psi^* \psi) = 0$

\[\frac{\hbar}{m} \left(\frac{k}{k+q} \right)^2 + \frac{\hbar}{m} \left(\frac{q}{k+q} \right)^2 = \frac{m}{k+q} \left(\frac{k+q}{k+q} \right)^2 + \frac{q}{k} \left(\frac{2k}{k+q} \right)^2 = 1 \]

#4- Alpha particles of energy $E=5$MeV and mass 3750 MeV/c^2 are trapped in a nucleus which we model as a simple square well of height 10MeV. The radius of the well is $r = 8$fm. The alpha particles are trapped by a 1fm barrier. Find the tunneling probability through the barrier for the alpha particles using the WKB approximation. What is half-life of the nucleus with respect to alpha decay? ($1fm = 1.0e-15m$)

(a) $P_r = e^{-2 \int Kdx} \int Kdx = \frac{\sqrt{2mE}}{\hbar} \int \sqrt{E-V}dx = \frac{\sqrt{2mE}}{\hbar} \sqrt{E-V} \Delta x$

\[\int Kdx = \frac{7500 \text{ MeV} \text{ MeV}}{6.582e-15 \text{ eV} \text{ m}^2} \sqrt{5 \text{ MeV} \text{ eV} \text{ m}^2} \]

\[= \frac{7500 \times 10^6 \text{ eV}^2 \sqrt{5 \times 10^6 \text{ eV}^2 \text{ m}^4}}{(6.582 \times 10^{-15} \text{ eV} \text{ m}^2)} \]

\[= \frac{(7500)}{6.582} \times 10^6 \times 10^{-15} = 3 \times 10^0 = 0.981 \]

\[P_r = e^{-2 \times 0.981} = 0.14 \]

(b) $V_a = \sqrt{\frac{2T}{m}} = \sqrt{\frac{2 \times 5 \text{ MeV}}{3750 \text{ MeV} / c^2}} = 0.0027 \times 3 \times 10^8 \text{ m/s} = 8 \times 10^8 \text{ m/s}$

\[V = \frac{8 \times 10^5 \text{ m/s}}{8 \times 10^{-15} \text{ m}} = 1 \times 10^{10} \text{ s} \rightarrow \tau_{\alpha} = \frac{\ln 2}{\nu \tau_T} = 5.0 \times 10^{-10} \text{ s} \]