PHYS 503/629 – Homework No. 1 – DUE THURSDAY, 03/31/2005

Problem 1. Show that, with λ taken as an affine parameter, the Lagrangian

$$L = \frac{1}{2} g_{\alpha\beta}(x) \dot{x}^{\alpha} \dot{x}^{\beta} \tag{1}$$

is an equivalent Lagrangian to

$$L = \sqrt{-g_{\alpha\beta}(x)\dot{x}^{\alpha}\dot{x}^{\beta}}, \qquad (2)$$

where $\dot{x}^{\alpha} = dx^{\alpha}/d\lambda$.

Problem 2. For a test particle in a two-dimensional Euclidean spacetime: **a**) Write the Lagrangian (1) in polar coordinates (r, φ) ; **b**) Show that the equations of motion are $\ddot{r} - r\dot{\varphi}^2 = 0$ and $r^2\dot{\varphi} = \text{constant}$; **c**) Integrate the equations of motion and find the trajectory. What kind of trajectory the test particle does follow?

Problem 3. Starting from the ansatz:

$$ds^{2} = -A(r)dt^{2} + B(r)dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}),$$

find the Schwarzschild solution by solving the Einstein equations in vacuo (without using Maple, Mathematica, etc.!).

Problem 4 (Only for 629 level or for extra credit). Prove the Birkhoff theorem by showing that the most general spherically symmetric solution of Einstein equations in vacuo,

$$ds^{2} = -A(r,t)dt^{2} + B(r,t)dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}),$$

is indeed static, i.e., A(r,t) = A(r) and B(r,t) = B(r).